JPH06220554A - Production of wear resistant material - Google Patents
Production of wear resistant materialInfo
- Publication number
- JPH06220554A JPH06220554A JP50A JP2762293A JPH06220554A JP H06220554 A JPH06220554 A JP H06220554A JP 50 A JP50 A JP 50A JP 2762293 A JP2762293 A JP 2762293A JP H06220554 A JPH06220554 A JP H06220554A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- resistant material
- coated
- titanium
- wear resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はセラミックスの耐摩耗性
と、ある程度の靭性を備え、しかも導電性を有し、熱伝
導も良い耐摩耗性材料の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a wear-resistant material having wear resistance of ceramics, toughness to some extent, electrical conductivity, and good thermal conductivity.
【0002】[0002]
【従来の技術】耐摩耗性材料の材料としては、例えばク
ロムモリブデン鋼等の如く合金鋼やセラミック等が使用
されているが、一般に耐摩耗性を有する材料は硬く靱性
に乏しい。そこで、耐摩耗性を必要とし、しかもある程
度の強度も必要な部所には、耐摩耗性金属を表面に肉盛
溶接することが行われている。2. Description of the Related Art Alloy steels such as chrome molybdenum steel and ceramics are used as materials for wear resistant materials, but generally wear resistant materials are hard and lack toughness. Therefore, a wear-resistant metal is welded to the surface by overlay welding at a portion where the wear resistance is required and the strength is required to some extent.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、耐摩耗
性金属を肉盛溶接したのみでは耐摩耗性が不十分な場合
があり、更には肉盛溶接等において熱衝撃が加わると割
れが生じるという問題点があった。一方、アルミナ等の
セラミックスは、耐摩耗性には金属より優れるが靭性が
極めて低いこと、金属材料との接合力が弱く、加工費が
高いという問題点があった。本発明はこのような事情に
鑑みてなされたもので、耐摩耗性に優れ、ある程度の靭
性を備えた耐摩耗性材料を提供することを目的とする。However, the wear resistance may be insufficient only by overlay welding a wear-resistant metal, and further, cracks may occur when a thermal shock is applied in overlay welding or the like. There was a point. On the other hand, ceramics such as alumina have problems in that they are superior in wear resistance to metals, but have extremely low toughness, weak bonding force with metal materials, and high processing costs. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wear resistant material having excellent wear resistance and having a certain degree of toughness.
【0004】[0004]
【課題を解決するための手段】前記目的に沿う請求項1
記載の耐摩耗性材料の製造方法は、セラミックス粒子の
表面に、チタン、ジルコニウム等の活性化金属を、不活
性雰囲気での機械的攪拌によって被覆処理し、該被覆処
理したセラミックス粒子と金属粉とを混合し、該混合物
を高温高圧下で複合固化して構成されている。また、請
求項2記載の耐摩耗性材料の製造方法は、請求項1記載
の方法において、機械的攪拌は真空あるいは不活性雰囲
気にて行われて構成されている。前記金属粉には、例え
ば電気伝導及び熱伝導の良い銅、銀あるいはこれらの合
金があるが、本発明はこれらに限定されず、他の特殊な
性質を有する金属であっても適用される。A method according to the above-mentioned object.
The method for producing the wear-resistant material as described, the surface of the ceramic particles, titanium, activated metal such as zirconium, is subjected to a coating treatment by mechanical stirring in an inert atmosphere, the coating-treated ceramic particles and a metal powder. Are mixed and the mixture is compositely solidified under high temperature and high pressure. The method for manufacturing the wear resistant material according to claim 2 is the method according to claim 1, wherein mechanical stirring is performed in a vacuum or an inert atmosphere. The metal powder includes, for example, copper, silver, or alloys thereof having good electrical and thermal conductivity, but the present invention is not limited to these, and metals having other special properties can be applied.
