JPH0621889B2 - Y branch - Google Patents

Y branch

Info

Publication number
JPH0621889B2
JPH0621889B2 JP61202688A JP20268886A JPH0621889B2 JP H0621889 B2 JPH0621889 B2 JP H0621889B2 JP 61202688 A JP61202688 A JP 61202688A JP 20268886 A JP20268886 A JP 20268886A JP H0621889 B2 JPH0621889 B2 JP H0621889B2
Authority
JP
Japan
Prior art keywords
waveguide
branch
refractive index
shape
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61202688A
Other languages
Japanese (ja)
Other versions
JPS6360407A (en
Inventor
正孝 白崎
實 清野
直之 女鹿田
一平 佐脇
徹 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61202688A priority Critical patent/JPH0621889B2/en
Publication of JPS6360407A publication Critical patent/JPS6360407A/en
Publication of JPH0621889B2 publication Critical patent/JPH0621889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔概 要〕 本発明は、Y分岐導波路において、その分岐部の所定位
置に、直線導波路よりも幅が狭くかつ導波路と基板の中
間の屈折率を持つ切り込み領域を設けることにより、分
岐部で導波モードを連続的に徐々に変化させるように
し、よって分岐損失の低減化を可能にしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present invention relates to a Y-branch waveguide having a notch at a predetermined position of its branching portion having a width narrower than that of a straight waveguide and having a refractive index intermediate between the waveguide and the substrate. By providing the region, the waveguide mode is gradually and continuously changed at the branch portion, and thus the branch loss can be reduced.

〔産業上の利用分野〕 本発明は、Y字形の導波路を持つY分岐導波路に関す
る。
TECHNICAL FIELD The present invention relates to a Y-branch waveguide having a Y-shaped waveguide.

Y分岐導波路は、LAN(ローカリエリアネットワー
ク)やマッハツェンダ型変調器における分岐、合波回路
等として使用されており、その低損失化が望まれてい
る。
The Y-branch waveguide is used as a branching and multiplexing circuit in a LAN (local area network) or a Mach-Zehnder type modulator, and it is desired to reduce its loss.

〔従来技術〕[Prior art]

従来のY分岐導波路の理想的な形状を第4図(a)に示
す。これは、互いにY字形状をなす3本の直線導波路
1,2,3から構成され、これらが互いに交わる部分を
分岐部4とする。上記構成において、直線導波路1を伝
播されてきたシングルモード光は、分岐部4を介して2
本の直線導波路2,3に対称に分岐される。この種のY分
岐導波路の作成は、例えば電気光学材料であるLiNbO
等の基板5に対して、上記直線導波路1,2,3及び分
岐部4となるべきY字形の領域に、Ti等の不純物を拡
散させるか或いはイオン交換を行って、その領域の屈折
率(n)を基板5の屈折率(n)よりも大きくして
導波路を形成することにより行っている。
The ideal shape of a conventional Y-branch waveguide is shown in FIG. 4 (a). This is composed of three linear waveguides 1, 2 and 3 each having a Y-shape, and a portion where these linear waveguides intersect with each other is a branch portion 4. In the above structure, the single mode light propagated through the linear waveguide 1 is divided into 2
It is symmetrically branched into two linear waveguides 2 and 3. This kind of Y-branch waveguide is produced by, for example, an electro-optic material such as LiNbO 3
Or the like, the impurities such as Ti are diffused or ion-exchanged into the Y-shaped regions to be the linear waveguides 1, 2 and 3 and the branch portion 4 on the substrate 5 and the refractive index of the regions is increased. (N 2 ) is made larger than the refractive index (n 1 ) of the substrate 5 to form a waveguide.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来のY分岐導波路では、分岐部4での損失を小さ
くするために、その分岐角θを非常に小さく(例えば0.
4゜)する必要がある。ところが、このように分岐角θ
を小さくしようとすると、分岐点4aの近傍における直
線導波路2,3の互いの間隔が非常に狭く微細な形状と
なる。そのため、実際にこれを作製した場合、露光や拡
散もしくはイオン交換等のプロセスにおいて、上記分岐
点4aの近傍が第4図(b)に示すようになまってしま
い、この部分で大きな損失が生ずることになった。
In the above-mentioned conventional Y-branch waveguide, the branch angle θ is very small (for example, 0.
4 °) is necessary. However, the branch angle θ
If it is attempted to reduce the distance, the distance between the linear waveguides 2 and 3 in the vicinity of the branch point 4a becomes very small and the shape becomes fine. Therefore, when this is actually manufactured, in the process of exposure, diffusion or ion exchange, the vicinity of the branch point 4a becomes as shown in FIG. 4 (b), and a large loss occurs at this part. Became.

