JPH06221112A - Turbine bypass valve control device - Google Patents

Turbine bypass valve control device

Info

Publication number
JPH06221112A
JPH06221112A JP962693A JP962693A JPH06221112A JP H06221112 A JPH06221112 A JP H06221112A JP 962693 A JP962693 A JP 962693A JP 962693 A JP962693 A JP 962693A JP H06221112 A JPH06221112 A JP H06221112A
Authority
JP
Japan
Prior art keywords
turbine bypass
bypass valve
turbine
warming
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP962693A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
晃 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP962693A priority Critical patent/JPH06221112A/en
Publication of JPH06221112A publication Critical patent/JPH06221112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To obtain a turbine bypass valve control which can reduce thermal stress generated at the operation time of a turbine bypass line and prevents occurrence of damage such as crack. CONSTITUTION:A warming computer 27 is provided as a control device for a turbine bypass valve 19 in a combined cycle plant, which computer 27 perform warming of a turbine bypass line while minutely opening the turbine bypass valve 19 by the use of main steam pressure/temperature, gas turbine load falling and stoppage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合サイクルプラントの
タービンバイパス弁の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a turbine bypass valve of a combined cycle plant.

【0002】[0002]

【従来の技術】複合サイクルプラントはガスタービン装
置と、ガスタービン排ガスの熱を利用して蒸気を発生さ
せる排熱回収ボイラ、更に排熱回収ボイラからの蒸気で
駆動させるタービン装置により構成されている。
2. Description of the Related Art A combined cycle plant is composed of a gas turbine device, an exhaust heat recovery boiler that uses the heat of the gas turbine exhaust gas to generate steam, and a turbine device that is driven by steam from the exhaust heat recovery boiler. .

【0003】図4に複合サイクルプラントの一般的な構
成を示す。複合サイクルプラントは、一般に1台あるい
は複数台のガスタービン装置1とこのガスタービン装置
1と同数の排気回収ボイラ7、蒸気タービン装置14とに
より構成されている。
FIG. 4 shows a general structure of a combined cycle plant. The combined cycle plant is generally composed of one or a plurality of gas turbine apparatuses 1, and the same number of exhaust gas recovery boilers 7 and steam turbine apparatuses 14 as the gas turbine apparatuses 1.

【0004】ガスタービン装置1は、コンプレッサ3、
燃焼器5、ガスタービン4で構成され、コンプレッサ3
にて加圧された空気は燃焼器5へ送られる。燃焼器5は
この加圧された空気と燃料を燃焼し、高圧高温の燃焼ガ
スを発生する。
The gas turbine system 1 includes a compressor 3,
A combustor 5 and a gas turbine 4, and a compressor 3
The air pressurized at is sent to the combustor 5. The combustor 5 combusts the pressurized air and fuel to generate high-pressure and high-temperature combustion gas.

【0005】高圧高温の燃焼ガスはガスタービン4へ送
られ、ガスタービン4を駆動した後、排熱回収ボイラ7
へ排ガスダクト6を介して導かれる。排熱回収ボイラ7
はドラム式ボイラ構造となっており、プラント出力等に
よりドラムが複数個設置される。
The high-pressure and high-temperature combustion gas is sent to the gas turbine 4, and after driving the gas turbine 4, the exhaust heat recovery boiler 7
To the exhaust gas duct 6. Exhaust heat recovery boiler 7
Has a drum type boiler structure, and multiple drums are installed depending on the plant output.

【0006】排熱回収ボイラ7は給水ポンプ17にて供給
される給水を加熱する節炭器8、蒸気発生ドラム9、蒸
発器10及び過熱器11で構成され、給水をガスタービン4
の駆動後の排ガスにて加熱し蒸気化する。この蒸気は、
蒸気管12、加減弁13を介して蒸気タービン14に供給され
る。これにより、蒸気タービン14および発電機15は駆動
される。
The waste heat recovery boiler 7 is composed of a economizer 8, a steam generating drum 9, an evaporator 10 and a superheater 11 for heating the feed water supplied by the feed water pump 17, and the feed water is supplied to the gas turbine 4
Is heated and vaporized by the exhaust gas after driving. This steam is
It is supplied to a steam turbine 14 via a steam pipe 12 and a regulator valve 13. As a result, the steam turbine 14 and the generator 15 are driven.