【0005】[0005]
【作用】請求項1、2記載の耐摩耗性材料の製造方法に
おいては、セラミックス粒子の表面に、チタン、ジルコ
ニウム等の活性化金属を、機械的攪拌を行うことによっ
て、被覆処理しているので、チタン、ジルコニウム等の
活性化金属の原子がセラミックスの表面に拡散し、これ
によって該活性化金属が前記セラミックスの表面に強固
に付着される。次に、該被覆処理したセラミックス粒子
と金属粉とを混合し、該混合物を高温高圧下で複合固化
しているので、セラミックスの表面に被覆された活性化
金属と、混合された金属粉とが拡散接合し、全体として
強固な固化物となる。そして、該固化物は金属とセラミ
ックスの両方の特性を備え、例えば、金属粉に銅等の電
気伝導の良い材料を使用することによって、該固化物の
導電率が良くなり、セラミックスに窒化硅素、炭化硅素
等のような耐摩耗性の良い材料を使用すると製造された
固化物が耐磨耗性を有する材料となる。更には、セラミ
ックスと銅粉とはチタン、ジルコニウム等の活性化金属
を介して拡散接合されることになるので、セラミックス
単体よりも金属に近くなって靱性を有するものとなる。
そして、請求項2記載の耐摩耗性材料の製造方法におい
ては、機械的攪拌を真空あるいは不活性雰囲気にて行っ
ているので、チタン、ジルコニウムの表面の活性状態が
保持され、これによって、更にセラミックとの結合が強
固となる。In the method for producing the wear-resistant material according to claims 1 and 2, the surface of the ceramic particles is coated with an activated metal such as titanium or zirconium by mechanical stirring. Atoms of activated metal such as titanium, zirconium and the like diffuse to the surface of the ceramic, whereby the activated metal is firmly attached to the surface of the ceramic. Next, the coated ceramic particles and the metal powder are mixed, and the mixture is complex-solidified under high temperature and high pressure. Therefore, the activated metal coated on the surface of the ceramic and the mixed metal powder are Diffusion-bonded to form a solidified product as a whole. The solidified material has both metal and ceramic characteristics. For example, by using a material having good electric conductivity such as copper for the metal powder, the conductivity of the solidified material is improved, and the ceramic is silicon nitride, When a material having good wear resistance such as silicon carbide is used, the solidified product produced becomes a material having wear resistance. Further, since the ceramics and the copper powder are diffusion-bonded through the activated metal such as titanium and zirconium, the ceramics and the copper powder are closer to the metal than the ceramics alone and have toughness.
Further, in the method for producing the wear resistant material according to claim 2, since the mechanical stirring is performed in a vacuum or an inert atmosphere, the active state of the surfaces of titanium and zirconium is maintained, and thereby the ceramic is further ceramic. The bond with and becomes stronger.
【0006】[0006]
【実施例】続いて、本発明を具体化した実施例につき説
明し、本発明の理解に供する。本発明の一実施例に係る
耐摩耗性材料の製造方法は、アルミナセラミックスの粒
子の表面に、アルゴンの不活性ガス雰囲気中にて活性化
金属の一例であるチタンをアトライター(Attori
tor Union Process社で開発された高
エネルギーボールミルの名称)による機械的攪拌によっ
てチタンの原子の拡散により強固に付着させて被覆処理
した直径略2〜3mmのアルミナセラミックス粒子(体
積率:40%)を製造する。次いで、該アルミナセラミ
ックス粒子と金属粉の一例である銅粉とを、熱間静水圧
プレス処理(HIP処理)によって略890℃、略10
00気圧の高温高圧下にて、略1時間保持し、アルミナ
セラミックス粒子の表面チタンと銅を拡散接合させて複
合固化させた。前記方法にて製造された耐摩耗性材料
に、ダイヤモンド砥石を用いて研削加工を施すと、アル
ミナセラミックス粒子の欠落数が最大3個/mm2 程度
発生した。また、前記耐摩耗性材料に3点曲げ試験を施
すと200MPaの曲げ強さを示した。EXAMPLES Next, examples embodying the present invention will be described to provide an understanding of the present invention. In the method of manufacturing an abrasion resistant material according to an embodiment of the present invention, titanium, which is an example of an activated metal, is applied to the surface of alumina ceramic particles in an inert gas atmosphere of argon attritor.