その損失を明らかにするため、導波路をTi:LiNbO
とした場合の分岐損失を計算した結果を第5図に示す。
なおここでは、基板5の屈折率nを2.14、直線導波路
1,2,3の幅を7μm、光波長を1.3 μm、分岐角θ
を0.4 ゜とした。同図より、分岐損失は分岐部4のなま
りの幅Dとともに単調に増加する。また、直線導波路
1,2,3の屈折率nから基板5の屈折率n(=2.
14)を引いた差をΔとすると、Δ=0.004 ではD=
1μmで0.2 dB、2μmで0.5 dBの損失となる。このよ
うに大きな損失を生ずる原因は、分岐開始部で中央にパ
ワーが集中しているのに対し、分岐後のモード形状は急
激に中央が凹んだ形状となるためで、これら両者の差異
が大きいほど損失となる。
In order to clarify the loss, the waveguide is made of Ti: LiNbO 3
Fig. 5 shows the result of calculating the branch loss in the case of.
In this case, the refractive index n 1 of the substrate 5 is 2.14, the widths of the linear waveguides 1, 2 and 3 are 7 μm, the light wavelength is 1.3 μm, and the branch angle θ is
Was 0.4 °. From the figure, the branch loss monotonically increases with the rounded width D of the branch section 4. Further, from the refractive index n 2 of the linear waveguides 1, 2, 3 to the refractive index n 1 (= 2.
When the difference obtained by subtracting the 14) and Δ n, Δ n = 0.004 at D =
The loss is 0.2 dB at 1 μm and 0.5 dB at 2 μm. The cause of such a large loss is that the power is concentrated in the center at the start of branching, whereas the mode shape after branching is a shape in which the center is suddenly recessed, and the difference between the two is large. The more you lose.

本発明は、上記問題点に鑑み、低損失で作製容易なY分
岐導波路を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a Y-branch waveguide with low loss and easy to manufacture.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のY分岐導波路は、分岐された2本の直線導波路
のそれぞれ内側の壁面が接する部分から、分岐前の1本
の直線導波路が分岐を開始する位置まで、直線導波路と
基板との中間の屈折率を持ち、矩形状もしくは光の進行
方向に対し対称に広がる楔状であってその先端部の幅が
直線導波路の幅よりも狭い 0.5〜2μmの切り込み領域
を設けたものである。
The Y-branch waveguide of the present invention includes a linear waveguide and a substrate from a portion where inner wall surfaces of two branched linear waveguides contact each other to a position where one straight waveguide before branching starts branching. It has a refractive index in the middle of and a rectangular shape or a wedge shape that spreads symmetrically with respect to the traveling direction of light, and has a 0.5-2 μm notch region whose tip width is narrower than the width of the linear waveguide. is there.