【0007】蒸気タービン14の排気は復水器16に集めら
れ、海水を冷却水とする循環水と熱交換され復水化す
る。この復水は給水ポンプ17により昇圧され、給水調節
弁18を介して排熱回収ボイラ7へ給水される。蒸気管12
にはタービンバイパス弁19が設置されたバイパスライン
が、分岐しており、減温装置20を介して復水器16へ接続
している。減温装置20には給水ポンプ17ラインより分岐
したスプレー水ラインが接続され、冷却水スプレー調節
弁21が設置されている。ガスタービン装置は従来の蒸気
タービン装置に比べ、起動停止時間が短く、負荷変動に
強いという特徴を有している。
Exhaust gas from the steam turbine 14 is collected in a condenser 16 and is heat-exchanged with circulating water having seawater as cooling water to be condensed. This condensed water is boosted by the water supply pump 17 and is supplied to the exhaust heat recovery boiler 7 via the water supply control valve 18. Steam pipe 12
A bypass line in which a turbine bypass valve 19 is installed is branched and is connected to the condenser 16 via a temperature reducing device 20. A spray water line branched from a water supply pump 17 line is connected to the temperature reducing device 20, and a cooling water spray control valve 21 is installed. The gas turbine device is characterized in that it has a shorter start / stop time and is more resistant to load fluctuation than the conventional steam turbine device.

【0008】この為、実運用では昼夜の電力需要に対
し、起動停止を含めた早い負荷追従を行なう。これによ
り、タービンバイパスラインが頻繁に作動する事にな
る。たとえば、起動時は蒸気タービン14側の蒸気圧力と
蒸気発生ドラム22での発生蒸気圧力がミスマッチするの
で、このミスマッチ分をタービンバイパスラインにより
復水器16へ逃す。又、停止時も同様である。
For this reason, in actual operation, quick load follow-up including start / stop is performed for day and night power demand. This causes the turbine bypass line to operate frequently. For example, at the time of start-up, the steam pressure on the steam turbine 14 side and the steam pressure generated in the steam generating drum 22 are mismatched, and this mismatch is released to the condenser 16 through the turbine bypass line. The same is true when stopping.

【0009】通常運用時タービンバイパスラインはター
ビンバイパス弁19が全閉する事により蒸気ラインからア
イソレーションされており、タービンバイパスの温度は
低下している。特に、タービンバイパス弁二次側以降は
復水器16器内圧力の飽和温付近まで低下している。この
ようなラインに急激に高圧高温の蒸気を導入した場合、
大きな熱応力を発生する。更に、タービンバイパスライ
ンの使用頻度が多くなる事は、金属材料の寿命消費が増
加する事となる。
During normal operation, the turbine bypass line is isolated from the steam line by fully closing the turbine bypass valve 19, and the temperature of the turbine bypass is lowered. Especially after the secondary side of the turbine bypass valve, the pressure inside the condenser 16 has dropped to around the saturation temperature. When suddenly introducing high pressure and high temperature steam into such a line,
Generates large thermal stress. Further, the increased frequency of use of the turbine bypass line increases the life consumption of the metal material.

【0010】[0010]

【発明が解決しようとする課題】ところがタービンバイ
パスラインの高頻度使用は下記の問題が残る。負荷降下
や停止時に高圧高温蒸気が一気にタービンバイパスライ
ンより復水器へ排出された場合、大きな熱応力が発生し
かつ頻度が多くなると、金属材料の寿命消費が増加し、
タービンバイパス弁等にクラック等の損傷が発生する。
However, the frequent use of the turbine bypass line leaves the following problems. When high-pressure high-temperature steam is discharged from the turbine bypass line to the condenser at once when the load drops or stops, if large thermal stress occurs and the frequency increases, the life consumption of the metal material increases,
Damage such as cracks occurs in the turbine bypass valve.

【0011】[0011]

【課題を解決するための手段】本発明は、蒸気タービン
停止信号によりタービンバイパス弁を微開させ、微開の
開度は主蒸気圧力、主蒸気温度により演算し、これらに
よりタービンバイパスラインを事前にウォーミングを行
ない、タービンバイパスライン使用時の熱応力の発生を
減らすようにしたものである。
According to the present invention, the turbine bypass valve is slightly opened by a steam turbine stop signal, and the opening degree of the minute opening is calculated by the main steam pressure and the main steam temperature. Warming to reduce the generation of thermal stress when using the turbine bypass line.