Alumina ceramics particles (volume ratio: 40%) with a diameter of about 2 to 3 mm, which are firmly adhered by the diffusion of titanium atoms by mechanical stirring with a high energy ball mill developed by Tor Union Process Co., Ltd. and are coated. To manufacture. Next, the alumina ceramic particles and copper powder, which is an example of metal powder, are subjected to a hot isostatic pressing process (HIP process) at about 890 ° C. and about 10 ° C.
Under high temperature and high pressure of 00 atm for about 1 hour, titanium and copper on the surface of the alumina ceramic particles were diffusion-bonded and composite-solidified. When the abrasion resistant material produced by the above method was ground using a diamond grindstone, the maximum number of missing alumina ceramic particles was about 3 / mm 2 . Further, when the wear resistant material was subjected to a three-point bending test, it showed a bending strength of 200 MPa.
【0007】次に、比較実験のため、温度のみ1000
℃として前記処理と同一の処理を施し、チタンを被覆処
理しないアルミナセラミックス粒子を用いて比較試験片
を製造した。該試験片にダイヤモンド砥石を用いて研削
加工を施すと、アルミナセラミックス粒子の欠落数が1
0〜25個/mm2発生した。また、該比較試験片に3
点曲げ試験を施すと曲げ強さが80MPaを示した。こ
れらのことから、前記チタンを被覆処理したアルミナセ
ラミックス粒子を使用した耐摩耗性材料は、アルミナセ
ラミックス粒子と銅粉がチタンを介して拡散接合するの
で、靱性の優れた金属の特性を備えた耐摩耗性材料がで
きる。また、表面に銅の面が現れているので前記耐摩耗
性材料は他の金属との接合にも優れている。更に、銅が
使用されていることから優れた導電率及び熱伝導率をも
実現することができる。耐摩耗性については、アルミナ
セラミックス粒子によって実現することができる。本実
施例によって製造される耐摩耗性材料を、電気接点、加
熱型ミルのライナー、加熱炉の羽口、バーナー等の部品
または部位に使用すれば、高靱性、高導電率、高熱伝導
率、耐摩耗性等の優れた特性を備えた製品となる。Next, for comparison experiments, only temperature is 1000
The same treatment as the above treatment was performed at 0 ° C., and a comparative test piece was manufactured using alumina ceramic particles not coated with titanium. When the test piece was ground using a diamond grindstone, the number of missing alumina ceramic particles was 1
0 to 25 pieces / mm 2 were generated. In addition, the comparative test piece has 3
When the point bending test was applied, the bending strength was 80 MPa. From these facts, the wear-resistant material using the alumina ceramic particles coated with titanium described above, since the alumina ceramic particles and the copper powder are diffusion-bonded through the titanium, the wear resistance material has excellent toughness and metal characteristics. Abradable material is formed. Further, since the copper surface appears on the surface, the wear resistant material is excellent in joining with other metals. Further, since copper is used, excellent electric conductivity and thermal conductivity can be realized. Abrasion resistance can be realized by alumina ceramic particles. If the wear-resistant material produced by this example is used for electrical contacts, liner of heating type mill, tuyere of heating furnace, parts or parts such as burners, high toughness, high electrical conductivity, high thermal conductivity, The product has excellent properties such as abrasion resistance.
【0008】なお、セラミックスの一例としてアルミナ
セラミックスを使用したが、窒化硅素(Si3 N4 )、
サイアロン、炭化硅素(SiC)等の他、炭化物系ある
いは窒素物系セラミックを使用しても良い。また、アル
ゴンの不活性ガス雰囲気中にて、アルミナセラミックス
粒子にチタンを被覆処理したが、その他の不活性ガス雰
囲気中あるいは真空中において耐摩耗性材料を製造する
ことも可能であり、場合によっては、空気中で機械的攪
拌を行う場合も可能である。更に、本実施例においては
チタンをアルミナセラミックス粒子の表面にアトライタ
ーの機械械的攪拌によって付着させたが、機械械的攪拌
を他のミキサー等を使用して行うようにしても良い。ま
た、チタンの代わりにジルコニウム等を使用することも
可能である。Although alumina ceramics was used as an example of ceramics, silicon nitride (Si 3 N 4 ),
In addition to sialon, silicon carbide (SiC), etc., carbide-based or nitrogen-based ceramics may be used. Further, the alumina ceramic particles were coated with titanium in an inert gas atmosphere of argon, but it is also possible to manufacture the wear resistant material in another inert gas atmosphere or in a vacuum, and in some cases, It is also possible to carry out mechanical stirring in air. Furthermore, in the present embodiment, titanium was adhered to the surface of the alumina ceramic particles by mechanical stirring with an attritor, but mechanical stirring may be performed using another mixer or the like. It is also possible to use zirconium or the like instead of titanium.