〔作 用〕[Work]

分岐部に上述したような切り込み領域を設ければ、そこ
を伝播する光の導波モードは、分岐開始とともに、連続
的に徐々に変化していくようになり、パワー分布も徐々
に中央が凹んだ形状となっていく。このことにより、周
囲への光散乱が非常に小さくなり、従って分岐時の損失
は大きく低減される。しかも上記構成であると、分岐側
の2つの直線導波路の間隔を非常に狭い微細な形状にす
る必要がないので、露光や拡散もしくはイオン交換等に
よって導波路を作製する際の形状のなまりが問題となる
ことはない。
If the notch region as described above is provided at the branch portion, the waveguide mode of light propagating therethrough will gradually change continuously with the start of branching, and the power distribution will also gradually have a concave center. Shape. This results in very low light scattering to the surroundings and thus a great reduction in branch losses. Moreover, with the above-described configuration, it is not necessary to make the distance between the two linear waveguides on the branch side extremely narrow and fine, and therefore the shape of the waveguide when the waveguide is manufactured by exposure, diffusion, or ion exchange is rounded. There is no problem.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図(a)は、本発明の一実施例を示す構成図である。
同図において、Y字形に構成されたシングルモードの直
線導波路1,2,3および分岐部4を基板5に形成した
点は第4図に示した従来のY分岐導波路と同様である
が、本実施例の特徴は、分岐部4に光の進行方向(矢印
A方向)に関して対称に広がる楔状の切り込み領域6を
設けたことにある。この場合、楔状の切り込み領域6の
先端部6aの幅をF、後端部の幅をGとすると、F<G
の関係となっている。
FIG. 1 (a) is a block diagram showing an embodiment of the present invention.
In the figure, the single-mode linear waveguides 1, 2, 3 and the branching portion 4 formed in a Y shape are formed on the substrate 5 as in the conventional Y-branching waveguide shown in FIG. The feature of this embodiment resides in that the branch portion 4 is provided with a wedge-shaped notch region 6 that spreads symmetrically with respect to the traveling direction of light (direction of arrow A). In this case, if the width of the front end portion 6a of the wedge-shaped cut region 6 is F and the width of the rear end portion is G, then F <G
It has a relationship of.

上記切り込み領域6は、直線導波路1,2,3よりも狭
い幅であって、かつ直線導波路1,2,3の屈折率n
と基板5の屈折率nとの中間の屈折率n(n<n
<n)を有している。更に、この切り込み領域6
は、分岐側の直線導波路2,3のそれぞれ内側の壁面2
a,3aが接する部分(即ち、理想上の分岐点4a付
近)から、分岐部4の中央を直線導波路1に向って延
び、その先端部6aは、この先端部6aから直線導波路
1が分岐を開始する位置Bまでの距離L=0とすること
によりこの分岐開始位置にある。すると分岐部4に存在
する導波路4b,4cは、分岐開始位置Bから光の進行
方向に沿ってテーパを成すようになる。そして導波モー
ドの変化は分岐開始位置から始まるので、切り込み領域
6の先端部6aが分岐開始位置(L=0)から始まれば
導波モードを分岐部4で連続的に変化されることができ
る。
The cut region 6 has a width narrower than that of the linear waveguides 1, 2, 3 and has a refractive index n 2 of the linear waveguides 1, 2, 3.
Middle refractive index n 3 between the refractive index n 1 of the substrate 5 (n 1 <n
3 <n 2 ). Further, this cut area 6
Is a wall surface 2 on the inner side of each of the branched straight waveguides 2 and 3.
From the portion where a and 3a are in contact (that is, in the vicinity of the ideal branch point 4a), the center of the branch portion 4 extends toward the straight waveguide 1, and the tip portion 6a of the straight waveguide 1 extends from the tip portion 6a. By setting the distance L to the position B where the branch starts to be L = 0, it is at this branch start position. Then, the waveguides 4b and 4c existing in the branching part 4 are tapered from the branching start position B along the traveling direction of light. Since the change of the guided mode starts from the branch start position, the guided mode can be continuously changed at the branch part 4 if the tip portion 6a of the cut region 6 starts from the branch start position (L = 0). .