【0012】[0012]

【作用】本発明によれば、負荷降下や停止時に発生する
タービンバイパスラインの熱応力を、事前にライン全体
をウォーミングする事により軽減出来る。この結果、タ
ービンバイパス弁等の金属材料の寿命消費は少なくなり
クラック等の損傷を防止出来る。
According to the present invention, the thermal stress of the turbine bypass line generated when the load is dropped or stopped can be reduced by warming the entire line in advance. As a result, the life of the metal material such as the turbine bypass valve is reduced, and damage such as cracks can be prevented.

【0013】[0013]

【実施例】以下、添付図面を参照しつつ本発明の一実施
例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0014】図1において、図4と同一符号は同一部分
または相当部分を示す。主蒸気圧力を検出する主蒸気圧
力検出器22の信号、主蒸気温度を検出する主蒸気温度検
出器26の信号がウォーミング演算器27に入力されてい
る。ウォーミング演算器27ではガスタービン負荷降下信
号によりタービンバイパス弁19を微開させ、タービンバ
イパスラインのウォーミングを始める。タービンバイパ
ス弁19の微開開度は、主蒸気圧力温度から決定される。
In FIG. 1, the same symbols as those in FIG. 4 indicate the same or corresponding portions. A signal from the main steam pressure detector 22 that detects the main steam pressure and a signal from the main steam temperature detector 26 that detects the main steam temperature are input to the warming calculator 27. In the warming calculator 27, the turbine bypass valve 19 is slightly opened by the gas turbine load drop signal, and warming of the turbine bypass line is started. The fine opening degree of the turbine bypass valve 19 is determined from the main steam pressure temperature.

【0015】このように構成された制御装置において負
荷降下や停止時に発生するタービンバイパスラインの熱
応力を軽減させるウォーミング演算器27の構成を図2に
示す。主蒸気圧力信号、主蒸気温度信号はウォーミング
演算器27内の蒸気流量演算器30に入力される。蒸気流量
演算器30には予めタービンバイパス弁19の材質、構造等
から求められる過渡温度特性が入力されており、主蒸気
圧力、主蒸気温度より熱応力が最少となる蒸気流量を求
める。
FIG. 2 shows the configuration of the warming computing unit 27 for reducing the thermal stress of the turbine bypass line generated when the load is lowered or stopped in the control device configured as described above. The main steam pressure signal and the main steam temperature signal are input to the steam flow rate calculator 30 in the warming calculator 27. The steam temperature calculator 30 is preliminarily input with the transient temperature characteristics determined from the material, structure, etc. of the turbine bypass valve 19, and the steam flow rate at which the thermal stress is minimized is calculated from the main steam pressure and the main steam temperature.

【0016】蒸気流量信号は弁開度演算器31に入力さ
れ、ここで必要弁開度が算出される。具体的には主蒸気
圧力、流量、弁流量係数より求められる。この信号は切
替器28を介してタービンバイパス弁19の比例積分演算器
23の出力側に設置されている加減演算器29に入力され
る。
The steam flow rate signal is input to the valve opening calculator 31, where the required valve opening is calculated. Specifically, it is calculated from the main steam pressure, the flow rate, and the valve flow rate coefficient. This signal is sent to the proportional-integral calculator of the turbine bypass valve 19 via the switch 28.
It is input to the addition / subtraction calculator 29 installed on the output side of 23.

【0017】切替器28はガスタービン装置1の主制御器
から出力されるガスタービン負荷降下や停止信号により
ウォーミング演算器27出力を比例積分演算器の出力側に
設置されている加減演算器19へ入力するように切替る。
この結果、タービンバイパスラインは適性にウォーミン
グされ、熱応力によるクラック等の損傷が防止出来る。
The switching unit 28 adjusts the output of the warming calculator 27 to the output side of the proportional-plus-integral calculator according to the gas turbine load drop or the stop signal output from the main controller of the gas turbine system 1. Switch to input to.
As a result, the turbine bypass line is properly warmed, and damage such as cracks due to thermal stress can be prevented.