【0009】[0009]
【発明の効果】請求項1、2記載の耐摩耗性材料の製造
方法においては、セラミックス粒子の表面に、チタン、
ジルコニウム等の活性化金属を、機械的攪拌を行って被
覆処理しているので、前記活性化金属の原子がセラミッ
クスの表面に拡散して前記セラミックスの表面に強固に
付着され、該被覆処理したセラミックス粒子と金属粉と
を混合し、該混合物を高温高圧下で複合固化するので、
セラミックスの表面に被覆された活性化金属と、混合さ
れた金属粉とが拡散接合し、全体として強固な固化物と
なる。また、セラミックスと銅粉とは前記活性化金属を
介して拡散接合されることになるので、使用した金属に
対応して導電性及び熱伝導性が良く、しかも金属に近い
特性たる高靱性を備えると共にセラミックス粒子が耐摩
耗性を備え、更には、表面に現れる金属により他の金属
材料との接合力が強い耐摩耗性材料を提供することがで
きる。特に、請求項2記載の耐摩耗性材料の製造方法に
おいては、チタン、ジルコニウム等の活性化金属が真空
または不活性雰囲気にて機械攪拌されるので、活性化金
属の活性状態が保持され、活性化金属の被服処理が強固
に行われる。In the method for producing the wear resistant material according to the first and second aspects of the present invention, titanium is formed on the surface of the ceramic particles,
Since the activated metal such as zirconium is coated by mechanical stirring, the atoms of the activated metal are diffused to the surface of the ceramic and firmly adhered to the surface of the ceramic, and the coated ceramic is Since the particles and the metal powder are mixed and the mixture is solidified under high temperature and high pressure,
The activated metal coated on the surface of the ceramic and the mixed metal powder are diffusion-bonded to each other to form a solid solidified product as a whole. Further, since the ceramic and the copper powder are diffusion-bonded through the activated metal, they have good electrical conductivity and thermal conductivity corresponding to the metal used, and have high toughness which is a characteristic close to that of metal. At the same time, it is possible to provide a wear resistant material in which the ceramic particles have wear resistance, and further, the metal that appears on the surface has a strong bonding force with other metal materials. Particularly, in the method for producing the wear resistant material according to claim 2, since the activated metal such as titanium and zirconium is mechanically stirred in a vacuum or an inert atmosphere, the activated state of the activated metal is maintained and the activated metal is activated. The metal clothing treatment is performed firmly.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 洋二 福岡県北九州市若松区高須東1−9−11 (72)発明者 川田 勝三 福岡県北九州市八幡西区穴生1−15−1− 402 (72)発明者 鐘ケ江 繁光 福岡県北九州市八幡東区前田2−11−10 (72)発明者 武田 碩生 福岡県北九州市小倉南区下貫4丁目13−8 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoji Wada 1-9-11 Takasuhigashi, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (72) Inventor Katsuzo Kawada 1-1-15-1 402 Aunao, Hachiman-nishi-ku, Kitakyushu, Fukuoka (72) ) Inventor Shigemitsu Kanegae 2-11-10 Maeda, Hachimanto-ku, Kitakyushu, Fukuoka (72) Inoue Takeo, 4-13-8 Shimonuki, Kokuraminami-ku, Kitakyushu, Fukuoka
Claims (2)
ルコニウム等の活性化金属を、機械的攪拌によって被覆
処理し、該被覆処理したセラミックス粒子と金属粉とを
混合し、該混合物を高温高圧下で複合固化したことを特
徴とする耐摩耗性材料の製造方法。1. The surface of ceramic particles is coated with an activated metal such as titanium or zirconium by mechanical stirring, and the coated ceramic particles and metal powder are mixed, and the mixture is subjected to high temperature and high pressure. A method for producing an abrasion resistant material, which is characterized in that it is compounded and solidified.