上記構成において、直線導波路1内を進行してきたシン
グルモード光が2本の直線導波路2,3内に分岐される
ときのパワー分布の変化を、L=0の場合につき第1図
(a)の3つの位置(分岐前の位置a、分岐開始直後の位
置b、分岐完了前の位置c)と対応させて同図(b)に示
す。すると、中央に集中していたパワー分布(a)が、
分岐開始直後に中央に小さな凹みが生じ(b)、更に分
岐が進むと上記中央の凹みは更に大きく変化する
(c)。このことから、分岐部4aを伝播する光の導波
モードは、分岐開始とともに連続的に徐々に変化してい
くことがわかる。従って、周囲への光散乱が非常に小さ
くなり、分岐時の損失は大きく低減される。
In the above configuration, the change in the power distribution when the single mode light traveling in the linear waveguide 1 is branched into the two linear waveguides 2 and 3 is shown in FIG.
The three positions (a) before the branch, a position b immediately after the start of the branch, and a position c before the completion of the branch are shown in FIG. Then, the power distribution (a) concentrated in the center is
Immediately after the start of branching, a small recess is formed in the center (b), and when the branching further progresses, the center recess changes further (c). From this, it can be seen that the waveguide mode of the light propagating through the branch portion 4a continuously and gradually changes with the start of branching. Therefore, the light scattering to the surroundings becomes very small, and the loss at the time of branching is greatly reduced.

なお、切り込み領域6を楔状(F<G)とする代りに矩
形状(F=G)としてもよく、このようにした場合であ
っても導波路4b,4cをテーパ状にでき、上記と同様
に低損失化が可能になる。
The cut region 6 may have a rectangular shape (F = G) instead of the wedge shape (F <G). Even in such a case, the waveguides 4b and 4c can be tapered and the same as above. It enables low loss.

次に、切り込み領域6を矩形状(F=G)とした場合に
おいて、その屈折率nおよび幅F(=G)の具体的な
設定手順について説明する。なおここでは、Ti:LiNb
導波路を想定し、導波路幅を7μm、その屈折率n
を2.144 、基板屈折率nを2.140 、分岐角θを0.4
゜とした場合について、数値計算による理論検討を行っ
たものである。
Next, a specific procedure for setting the refractive index n 3 and the width F (= G) when the cut region 6 has a rectangular shape (F = G) will be described. Here, Ti: LiNb
Assuming an O 3 waveguide, the waveguide width is 7 μm and its refractive index n
2 is 2.144, the substrate refractive index n 1 is 2.140, and the branch angle θ is 0.4.
In the case of °, the theoretical study was carried out by numerical calculation.

まず、切り込み領域6の屈折率nの設定手順について
述べる。そのために、幅F=G=2μmとし、切り込み
領域6の屈折率差Δn′{屈折率nから基板5の屈折
率n(=2.14)を引いた値}を変化させて、分岐損失
を調べてみる。その結果を第2図に示す。同図により、
上記屈折率差Δn′が0.002 (即ちn=2.142 )の時
に分岐損失が極小値をとることがわかる。この値は、導
波路の屈折率差Δn(=0.004 )の半分の値である。こ
のことから、屈折率nは、nとnの丁度中間の値
に設定することが望ましいと言える。このような値を持
つ屈折率nはパターン形状がなまる導波路作製法(例
えば拡散、イオン交換等)で導波路を作製すれば,切り
込み領域6に両側からTi等がしみ出すことにより容易
に得られる。
First, the procedure for setting the refractive index n 3 of the cut region 6 will be described. Therefore, the width F = G = 2 μm is set, and the refractive index difference Δn ′ (value obtained by subtracting the refractive index n 1 (= 2.14) of the substrate 5 from the refractive index n 3 ) of the cut region 6 is changed to reduce the branch loss. I will investigate. The results are shown in FIG. According to the figure,
It can be seen that the branch loss has a minimum value when the refractive index difference Δn ′ is 0.002 (that is, n 3 = 2.142). This value is half the refractive index difference Δn (= 0.004) of the waveguide. From this, it can be said that it is desirable to set the refractive index n 3 to an intermediate value between n 1 and n 2 . The refractive index n 3 having such a value can be easily obtained by leaching Ti or the like into the cut region 6 from both sides if the waveguide is manufactured by a waveguide manufacturing method (for example, diffusion or ion exchange) in which the pattern shape is blunted. Can be obtained.