【0018】本説明では複合サイクルプラント停止過程
を主に説明したが、ガスタービン起動からはじまる複合
サイクルプラント負荷上昇過程においても同様の効果が
得られる。
In this description, the process of stopping the combined cycle plant has been mainly described, but the same effect can be obtained in the process of increasing the load of the combined cycle plant starting from the start of the gas turbine.

【0019】以上の説明ではウォーミング演算器の出力
を切替器を介して加減演算器に出力しているが、他の方
法として信号選択器としても同様の効果が得られる。信
号選択器はウォーミング演算器出力と比例積分演算器出
力を比較しタービンバイパス弁開信号を優先的に出力す
る。
In the above description, the output of the warming arithmetic unit is output to the addition / subtraction arithmetic unit via the switching unit, but the same effect can be obtained as a signal selector as another method. The signal selector compares the output of the warming calculator with the output of the proportional-plus-integral calculator and preferentially outputs the turbine bypass valve open signal.

【0020】他の実施例を図3にて説明する。ウォーミ
ング演算器27の蒸気流量演算器29には主蒸気圧力検出器
22及び温度検出器26の信号の他のタービンバイパス弁19
のメタル温度検出器32が入力される。タービンバイパス
ライン動作時の温度も加味し、タービンバイパス弁19の
過渡温度特性を算出し、熱応力が最少となる蒸気流量を
求める。これ以降の演算は前述の説明と同様なので省略
する。
Another embodiment will be described with reference to FIG. The main steam pressure detector is used as the steam flow calculator 29 of the warming calculator 27.
22 and other turbine bypass valve 19 for temperature detector 26 signal
The metal temperature detector 32 of is input. The transient temperature characteristic of the turbine bypass valve 19 is calculated in consideration of the temperature during operation of the turbine bypass line, and the steam flow rate at which the thermal stress is minimized is obtained. Subsequent calculations are the same as those described above, and will be omitted.

【0021】図3の説明ではウォーミング演算器の出力
を切替器を介して加減演算器に出力しているが、他の方
法として前述の説明と同様に構成にも同様の効果が得ら
れる。タービンバイパス装置には他の減圧と減温が一体
構造となっている蒸気変換弁タイプがあるが、本装置に
おいても本発明は有効である。
In the description of FIG. 3, the output of the warming computing unit is output to the addition / subtraction computing unit via the switching unit, but as another method, the same effect can be obtained in the configuration as in the above description. The turbine bypass device includes another type of steam conversion valve in which decompression and temperature reduction are integrated, but the present invention is also effective in this device.

【0022】[0022]

【発明の効果】このように、本発明によれば、タービン
バイパスライン作動時に発生する熱応力を軽減出来、ク
ラック等の損傷が防止出来る。
As described above, according to the present invention, the thermal stress generated during the operation of the turbine bypass line can be reduced and damage such as cracks can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す系統図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】本発明のウォーミング演算器の一例を示すブロ
ック構成図。
FIG. 2 is a block diagram showing an example of a warming calculator according to the present invention.

【図3】本発明のウォーミング演算器の他の一例を示す
ブロック構成図。
FIG. 3 is a block diagram showing another example of the warming arithmetic unit according to the present invention.

【図4】従来例の系統図。FIG. 4 is a system diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1…ガスタービン装置、2…発電機、3…コンプレッ
サ、4…ガスタービン、5…燃焼器、6…排ガスダク
ト、7…排熱回収ボイラ、8…節炭器、9…蒸発ドラ
ム、10…蒸発器、11…過熱器、12…蒸気管、13…加減
弁、14…蒸気タービン、15…発電機、16…復水器、17…
給水ポンプ、18…給水調節弁、19…タービンバイパス
弁、20…弁温装置、21…冷却水スプレー調節弁、22…主
蒸気圧力検出器、23…比例積分演算器、24…温度検出
器、25…比例積分演算器、26…主蒸気温度検出器、27…
ウォーミング演算器、28…切替器、29…加減演算器、30
…蒸気流量演算器、31…弁開度演算器。
DESCRIPTION OF SYMBOLS 1 ... Gas turbine device, 2 ... Generator, 3 ... Compressor, 4 ... Gas turbine, 5 ... Combustor, 6 ... Exhaust gas duct, 7 ... Exhaust heat recovery boiler, 8 ... Economizer, 9 ... Evaporation drum, 10 ... Evaporator, 11 ... Superheater, 12 ... Steam pipe, 13 ... Regulator, 14 ... Steam turbine, 15 ... Generator, 16 ... Condenser, 17 ...
Water supply pump, 18 ... Water supply control valve, 19 ... Turbine bypass valve, 20 ... Valve temperature device, 21 ... Cooling water spray control valve, 22 ... Main steam pressure detector, 23 ... Proportional-integral calculator, 24 ... Temperature detector, 25 ... Proportional-integral calculator, 26 ... Main steam temperature detector, 27 ...
Warming computing unit, 28 ... Switching unit, 29 ... Adjustment computing unit, 30
… Steam flow calculator, 31… Valve opening calculator.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複合サイクルプラントにおけるタービン
バイパス弁制御装置として、主蒸気圧力温度及びガスタ
ービン負荷降下や停止により、タービンバイパス弁を微
開させてタービンバイパスラインをウォーミングするウ
ォーミング演算器を備えたことを特徴とするタービンバ
イパス弁制御装置。
1. A turbine bypass valve control device in a combined cycle plant, comprising a warming computing unit for warming a turbine bypass line by slightly opening a turbine bypass valve when a main steam pressure temperature and a gas turbine load drop or stop occur. A turbine bypass valve control device characterized by the above.
【請求項2】 前記ウォーミング演算器に更にタービン
バイパス弁メタル温度を入力しタービンバイパスライン
動作時の弁体メタン温度の過渡特性を算出することを特
徴とするタービンバイパス弁制御装置。
2. A turbine bypass valve control device, wherein the turbine bypass valve metal temperature is further input to the warming computing unit to calculate transient characteristics of the valve body methane temperature during operation of the turbine bypass line.
JP962693A 1993-01-25 1993-01-25 Turbine bypass valve control device Pending JPH06221112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP962693A JPH06221112A (en) 1993-01-25 1993-01-25 Turbine bypass valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP962693A JPH06221112A (en) 1993-01-25 1993-01-25 Turbine bypass valve control device

Publications (1)

Publication Number Publication Date
JPH06221112A true JPH06221112A (en) 1994-08-09

Family

ID=11725474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP962693A Pending JPH06221112A (en) 1993-01-25 1993-01-25 Turbine bypass valve control device

Country Status (1)

Country Link
JP (1) JPH06221112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141458A1 (en) * 2014-03-20 2015-09-24 三菱日立パワーシステムズ株式会社 Combined cycle plant, method for controlling same, and device for controlling same
EP3232020B1 (en) * 2016-04-05 2019-03-20 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141458A1 (en) * 2014-03-20 2015-09-24 三菱日立パワーシステムズ株式会社 Combined cycle plant, method for controlling same, and device for controlling same
US10287921B2 (en) 2014-03-20 2019-05-14 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle plant, method for controlling same, and device for controlling same
EP3232020B1 (en) * 2016-04-05 2019-03-20 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine plant

Similar Documents

Publication Publication Date Title
US5471832A (en) Combined cycle power plant
US4282708A (en) Method for the shutdown and restarting of combined power plant
US7621133B2 (en) Methods and apparatus for starting up combined cycle power systems
US7509794B2 (en) Waste heat steam generator
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
JP4343427B2 (en) Steam power plant output adjustment method and its steam power plant
JP2000161014A (en) Combined power generator facility
JP2000199407A (en) System for supplying auxiliary steam in combined cycle system and method for the same
US20010042369A1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JPH06221112A (en) Turbine bypass valve control device
JP4208397B2 (en) Start-up control device for combined cycle power plant
JPS6239656B2 (en)
JPS60198337A (en) Fuel system heater for gas turbine
JP2020133581A (en) Combined cycle power generation plant and operation method therefor
JPH0341654B2 (en)
US20180094546A1 (en) Fast Frequency Response Systems with Thermal Storage for Combined Cycle Power Plants
JPS60249609A (en) Load control device in combined cycle power plant
JPS58217709A (en) Composite cycle power generating plant
JPS6236124B2 (en)
JP2007285220A (en) Combined cycle power generation facility
WO1999015765A1 (en) Cooling steam control method for combined cycle power generation plants
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS60252109A (en) Compound generation plant
JPS5939122Y2 (en) combined plant
JPH07167401A (en) Double pressure type waste heat recovery boiler water supplying apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518