JPH06219785A - Water repellent glass having high abrasion resistance - Google Patents

Water repellent glass having high abrasion resistance

Info

Publication number
JPH06219785A
JPH06219785A JP1123293A JP1123293A JPH06219785A JP H06219785 A JPH06219785 A JP H06219785A JP 1123293 A JP1123293 A JP 1123293A JP 1123293 A JP1123293 A JP 1123293A JP H06219785 A JPH06219785 A JP H06219785A
Authority
JP
Japan
Prior art keywords
oxygen
nitride
glass
carbide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1123293A
Other languages
Japanese (ja)
Inventor
Toshiaki Mizuno
水野俊明
Kureemaa Sutefuan
クレーマー ステファン
Takashi Yamagishi
隆司 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1123293A priority Critical patent/JPH06219785A/en
Publication of JPH06219785A publication Critical patent/JPH06219785A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/281Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/282Carbides, silicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

PURPOSE:To obtain water repellent glass having high abrasion resistance without impairing the transparency of the glass by forming a thin film of a nitride and/or a carbide with hardly any content of oxygen in the topmost surface part of the glass. CONSTITUTION:This water repellent glass has a layer of a nitride and/or a carbide, having at least 1nm thickness and respectively containing 0-20mol% oxygen in the topmost surface part. The layer of the nitride and/or carbide is preferably a nitride, carbide, an oxygen-containing nitride or an oxygen- containing carbide of a metal such as silicon, boron, aluminum, titanium, zirconium, chromium, nickel or zinc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撥水性ガラス、特に、
建築用、自動車用等、広範囲に適用できる、耐摩耗性が
高い撥水性ガラスに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to water-repellent glass, especially
The present invention relates to a water-repellent glass having high wear resistance, which can be applied to a wide range of applications such as construction and automobiles.

【0002】[0002]

【従来の技術】現在、ガラスなどの表面に被覆するため
の撥水性物質として開発されているのは、シリコン化合
物を中心とした有機物がほとんどである。一般的に、こ
れらは直線状のシロキサン高分子で、その側鎖に水との
接触角を高めるため、メチル基等の有機官能基を有した
構造になっている。
2. Description of the Related Art At present, most of organic substances centered on silicon compounds have been developed as water-repellent substances for coating the surface of glass or the like. In general, these are linear siloxane polymers, and have a structure having an organic functional group such as a methyl group in the side chain to increase the contact angle with water.

【0003】一方、近年、ゾル−ゲル法で、有機−無機
複合体が製造できることが認められ、その応用として、
例えば、土谷らの研究(日本セラミックス協会1991
年年会、講演番号:1Dー18)に示されたように、撥
水性膜の開発が行われている。テトラメトキシシランを
含有する溶液にフッ素系の化合物を添加して、有機−無
機複合体の膜をガラス基板上に形成する方法である。
On the other hand, in recent years, it has been recognized that an organic-inorganic composite can be produced by the sol-gel method, and its application is as follows.
For example, research by Tsuchiya et al. (Japan Ceramic Society 1991
As shown in Annual Meeting, Lecture No. 1D-18), a water-repellent film is being developed. In this method, a fluorine-based compound is added to a solution containing tetramethoxysilane to form an organic-inorganic composite film on a glass substrate.

【0004】[0004]

【発明が解決しようとする課題】上記シリコン化合物を
ガラス基材に塗布し、撥水性ガラスを構成すると、これ
らの化合物とガラス基材が結合を作らないため、この膜
は使用中に容易に流出してしまい、撥水効果を失ってし
まう。また、初期の状態でも、膜自身が弱くて柔らかい
ので、耐摩耗性が低い。
When the above-mentioned silicon compound is applied to a glass substrate to form a water-repellent glass, these compounds and the glass substrate do not form a bond, so that this film easily flows out during use. It loses its water repellent effect. Further, even in the initial state, the film itself is weak and soft, so that the abrasion resistance is low.

【0005】上記ゾル−ゲル法による膜は、上記撥水性
有機化合物の膜と比較して、耐久性が改善されたもの
の、多孔質であるため耐摩耗性が充分でない、有機
物が均一に分散せず、撥水効果が最表面にしか認められ
ない、等の問題点がある。
The film obtained by the sol-gel method has improved durability as compared with the film made of the water-repellent organic compound, but has poor abrasion resistance because it is porous, and the organic substance is uniformly dispersed. However, there is a problem that the water-repellent effect is recognized only on the outermost surface.

【0006】本発明は、上記の、従来の撥水性材料の欠
点であった、低い耐摩耗性を大幅に改善し、しかも、ガ
ラスの透明性を損なうことがない耐摩耗性の高い撥水性
ガラスを提供することを目的とする。
The present invention significantly improves the low abrasion resistance, which is a drawback of the conventional water repellent materials described above, and has high abrasion resistance without impairing the transparency of the glass. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本研究者らは、ガラス上
の撥水性薄膜の研究を鋭意行い、各種の材料の撥水特性
を検討した結果、ガラス基板最表面付近の酸素は、ガラ
ス基板上の水滴との間で水素結合を容易に形成し、この
水素結合によって、ガラス表面上の水滴は動きにくくな
るという知見を得た。この現象は、一般的に評価されて
いる撥水特性である接触角、即ちガラス基板上の水滴と
ガラス基板が形成する角度、にはさほど影響を及ぼさな
いが、転落角、即ちガラス基板を傾斜させることにより
ガラス基板上の水滴が動き始める最低角度、の増大を招
き、実用上大きな問題となる。
[Means for Solving the Problems] The present inventors have earnestly studied water-repellent thin films on glass and studied the water-repellent properties of various materials. As a result, oxygen near the outermost surface of the glass substrate We have found that hydrogen bonds easily form with the water droplets above, and this hydrogen bonding makes it difficult for water droplets on the glass surface to move. This phenomenon does not significantly affect the water repellency that is generally evaluated, that is, the contact angle, that is, the angle between the water droplet on the glass substrate and the glass substrate, but the falling angle, that is, the inclination of the glass substrate. This causes an increase in the minimum angle at which water droplets on the glass substrate start to move, which is a serious problem in practical use.

【0008】このような知見から、本発明者らは、撥水
性、特に転落角、を改善するためには、ガラス最表面に
酸素含有量の少ない薄膜を形成すればよいとの結論に達
した。
From these findings, the present inventors have concluded that in order to improve the water repellency, especially the sliding angle, it is sufficient to form a thin film having a low oxygen content on the outermost surface of the glass. .

【0009】この考えを実践するための研究を継続した
ところ、本発明者らは、酸素を含有した窒化物あるいは
炭化物のいずれか、もしくはこれらの混合物の薄膜をガ
ラス基板に形成するのが最も好ましいとの結論に達し
た。これらの化合物は、同一金属元素の酸化物と比較し
て、いずれも結合強度が高く、高強度、高耐摩耗性であ
ることが既に知られている。従って、このような膜を最
表面に形成したガラス基板は、高い撥水性と同時に、高
い耐摩耗性をも実現できる。
Continuing research to put this idea into practice, the present inventors most preferably form a thin film of either an oxygen-containing nitride or carbide, or a mixture thereof on a glass substrate. I reached the conclusion. It is already known that these compounds have higher bond strength, higher strength, and higher wear resistance than oxides of the same metal element. Therefore, the glass substrate having such a film formed on the outermost surface can realize not only high water repellency but also high abrasion resistance.

【0010】即ち本発明は 最表面部に、少なくとも1
nmの厚さの、それぞれ0〜20モル%の酸素を含有す
る窒化物または/および炭化物の層を有する耐摩耗性の
高い撥水性ガラスである。
That is, according to the present invention, the outermost surface has at least 1
A highly abrasion-resistant water-repellent glass having a nitride or / and carbide layer each having a thickness of nm and containing 0 to 20 mol% of oxygen.

【0011】本発明における、0〜20モル%の酸素を
含有する窒化物または/および炭化物の層は、具体的に
は、珪素、ホウ素、アルミ、チタン、ジルコニウム、ク
ロム、ニッケル、亜鉛等の金属の、窒化物、炭化物、酸
素含有窒化物あるいは酸素含有炭化物がより有効であ
る。むろん、これらは必ずしも単体で用いられる必要は
なく、2種以上を混合してもよい。
The nitride or / and carbide layer containing 0 to 20 mol% of oxygen in the present invention is specifically a metal such as silicon, boron, aluminum, titanium, zirconium, chromium, nickel or zinc. Of these, nitrides, carbides, oxygen-containing nitrides or oxygen-containing carbides are more effective. Of course, these do not necessarily have to be used alone, and two or more kinds may be mixed.

【0012】なお、上記本発明者らの知見によれば、最
表面付近の酸素はできるだけ少ない方がより好ましいの
は明白である。ところが、酸素を含有していない純粋な
窒化物あるいは炭化物をガラス基板上に形成するのは、
実質的に困難である。通常のガラス形成方法、より具体
的には、スパッタリングあるいは有機金属化合物の熱分
解等、で得られるこれらの化合物は、酸素の高い活性に
より、ほとんど常に酸素を含有している。そこで、本発
明者らは、許容限界酸素量を検討した結果、20モル
%、より好ましくは10モル%が限界であるとの結論を
得た。これより多量に酸素を含有している膜は、撥水性
の改善が認められない。酸素含有量の下限は特になく、
上記に示したように、低ければ低い方が好ましい。
According to the findings of the inventors of the present invention, it is clear that it is more preferable that oxygen in the vicinity of the outermost surface is as small as possible. However, forming pure nitride or carbide containing no oxygen on a glass substrate is
Practically difficult. These compounds obtained by usual glass forming methods, more specifically by sputtering or thermal decomposition of organometallic compounds, almost always contain oxygen due to the high activity of oxygen. Then, as a result of examining the allowable limit oxygen amount, the present inventors have concluded that the limit is 20 mol%, more preferably 10 mol%. A film containing a larger amount of oxygen than this does not show any improvement in water repellency. There is no lower limit to the oxygen content,
As indicated above, the lower the lower the better.

【0013】本発明における、窒化物または/および炭
化物の薄膜の厚さは、先の知見から、厚ければ厚いほう
がよいが、製造上は薄い方が好まれる。ガラス表面上の
水滴と水素結合の強度を考慮すると、1nm以上の厚さ
があれば、実質上充分である。これより薄いと、ガラス
表面の水滴と酸素の分離が充分でなく、水滴と膜中の酸
素の間での水素結合が無視できなくなり、転落角の改善
が充分なされない。そして製造上からは500nm以下
の厚みであることが好ましい。これらの薄膜をガラス基
板上に形成する方法は、各種考えられるが、特に限定さ
れるものではなく、具体的には、窒素雰囲気中でのスパ
ッタリング法、ポリシラザン等の有機金属化合物高分子
の熱分解法等が例示される。
The thickness of the nitride or / and carbide thin film in the present invention is preferably as thick as possible from the above knowledge, but is preferably thin in manufacturing. Considering the strength of water droplets and hydrogen bonds on the glass surface, a thickness of 1 nm or more is substantially sufficient. If it is thinner than this, separation of water droplets and oxygen on the glass surface is not sufficient, hydrogen bonding between water droplets and oxygen in the film cannot be ignored, and the sliding angle is not sufficiently improved. From the viewpoint of manufacturing, the thickness is preferably 500 nm or less. Various methods are conceivable for forming these thin films on a glass substrate, but are not particularly limited, and specifically, a sputtering method in a nitrogen atmosphere, thermal decomposition of an organometallic compound polymer such as polysilazane, etc. The law and the like are exemplified.

【0014】また、窒化物あるいは炭化物の屈折率は、
通常ガラス基板より大きいため、膜の組成あるいは厚さ
を適当に制御することで、反射率を向上させたり、特定
の色を付与する等、光学特性の改善も可能であるが、こ
のように組成あるいは膜厚を制御しても、本発明の開示
事項を満たしていれば、撥水特性には何ら問題がない。
The refractive index of nitride or carbide is
Since it is usually larger than a glass substrate, it is possible to improve the optical characteristics such as improving the reflectance and imparting a specific color by appropriately controlling the composition or thickness of the film. Alternatively, even if the film thickness is controlled, there is no problem in the water-repellent property as long as the disclosure of the present invention is satisfied.

【0015】[0015]

【実施例】以下に実施例を示す。 実施例−1 10cm角の3mm厚通常フロートガラスを充分洗浄、
乾燥した後、真空チャンバーに入れた。真空にする前に
雰囲気を大気から窒素に置換した。真空ポンプで脱気し
て、10-3torr以下にした。ターゲットとして、市販の
窒化珪素を用意し、放電電流3.0アンペアでスパッタ
ーした。得られたガラス基板は、やや屈折率が高くなっ
たが、透明な基板であった。断面を観察した結果、膜厚
は10nmであり、ESCAの測定結果では、酸素含有
量は8モル%であった。
EXAMPLES Examples will be shown below. Example-1 Thoroughly washing a 10 cm square 3 mm thick normal float glass,
After drying, it was placed in a vacuum chamber. The atmosphere was replaced with nitrogen from the atmosphere before the vacuum was applied. It was deaerated with a vacuum pump to 10 -3 torr or less. Commercially available silicon nitride was prepared as a target and sputtered at a discharge current of 3.0 amperes. The obtained glass substrate had a slightly higher refractive index, but was a transparent substrate. As a result of observing the cross section, the film thickness was 10 nm, and the oxygen content was 8 mol% in the ESCA measurement result.

【0016】この基板の上に純水0.05gを落とし
て、接触角と転落角を測定した。前者は市販の接触角測
定装置を用いて測定した。後者は、ガラス基板をゆっく
りと傾斜させ、ガラス表面上の水滴が動き出す瞬間の傾
斜角を測定することで評価した。この基板の測定結果
は、接触角が95度、転落角が28度であった。
On this substrate, 0.05 g of pure water was dropped and the contact angle and the falling angle were measured. The former was measured using a commercially available contact angle measuring device. The latter was evaluated by slowly inclining the glass substrate and measuring the inclination angle at the moment when the water droplets on the glass surface started to move. The measurement result of this substrate was that the contact angle was 95 degrees and the sliding angle was 28 degrees.

【0017】耐摩耗性は、テーバー試験法で行った。こ
の方法は、ゴム製のローラーを、荷重1kgでガラス基
板に押さえつけて擦り、テスト前後の値を比較して耐摩
耗性を評価した。今回、回転数は1000回とした。
The abrasion resistance was measured by the Taber test method. In this method, a rubber roller was pressed against a glass substrate with a load of 1 kg and rubbed, and the abrasion resistance was evaluated by comparing the values before and after the test. This time, the rotation speed was set to 1000 times.

【0018】この基板のテーバーテスト後のそれぞれの
値は、接触角が98度、転落角が23度であり、耐摩耗
テスト前に比べ、撥水性が向上した。これは、恐らく、
耐摩耗テストで、大気中の酸素を吸着した最表面層がな
くなって、より酸素の少ない状態の窒化珪素が表面に出
てきたためと考えられる。
With respect to the respective values after the Taber test of this substrate, the contact angle was 98 degrees and the sliding angle was 23 degrees, and the water repellency was improved as compared with that before the abrasion resistance test. This is probably
It is considered that in the abrasion resistance test, the outermost surface layer that adsorbed oxygen in the atmosphere disappeared, and silicon nitride with less oxygen appeared on the surface.

【0019】比較例−1 上記実施例−1と同様な条件で窒化珪素薄膜を、ガラス
表面に作製したが、その際、スパッター雰囲気を窒素で
なく、酸素を導入して行った。その結果、得られた窒化
珪素膜の酸素含有量は30モル%であった。
Comparative Example-1 A silicon nitride thin film was formed on a glass surface under the same conditions as in Example-1 above, but oxygen was introduced into the sputtering atmosphere instead of nitrogen. As a result, the oxygen content of the obtained silicon nitride film was 30 mol%.

【0020】この膜の接触角および転落角を測定したと
ころ、それぞれ45度および50度であり、通常のガラ
ス基板と比較してさほど改善は認められなかった。
When the contact angle and the sliding angle of this film were measured, they were 45 ° and 50 °, respectively, and no significant improvement was observed in comparison with the ordinary glass substrate.

【0021】実施例−2 市販のポリシラザン溶液(含有量10重量%、溶媒;T
HF)に洗浄、乾燥した10cm角のガラス基板を浸漬
し、3cm/minの速度で引き上げ、80℃で乾燥し
て、薄膜を作製した。このガラス基板を、窒素雰囲気中
で400℃4時間熱処理して、窒化珪素とした。この窒
化珪素薄膜は、厚さ20nm、酸素含有率5モル%であ
った。
Example 2 Commercially available polysilazane solution (content: 10% by weight, solvent: T
A washed and dried 10 cm square glass substrate was immersed in HF), pulled up at a rate of 3 cm / min, and dried at 80 ° C. to form a thin film. This glass substrate was heat-treated at 400 ° C. for 4 hours in a nitrogen atmosphere to obtain silicon nitride. This silicon nitride thin film had a thickness of 20 nm and an oxygen content of 5 mol%.

【0022】この膜の撥水性を評価したところ、接触角
105度、転落角20度であった。
When the water repellency of this film was evaluated, the contact angle was 105 degrees and the falling angle was 20 degrees.

【0023】実施例−3 ターゲットとして窒化クロムを用い、実施例−1と同様
の条件でガラス基板上に製膜した。断面の観察から、膜
厚は250nm、ESCAの測定から、酸素含有量は1
0モル%であった。
Example-3 Using chromium nitride as a target, a film was formed on a glass substrate under the same conditions as in Example-1. From the observation of the cross section, the film thickness is 250 nm, and from the ESCA measurement, the oxygen content is 1
It was 0 mol%.

【0024】この膜の撥水特性を評価したところ、接触
角が102度、転落角が22度であった。実施例−1と
同様の条件で、耐摩耗性を評価したところ、ほとんど変
化なかった。なお、この膜は屈折率が非常に高く、従っ
て、このサンプルはハーフミラー状の外観をしていた。
When the water repellency of this film was evaluated, the contact angle was 102 degrees and the sliding angle was 22 degrees. When abrasion resistance was evaluated under the same conditions as in Example-1, there was almost no change. Note that this film had a very high refractive index, and therefore this sample had a half-mirror-like appearance.

【0025】比較例−2 市販のテトラメトキシシラン(TMOS)50mlをエタ
ノール450mlに溶解し、これに1規定の塩酸5mlを添
加して加水分解した。この溶液に、トリフロロプロピル
トリメトキシシラン、CF3CH2CH2Si(OCH3
3、0.5mlを更に添加した。
Comparative Example-2 50 ml of commercially available tetramethoxysilane (TMOS) was dissolved in 450 ml of ethanol, and 5 ml of 1N hydrochloric acid was added to the solution for hydrolysis. To this solution, trifluoropropyltrimethoxysilane, CF 3 CH 2 CH 2 Si (OCH 3 )
3 , 0.5 ml was further added.

【0026】この溶液によく洗浄、乾燥した10cm角
のガラス基板を浸漬し、3cm/minの速度で引き上げ、8
0℃で乾燥して、薄膜を作製した。このガラス基板を、
大気中で400℃2時間熱処理した。得られた膜の撥水
特性を評価したところ、接触角が99度、転落角が30
度と、良好な撥水性を示した。
A well washed and dried 10 cm square glass substrate was dipped in this solution and pulled up at a rate of 3 cm / min to obtain 8
It dried at 0 degreeC and produced the thin film. This glass substrate,
It heat-processed at 400 degreeC in air | atmosphere for 2 hours. When the water repellency of the obtained film was evaluated, the contact angle was 99 degrees and the sliding angle was 30.
And good water repellency.

【0027】実施例−1と同様の条件で、耐摩耗性を評
価したが、テーバーテスト後には、ガラス表面には膜が
ほとんど残留せず、従って、撥水特性も通常のガラス程
度でしかなかった。
Abrasion resistance was evaluated under the same conditions as in Example 1, but after the Taber test, almost no film remained on the glass surface, and therefore the water-repellent property was only about that of ordinary glass. It was

【0028】[0028]

【発明の効果】本発明によれば、従来の撥水性ガラス基
板に比較して、撥水性、特に転落角、が改善され、かつ
耐摩耗性が非常に高いガラス基板が、簡単かつ効率的に
製造できる。
According to the present invention, a glass substrate having improved water repellency, particularly a falling angle, and extremely high abrasion resistance, as compared with a conventional water repellent glass substrate, can be easily and efficiently manufactured. Can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 最表面部に、少なくとも1nmの厚さ
の、それぞれ0〜20モル%の酸素を含有する窒化物ま
たは/および炭化物の層を有する耐摩耗性の高い撥水性
ガラス。
1. A highly wear-resistant water-repellent glass having a nitride or / and carbide layer having a thickness of at least 1 nm and each containing 0 to 20 mol% of oxygen on the outermost surface.
【請求項2】 前記窒化物は珪素、ホウ素、アルミニウ
ム、チタニウム、ジルコニウム、クロム、ニッケル、お
よび亜鉛からなる群から選ばれた少なくとも1種の金属
の窒化物、または酸素含有窒化物である請求項1記載の
耐摩耗性の高い撥水性ガラス。
2. The nitride is a nitride of at least one metal selected from the group consisting of silicon, boron, aluminum, titanium, zirconium, chromium, nickel, and zinc, or an oxygen-containing nitride. The water-repellent glass having high abrasion resistance according to 1.
【請求項3】 前記炭化物は珪素、ホウ素、アルミニウ
ム、チタニウム、ジルコニウム、クロム、ニッケル、お
よび亜鉛からなる群から選ばれた少なくとも1種の金属
の炭化物、または酸素含有炭化物である請求項1記載の
耐摩耗性の高い撥水性ガラス。
3. The carbide according to claim 1, which is a carbide of at least one metal selected from the group consisting of silicon, boron, aluminum, titanium, zirconium, chromium, nickel, and zinc, or an oxygen-containing carbide. Water-repellent glass with high abrasion resistance.
JP1123293A 1993-01-27 1993-01-27 Water repellent glass having high abrasion resistance Pending JPH06219785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123293A JPH06219785A (en) 1993-01-27 1993-01-27 Water repellent glass having high abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123293A JPH06219785A (en) 1993-01-27 1993-01-27 Water repellent glass having high abrasion resistance

Publications (1)

Publication Number Publication Date
JPH06219785A true JPH06219785A (en) 1994-08-09

Family

ID=11772200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123293A Pending JPH06219785A (en) 1993-01-27 1993-01-27 Water repellent glass having high abrasion resistance

Country Status (1)

Country Link
JP (1) JPH06219785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3802904A1 (en) * 1987-01-30 1988-08-11 Nissan Motor SERVO ASSISTED STEERING SYSTEM
WO2003002478A1 (en) * 2001-06-27 2003-01-09 Guardian Industries Corp. Hydrophobic metal oxide coating
WO2010005019A1 (en) * 2008-07-09 2010-01-14 国立大学法人東京大学 Inorganic thin film and process for production thereof, and glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3802904A1 (en) * 1987-01-30 1988-08-11 Nissan Motor SERVO ASSISTED STEERING SYSTEM
WO2003002478A1 (en) * 2001-06-27 2003-01-09 Guardian Industries Corp. Hydrophobic metal oxide coating
US6689476B2 (en) 2001-06-27 2004-02-10 Guardian Industries Corp. Hydrophobic coating including oxide of Ni and/or Cr
WO2010005019A1 (en) * 2008-07-09 2010-01-14 国立大学法人東京大学 Inorganic thin film and process for production thereof, and glass

Similar Documents

Publication Publication Date Title
KR100394559B1 (en) Coatings, coating compositions and methods of making the coatings
EP1113064B1 (en) Process for producing article coated with water-repellent film, article coated with water-repellent film, and liquid composition for water-repellent film coating
US6033738A (en) Method for producing water-repellent articles, water-repellent articles obtained thereby, and solution for forming water-repellent film
FR2800731A1 (en) TRANSPARENT SUBSTRATE WITH SILICON DERIVED LAYER
JPH0597478A (en) Water repellent glass article and its production
JPS6127186B2 (en)
EP0675087A1 (en) Composition for a non-wettable coating
FR2889183A1 (en) HYDROPHOBIC COATING INCLUDING A PRIMING INCLUDING A DISILANE AND A HYDROPHOBIC COATING INCLUDING AN ALKYSILANE FLUORA
KR20120038991A (en) Composition for formation of water-repellent film, base material having water-repellent film attached and process for production thereof, and article for transport device
KR19980042554A (en) Water repellent glass and its manufacturing method
US20030198747A1 (en) Method for producing water-repellent film
JPH10194784A (en) Water-repellent glass
JP3427755B2 (en) Method for producing silica-based membrane coated article
FR2792323A1 (en) TRANSPARENT NON-WETTING COATING COMPOSITION AND COATED ARTICLES OBTAINED
JPH06219785A (en) Water repellent glass having high abrasion resistance
JP3649585B2 (en) Water repellent coating solution
JP2001205187A (en) Method for manufacturing silica-base film coated article and silica-base film coated article
JP2000144116A (en) Super water repellent film
JPH05171111A (en) Solution for forming water-repellent coating film having high durability
JPH09132433A (en) Sol-gel film and water-repellent glass using same
EP1379593A2 (en) Coated article, coating liquid composition, and method for producing coated article
JP4111558B2 (en) Water repellent glass manufacturing method
JPH05319867A (en) Water repellent for glass substrate and treatment for water repellency
JPH05112757A (en) Solution for forming highly durable water-repellent coating film
JP2005281132A (en) Method for manufacturing water-repellent glass