にて行われる請求項1記載の耐摩耗性材料の製造方法。2. The method for producing an abrasion resistant material according to claim 1, wherein the mechanical stirring is performed in a vacuum or an inert atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02762293A JP3185444B2 (en) | 1993-01-22 | 1993-01-22 | Manufacturing method of wear resistant material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02762293A JP3185444B2 (en) | 1993-01-22 | 1993-01-22 | Manufacturing method of wear resistant material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06220554A true JPH06220554A (en) | 1994-08-09 |
JP3185444B2 JP3185444B2 (en) | 2001-07-09 |
Family
ID=12226052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02762293A Expired - Fee Related JP3185444B2 (en) | 1993-01-22 | 1993-01-22 | Manufacturing method of wear resistant material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3185444B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58107376U (en) * | 1982-01-14 | 1983-07-21 | 大日本印刷株式会社 | Two-component reactive resin composition container |
JPS5966782U (en) * | 1982-10-27 | 1984-05-04 | 日東商事株式会社 | Container for two-component composition |
JPH02138159U (en) * | 1989-04-19 | 1990-11-19 | ||
JPH0435576U (en) * | 1990-07-20 | 1992-03-25 | ||
JPH0542929A (en) * | 1991-08-05 | 1993-02-23 | Nippon Dekishii:Kk | Container and production thereof |
-
1993
- 1993-01-22 JP JP02762293A patent/JP3185444B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58107376U (en) * | 1982-01-14 | 1983-07-21 | 大日本印刷株式会社 | Two-component reactive resin composition container |
JPS5966782U (en) * | 1982-10-27 | 1984-05-04 | 日東商事株式会社 | Container for two-component composition |
JPH02138159U (en) * | 1989-04-19 | 1990-11-19 | ||
JPH0435576U (en) * | 1990-07-20 | 1992-03-25 | ||
JPH0542929A (en) * | 1991-08-05 | 1993-02-23 | Nippon Dekishii:Kk | Container and production thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3185444B2 (en) | 2001-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1084393C (en) | Iron aluminide useful as electrical resistance heating element | |
EP0320195B1 (en) | Wear resisting copper base alloys | |
JPS6318662B2 (en) | ||
US4072532A (en) | High temperature resistant cermet and ceramic compositions | |
US4703884A (en) | Steel bonded dense silicon nitride compositions and method for their fabrication | |
JPH055152A (en) | Hard heat resisting sintered alloy | |
JP2018531795A (en) | Friction stir welding tool | |
JP4193958B2 (en) | Molten metal member having excellent corrosion resistance against molten metal and method for producing the same | |
JP2001089823A (en) | Double boride sintered hard alloy, and screw for resin processing machine using the alloy | |
JPH06220554A (en) | Production of wear resistant material | |
Zhu et al. | Active brazing alloy containing carbon fibers for metal–ceramic joining | |
JP3793813B2 (en) | High strength titanium alloy and method for producing the same | |
JP4409067B2 (en) | Molten metal member having excellent corrosion resistance against molten metal and method for producing the same | |
JP2003183761A (en) | Tool material for fine working | |
JPS61104036A (en) | Manufacture of composite sintered body consisting of ceramic and metal | |
JP2001262290A (en) | Sintered hard alloy excellent in thermal shock resistance as well as corrosion resistance to molten metal, and member for molten metal using the alloy | |
JPS61186190A (en) | Composite filter rod for building up by welding | |
AU645721B2 (en) | Process for manufacturing ceramic-metal composites | |
JP2003081677A (en) | Dispersion-enhanced cbn-based sintered compact and method of producing the same | |
JP3385552B2 (en) | Molybdenum material and manufacturing method thereof | |
JPS63143236A (en) | Composite boride sintered body | |
Cutler | Pressureless-Sintered Al sub 2 O sub 3--TiC Composites | |
JPH0665710A (en) | Formation of thermally spraying carbide film | |
JP2564857B2 (en) | Nickel-Morbuden compound boride sintered body | |
JPH07172923A (en) | Production of hard sintered material having high tenacity for tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080511 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090511 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100511 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110511 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |