JPH06218505A - Method for continuously casting molten metal - Google Patents

Method for continuously casting molten metal

Info

Publication number
JPH06218505A
JPH06218505A JP888193A JP888193A JPH06218505A JP H06218505 A JPH06218505 A JP H06218505A JP 888193 A JP888193 A JP 888193A JP 888193 A JP888193 A JP 888193A JP H06218505 A JPH06218505 A JP H06218505A
Authority
JP
Japan
Prior art keywords
molten steel
mold
molten metal
electrodes
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP888193A
Other languages
Japanese (ja)
Inventor
Nagayasu Bessho
永康 別所
Yuji Miki
祐司 三木
Kenichi Tanmachi
健一 反町
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP888193A priority Critical patent/JPH06218505A/en
Publication of JPH06218505A publication Critical patent/JPH06218505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To stably produce a cast slab having good surface characteristic in the industrial scale by energizing AC current having a specific frequency on molten metal surface in a mold and heating. CONSTITUTION:The molten steel 3 is poured into the mold 1 for continuous casting through an immersion nozzle 2. Two electrodes 8 are dipped into this molten steel (molten metal) 3 and an AC source 9 is connected with these electrodes and the AC current having >=200Hz frequency is energized between the electrodes 8. By this method, the surface of the molten steel 3 is heated. The energization is executed in the range, which the impressed current value I (A) satisfies the inequality. In the inequality, t: thickness of the mold (m), l: length between the electrodes (m), f: AC frequency (s<->). By this method, the surface part of the molten steel in the mold can be heated with a little input energy without contaminating the molten steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属とくに溶鋼の
連続鋳造方法に関し、とくに鋳片表層でのモールドパウ
ダーやその他酸化物の捕捉を抑制することにより、鋳片
の表面性状を改善しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for molten metal, especially molten steel, and particularly to improve the surface quality of the slab by suppressing the capture of mold powder and other oxides on the surface layer of the slab. To do.

【0002】[0002]

【従来の技術】溶融金属とくに溶鋼(以下は溶鋼の例に
ついて述べる)の連続鋳造において、次工程である熱間
圧延との直結化を図ることによって、スラブの手入れ作
業を省略するためには、鋳片の欠陥、とくに表面欠陥を
極力低減することが肝要である。
2. Description of the Related Art In continuous casting of molten metal, particularly molten steel (the examples of molten steel will be described below), in order to omit the maintenance work of the slab by directly connecting with the hot rolling which is the next step, It is important to reduce defects in the slab, especially surface defects, as much as possible.

【0003】鋳片の表面欠陥は、図1に示すように、連
続鋳造用鋳型(以下、単に「鋳型」という)1内に浸漬
ノズル2を介して注入した溶鋼3中に、モールドパウダ
ー4、アルミナ介在物5および気泡6が巻込まれて、そ
れらが鋳片の初期凝固シェル7に捕捉されて、生ずるも
のである。
As shown in FIG. 1, the surface defects of the slab are obtained by casting a mold powder 4, in a molten steel 3 injected through a dipping nozzle 2 into a continuous casting mold (hereinafter simply referred to as "mold") 1. The alumina inclusions 5 and the air bubbles 6 are entrained, and they are trapped by the initially solidified shell 7 of the slab and are generated.

【0004】従って、鋳片の表面性状を改善するには、
(イ)溶鋼中へのモールドパウダー、アルミナ介在物お
よび気泡の巻込み量を低減すること、また(ロ)メニス
カス部での凝固シェルの成長速度を低下させること、が
必要になる。
Therefore, in order to improve the surface quality of the slab,
(A) It is necessary to reduce the amount of mold powder, alumina inclusions, and bubbles entrained in the molten steel, and (b) to reduce the growth rate of the solidified shell in the meniscus portion.

【0005】[0005]

【発明が解決しようとする課題】従来、上記(イ)に関
しては、浸漬ノズル形状の最適化、電磁力による溶鋼流
動の制御および鋼中酸素濃度の低減などの対策が講じら
れてきたが、充分に満足する結果を得るに到っていな
い。
With respect to the above (a), measures such as optimization of the shape of the dipping nozzle, control of molten steel flow by electromagnetic force, and reduction of oxygen concentration in steel have been taken. Haven't come to satisfactory results.

【0006】また、上記(ロ)に関しては、メニスカス
部の溶鋼加熱および発熱性モールドパウダーの利用など
の対策が講じられてきた。しかしながら、発熱性モール
ドパウダーの利用は、モールドフラックス中に、金属Al
およびフェロシリコン等を混合して、その酸化発熱を利
用するものであるため、酸化剤(鉄あるいはMnの酸化
物)を添加しなければならない。従って、発熱剤と酸化
剤との反応の制御が難しく、充分な発熱量が得られない
こと、また酸化剤と浴中のAlとが反応して溶鋼を汚染す
ること、などが問題となる。
With regard to the above (b), measures have been taken such as heating molten steel in the meniscus portion and utilizing exothermic mold powder. However, the use of exothermic mold powder is due to the presence of metallic Al in the mold flux.
Since oxidization heat generation is utilized by mixing and ferrosilicon and the like, an oxidizing agent (iron or Mn oxide) must be added. Therefore, it is difficult to control the reaction between the exothermic agent and the oxidizing agent, and a sufficient calorific value cannot be obtained, and the oxidizing agent reacts with Al in the bath to contaminate the molten steel.

【0007】一方、メニスカス部の溶鋼加熱は、特開昭
57−109552号公報に記載されているように、モールドパ
ウダー中にカーボン電極を浸漬して通電を行い、モール
ドパウダー中のジュール発熱を利用する方法である。し
かし、カーボン電極による溶鋼への加炭や、湯面レベル
の変動によって電圧が不安定になることがあり、連続鋳
造の実操業に適用するには、解決すべき多くの課題が残
されていた。
On the other hand, the heating of molten steel in the meniscus portion is described in
As described in Japanese Patent Laid-Open No. 57-109552, this is a method of immersing a carbon electrode in a mold powder to conduct electricity and utilizing Joule heat in the mold powder. However, the voltage may become unstable due to the carburization of molten steel by the carbon electrode or the fluctuation of the molten metal surface level, and there were many problems to be solved before applying it to the actual operation of continuous casting. .

【0008】さらに、上記(ロ)に対する二通りの方策
は、いずれもモールドパウダーを加熱して間接的に溶鋼
を加熱するものであり、モールドパウダーから浴面上方
の大気中に放散される熱量が大きいため、投入エネルギ
ー量を大きくしなくてはならない不利もあった。
Further, both of the above two measures (b) are for heating the mold powder to indirectly heat the molten steel, and the amount of heat radiated from the mold powder to the atmosphere above the bath surface is Since it is large, there is a disadvantage that the amount of input energy must be increased.

【0009】そこで、本発明の目的は、上記した問題点
を解決することによって、鋳型内の溶鋼メニスカス部の
有利な加熱方法を提案しようとするものである。
Therefore, an object of the present invention is to propose an advantageous heating method for a molten steel meniscus portion in a mold by solving the above problems.

【0010】[0010]

【課題を解決するための手段】本発明は、連続鋳造用鋳
型に装入した溶鋼の湯面に、周波数200 Hz以上の交流電
流の通電による加熱を施すことを特徴とする溶鋼の連続
鋳造方法である。上記の通電は、溶鋼中に浸漬した一対
の電極を介して行うこと、相互に電気的に絶縁された、
相対する鋳型内壁面間で行うこと、さらに印加電流値I
(A)が下記式(1) を満足する範囲で行うこと、がそれ
ぞれ実施に当たり有利である。 記 I≧3.26×104 {t/(l・f1/2 )}1/2 ----(1) ここで、t:鋳型厚み(m) l:電極間距離(m) f:交流周波数(s-1
The present invention is a continuous casting method for molten steel, characterized in that the molten metal surface charged in a continuous casting mold is heated by applying an alternating current having a frequency of 200 Hz or more. Is. The energization is performed via a pair of electrodes immersed in molten steel, electrically insulated from each other,
What is done between the opposing inner walls of the mold, and the applied current value I
It is advantageous in practice that (A) is performed within a range that satisfies the following formula (1). Note I ≧ 3.26 × 10 4 {t / (l · f 1/2 )} 1/ 2-(1) where, t: mold thickness (m) l: distance between electrodes (m) f: alternating current Frequency (s -1 )

【0011】次に、図2に従って、本発明の方法を詳し
く説明する。すなわち、浸漬ノズル2を介して鋳型1内
に注入した溶鋼3中に、2本の電極棒8を浸漬し、これ
らの電極棒8をそれぞれ交流電源9に接続して、電極棒
8間に周波数200 Hz以上の交流電流を通電する。この電
流は、一方の電極棒8を経由して溶鋼3中を他方の電極
棒8まで流れ、その結果として、これらの電極間の溶鋼
3の湯面が加熱される。なお、湯面レベルの変動が小さ
い場合は、図示のように、電極棒8を溶鋼中まで挿入す
る必要はなく、モールドパウダーの溶融層に電極棒8の
先端を浸漬する程度でもよい。また、電極棒の材質とし
ては、黒鉛、ZrB2、アルミナグラファイトやジルコニア
グラファイト等のC含有耐火物またはこれらの複合物、
さらには水冷した金属などが適合する。ただし、黒鉛に
ついては加炭のおそれがあるので、害のない鋼種につい
てのみ適用する。
Next, the method of the present invention will be described in detail with reference to FIG. That is, two electrode rods 8 are immersed in the molten steel 3 injected into the mold 1 through the immersion nozzle 2 and these electrode rods 8 are connected to an AC power source 9 respectively, and the frequency between the electrode rods 8 is increased. Apply an alternating current of 200 Hz or more. This electric current flows through the molten steel 3 to the other electrode rod 8 via the one electrode rod 8, and as a result, the molten metal surface of the molten steel 3 between these electrodes is heated. When the fluctuation of the molten metal level is small, it is not necessary to insert the electrode rod 8 into the molten steel as shown in the figure, and the tip of the electrode rod 8 may be immersed in a molten layer of mold powder. The material of the electrode rod is C-containing refractory such as graphite, ZrB 2 , alumina graphite or zirconia graphite, or a composite material thereof,
Furthermore, water-cooled metal is suitable. However, since graphite may be carburized, it is applied only to steel grades that are not harmful.

【0012】[0012]

【作用】さて、200 Hz以上の周波数の交流電流は、表皮
効果を有するため、図3に示すように、ある一定厚さの
電流浸透厚みδの領域に限って通電がなされ、従って溶
鋼3の湯面においてジュール加熱が可能となる。ここ
で、交流電流を200 Hz以上とする理由は、電流周波数が
200 Hz未満になると、電流浸透厚みδが厚くなり、溶鋼
の電気回路中の抵抗値が低くなって、発熱量が低下する
ためである。
Since an alternating current having a frequency of 200 Hz or higher has a skin effect, as shown in FIG. 3, energization is carried out only in the region of the current permeation thickness δ of a certain constant thickness. Joule heating is possible on the surface of the molten metal. Here, the reason why the alternating current is 200 Hz or more is that the current frequency is
This is because if it is less than 200 Hz, the current penetration thickness δ becomes thick, the resistance value of the molten steel in the electric circuit becomes low, and the amount of heat generation decreases.

【0013】上記の操作によって、鋳型内の溶鋼湯面の
温度は上昇し、メニスカス部での初期凝固シェルの成長
速度が抑制され、鋳片の表面性状は改善されるのであ
る。また、モールドパウダーの溶融層厚みも増加するた
め、低炭素鋼もしくは極低炭素鋼鋳造に当たっての溶鋼
への未溶融モールドパウダーからの加炭も防止される。
By the above operation, the temperature of the molten steel surface in the mold rises, the growth rate of the initially solidified shell at the meniscus portion is suppressed, and the surface quality of the cast piece is improved. Further, since the thickness of the molten layer of the mold powder is increased, it is possible to prevent the unmelted mold powder from carburizing the molten steel in casting the low carbon steel or the ultra low carbon steel.

【0014】[0014]

【実施例】【Example】

実施例1 垂直曲げ型連続鋳造機(垂直部:3m)を用いて、表1
に示す条件で連続鋳造を行った。この連続鋳造機は2ス
トランド形式で、一方のストランドに図2に示した交流
電流の通電による湯面加熱を施し、他方のストランドは
湯面加熱を施さずに鋳造を行った。
Example 1 Using a vertical bending type continuous casting machine (vertical part: 3 m), Table 1
Continuous casting was performed under the conditions shown in. This continuous casting machine is of a two-strand type, in which one strand is subjected to the molten metal surface heating by passing the alternating current shown in FIG. 2, and the other strand is cast without the molten metal surface heating.