続いて、切り込み領域6の幅F(=G)の設定手順につ
いて述べる。この場合は、上記で得られた結果に基づき
Δn′=0.002 とし、幅F(=G)を変化させて分岐損
失を調べてみる。その結果を第3図に示す。同図より、
F(=G)=2μmまでは分岐損失に変化が見らず、そ
れ以上で増加している。このことから,幅F(=G)を
2μm以下に設定することが望ましいと言える。ただ
し、Fをゼロに近づけるほど先端部6aでのなまりの発
生が問題となるので、少なくもと 0.5μm以上であるこ
とが必要である。すなわち、幅Fは 0.5〜2μmの範囲
内に設定されることが望ましい。このように 0.5〜2μ
mという幅、は第4図に示した分岐点4aの近傍におけ
る微小な導波路間隔と比べて大きく、形状のなまりは問
題とならない。
Next, a procedure for setting the width F (= G) of the cut area 6 will be described. In this case, based on the result obtained above, Δn ′ = 0.002, and the width F (= G) is changed to examine the branch loss. The results are shown in FIG. From the figure,
The branch loss does not change until F (= G) = 2 μm, and increases above that. From this, it can be said that it is desirable to set the width F (= G) to 2 μm or less. However, as F becomes closer to zero, the occurrence of blunting at the tip portion 6a becomes a problem, so it is necessary to be at least 0.5 μm or more. That is, it is desirable that the width F be set within the range of 0.5 to 2 μm. Thus 0.5 ~ 2μ
The width m is larger than the minute waveguide spacing in the vicinity of the branch point 4a shown in FIG. 4, and the rounding of the shape is not a problem.

このようにして切り込み領域6の屈折率nおよび幅F
(=G)を設定することにより、従来のY分岐導波路よ
りも著しく低損失なY分岐導波路が実現できる。
In this way, the refractive index n 3 and the width F of the cut region 6 are
By setting (= G), a Y-branch waveguide with significantly lower loss than the conventional Y-branch waveguide can be realized.

なお、ここでは切り込み領域6が矩形状の場合について
検討を行ったが、第1図(a)に示したような楔状(F<
G)とすることにより、更に低損失化が可能となる。
Although the case where the cut region 6 has a rectangular shape was examined here, a wedge shape (F <
By adopting G), it is possible to further reduce the loss.

また第1図(a)において、切り込み領域6と分岐側の直
線導波路2,3の内側の壁面2a,3aとをなめらかに
接続するようにしてもよい。即ち、切り込み領域6の幅
と上記壁面2a,3aの互いの間隔とが、光の進行方向
に対して連続的に接合されるとともに、この接合によっ
て形成される壁面曲線の一次の微分係数が連続的となる
ようにしてもよい。このようにすれば、更に効率良く光
を分岐することができる。
Further, in FIG. 1 (a), the cut region 6 and the wall surfaces 2a, 3a on the inner side of the straight waveguides 2, 3 on the branch side may be connected smoothly. That is, the width of the cut region 6 and the distance between the wall surfaces 2a and 3a are continuously joined to each other in the traveling direction of light, and the first-order differential coefficient of the wall surface curve formed by this joining is continuous. You may make it a target. By doing so, the light can be branched more efficiently.

〔発明の効果〕〔The invention's effect〕

本発明のY分岐導波路によれば、導波モードが連続的に
徐々に変化していくために、著しい低損失化が可能にな
り、しかも従来のY分岐導波路のような微細形状を含ま
ないために、露光や拡散もしくはイオン交換等のプロセ
スによる形状のなまりが問題にならず、よって作製が非
常に容易になる。
According to the Y-branch waveguide of the present invention, since the guided mode is gradually and continuously changed, it is possible to significantly reduce the loss, and moreover, the Y-branch waveguide including the fine shape like the conventional Y-branch waveguide is included. Since it does not exist, the rounding of the shape due to a process such as exposure, diffusion, or ion exchange does not pose a problem, so that the manufacturing becomes very easy.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の一実施例を示す構成図、 第1図(b)は同実施例における光パワー分布の変化を示
す図、 第2図は同実施例における切り込み領域の屈折率差Δ
n′と分岐損失との関係の一例を示す図、 第3図は同実施例における切り込み領域の幅F(=G)
と分岐損失との関係の一例を示す図、 第4図(a),(b)はそれぞれ、従来のY分岐導波路の理想
形状と実際形状を示す構成図、 第5図は上記従来のY分岐導波路における分岐部のなま
りの幅Dと分岐損失との関係の一例を示す図である。 1,2,3……直線導波路、 4……分岐部、 6……切り込み領域、 6a……先端部.
1 (a) is a configuration diagram showing an embodiment of the present invention, FIG. 1 (b) is a diagram showing a change in optical power distribution in the embodiment, and FIG. 2 is a refraction of a cut region in the embodiment. Rate difference Δ
FIG. 3 is a diagram showing an example of the relationship between n ′ and branch loss, and FIG. 3 is the width F (= G) of the cut region in the same embodiment.
FIG. 4 (a) and FIG. 4 (b) are configuration diagrams showing an ideal shape and an actual shape of a conventional Y-branch waveguide, and FIG. It is a figure which shows an example of the relationship between the width | variety D of the roundness of the branch part in a branch waveguide, and branch loss. 1, 2, 3 ... Straight waveguide, 4 ... Branch portion, 6 ... Notch region, 6a ... Tip portion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 女鹿田 直之 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 佐脇 一平 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 椎名 徹 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 昭55−126809(JP,A) 特公 昭55−30602(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoyuki Shikada 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor Ippei Sawaki, 1015, Kamedotachu, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor Toru Shiina 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (56) References JP 55-126809 (JP, A) JP 55-30602 (JP, B1)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シングルモードの直線導波路(1,2,
3)を基板(5)内にY字形に構成してなるY分岐導波
路において、 前記直線導波路の屈折率と前記基板の屈折率との中間の
屈折率を持ち、矩形状もしくは光の進行方向に対し対称
に広がる楔状であってその先端部の幅が前記直線導波路
の幅よりも狭い 0.5〜2μmの切り込み領域(6)を、
前記直線導波路のうち分岐された2本の直線導波路
(2,3)のそれぞれ内側の壁面が接する部分から、分
岐前の1本の直線導波路(1)が分岐を開始する位置ま
で設けたことを特徴とするY分岐導波路。
1. A single-mode linear waveguide (1, 2,
In a Y-branch waveguide in which 3) is formed in a Y shape in the substrate (5), the Y-branch waveguide has a refractive index intermediate between the refractive index of the linear waveguide and the refractive index of the substrate, and has a rectangular shape or travel of light. A notch region (6) of 0.5 to 2 μm, which has a wedge shape that spreads symmetrically with respect to the direction and whose width at the tip is narrower than the width of the linear waveguide,
Providing from the portion where the inner wall surface of each of the two branched straight waveguides (2, 3) of the straight waveguide contacts to the position where one straight waveguide (1) before branching starts branching A Y-branch waveguide characterized in that.
【請求項2】前記切り込み領域の形状が前記楔状であっ
て、前記切り込み領域の幅と前記分岐された2本の直線
導波路の内側の互いの壁面間隔とが前記光の進行方向に
対して連続的に接合されるとともに、該接合によって形
成される曲線の一次の微分係数が連続的であることを特
徴とする特許請求の範囲第1項記載のY分岐導波路。
2. The shape of the cut region is the wedge shape, and the width of the cut region and the wall surface interval between the insides of the two branched linear waveguides with respect to the traveling direction of the light. The Y-branch waveguide according to claim 1, wherein the Y-branch waveguide is continuously joined, and a first-order differential coefficient of a curve formed by the joining is continuous.
【請求項3】前記切り込み領域の屈折率は、前記直線導
波路の屈折率と前記基板の屈折率との丁度中間の値であ
ることを特徴とする特許請求の範囲第1項または第2項
記載のY分岐導波路。
3. The index of refraction of the cut region is an intermediate value between the index of refraction of the linear waveguide and the index of refraction of the substrate. The Y-branch waveguide described.
JP61202688A 1986-08-30 1986-08-30 Y branch Expired - Lifetime JPH0621889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61202688A JPH0621889B2 (en) 1986-08-30 1986-08-30 Y branch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61202688A JPH0621889B2 (en) 1986-08-30 1986-08-30 Y branch

Publications (2)

Publication Number Publication Date
JPS6360407A JPS6360407A (en) 1988-03-16
JPH0621889B2 true JPH0621889B2 (en) 1994-03-23

Family

ID=16461506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61202688A Expired - Lifetime JPH0621889B2 (en) 1986-08-30 1986-08-30 Y branch

Country Status (1)

Country Link
JP (1) JPH0621889B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174929A (en) * 1993-11-01 1995-07-14 Sumitomo Electric Ind Ltd Light branching device and optical parts
JP3258542B2 (en) * 1995-07-12 2002-02-18 日本電信電話株式会社 Branch-joining optical waveguide
KR19990038490A (en) 1997-11-05 1999-06-05 윤종용 Optical power divider and its manufacturing method
JP4626153B2 (en) * 2004-02-20 2011-02-02 日本電気株式会社 Manufacturing method of optical waveguide circuit
JP4960201B2 (en) * 2007-11-15 2012-06-27 日本電信電話株式会社 Optical wavelength multiplexing / demultiplexing circuit
JP6996381B2 (en) * 2018-03-23 2022-01-17 住友大阪セメント株式会社 Optical waveguide element
CN113376740B (en) * 2021-06-18 2022-11-22 南京刻得不错光电科技有限公司 Light splitting/combining element and photonic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530602A (en) * 1978-08-23 1980-03-04 Berber Viktor A Device for introducing material into grain size analyzer for grains contained in liquid
JPS56126809A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Light branching circuit

Also Published As

Publication number Publication date
JPS6360407A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
EP1530736B1 (en) Improved optical splitter with taperd multimode interference waveguide
US5749132A (en) Method of fabrication an optical waveguide
US4989937A (en) Light waveguide coupler having three or more gates and utilizing the beam splitter principle and the method for manufacture
EP0218381B1 (en) Optical waveguide devices
JPH0621889B2 (en) Y branch
JP2603924B2 (en) Method of manufacturing waveguide type branch path
JPH06186451A (en) Optical waveguide device
EP1239311A1 (en) Integrated optical device comprising an adiabatic junction
JP3077118B2 (en) Y-branch optical waveguide
JP2961057B2 (en) Optical branching device
JPH02234108A (en) Optical branching and multiplexing circuit
EP0668516A1 (en) Method and appertaining pair of mask patterns for fabricating, with the application of double masking, integrated optical waveguide structures
JPH09178964A (en) Branching structure for optical waveguide
US5835651A (en) Achromatic device in integrated optics
JP2679760B2 (en) Optical waveguide
JPH0721564B2 (en) Waveguide type branch circuit
JP2597358B2 (en) Y-branch waveguide
JPH03276105A (en) Production of y-branch waveguide
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JPH0621888B2 (en) Mode coupled Y-branch waveguide
JP4171565B2 (en) Waveguide branching structure in optical integrated circuits
JPH02113209A (en) Manufacture of y-branch waveguide
JP3481710B2 (en) Method for manufacturing optical waveguide body
JPS6236608A (en) Waveguide typemode splitter
JPH02235030A (en) Optical directional coupler

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term