【0015】[0015]

【表1】 [Table 1]

【0016】交流通電条件は、周波数f:50 kHzおよび
電流I:2550Aで、電極にはZrB2製で100 mmφの電極棒
を使用し、電極棒間間隔(軸中心間距離):1300mmおよ
び浴面からの深さ:20mmで浸漬配置した。この通電加熱
により、溶鋼の湯面温度は、溶鋼過熱度ΔT(溶鋼温度
−液相線温度)にして平均18℃上昇させることができ、
加熱を施さない場合と比較して、平均14℃の温度上昇を
達成できた。
AC energization conditions were a frequency f: 50 kHz, a current I: 2550 A, an electrode rod made of ZrB 2 and having a diameter of 100 mmφ was used, and an electrode rod interval (distance between shaft centers): 1300 mm and bath Depth from the surface: 20 mm was placed by immersion. By this electrical heating, the molten steel surface temperature can be increased by an average of 18 ° C. in the molten steel superheat degree ΔT (molten steel temperature-liquidus temperature).
An average temperature rise of 14 ° C could be achieved compared to the case without heating.

【0017】以上の操業を、18ヒート行い、ヒート毎
に、熱間圧延、次いで冷間圧延を経て1.2mm 厚の冷延板
を製造し、各ストランドにおける製品品質を調査した。
その結果を、表2に示す。
The above operation was carried out for 18 heats, and for each heat, a 1.2mm-thick cold rolled sheet was manufactured through hot rolling and then cold rolling, and the product quality of each strand was investigated.
The results are shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】表2から、本発明に従って溶鋼湯面の加熱
を行うことによって、得られる鋳片の表面性状が改善さ
れ、冷延板の品質が著しく向上し、その欠陥発生率が、
溶鋼湯面の加熱を行わない場合(従来例)と比較して、
1/10以下となったことがわかる。
From Table 2, by heating the molten steel surface according to the present invention, the surface properties of the obtained slab are improved, the quality of the cold-rolled sheet is remarkably improved, and the defect occurrence rate is
Compared with the case of not heating the molten steel surface (conventional example),
You can see that it became 1/10 or less.

【0020】なお、上記と同様の条件において、電流周
波数fを種々に変化させて鋳造を行ったところ、電流周
波数fが200 Hz未満では、電流Iを10000 A以上にする
必要があり、高周波電源の容量が極めて大きくなるた
め、実機に適用することは無理であった。
Under the same conditions as above, when casting was performed while changing the current frequency f variously, when the current frequency f was less than 200 Hz, the current I had to be 10000 A or more. However, it was impossible to apply it to the actual machine because the capacity of was extremely large.

【0021】また、鋳型における短辺および長辺間の電
気的絶縁をはかり、鋳型の両短辺または両長辺のいずれ
かを電極として使用しても、上記実施例と同様の結果を
得ることができた。すなわち、電極は、連続鋳造機設備
の構造上、交流電流が溶鋼湯面中を通電するのであれ
ば、どのような配置または何で兼用しても構わない。
Even if the short side and the long side of the mold are electrically insulated and either the short side or the long side of the mold is used as an electrode, the same result as in the above embodiment can be obtained. I was able to. That is, the electrodes may be used in any arrangement or in any combination as long as an alternating current flows through the molten steel surface due to the structure of the continuous casting machine facility.

【0022】実施例2 実施例1と同様の条件において、電流周波数f:200 〜
100 ×103 (Hz)、鋳型厚みt:0.180 〜0.34(m)お
よび電極間距離l:0.200 〜1.400 (m)で、通電電流
値Iを種々変化させて鋳造を行い、実施例1と同様に冷
延板を製造した。そして、この製造における、鋳型内の
溶鋼湯面の溶鋼過熱度ΔTおよび冷延板の表面欠陥指数
を調査した。
Example 2 Under the same conditions as in Example 1, the current frequency f: 200-
At 100 × 10 3 (Hz), mold thickness t: 0.180 to 0.34 (m) and inter-electrode distance l: 0.200 to 1.400 (m), casting was performed by changing the energizing current value I variously, and the same as Example 1. Cold-rolled sheet was manufactured. Then, in this production, the molten steel superheat degree ΔT of the molten steel surface in the mold and the surface defect index of the cold rolled sheet were investigated.

【0023】その調査結果を図4および5に示すよう
に、通電電流値Iが上記した式(1) を満足する範囲にあ
ると、湯面の溶鋼過熱度ΔTが急激に上昇し、また表面
欠陥指数も大幅に低減されることがわかる。
As shown in FIGS. 4 and 5, the results of the investigation show that when the energization current value I is in the range satisfying the above-mentioned formula (1), the molten steel superheat degree ΔT on the molten metal surface rises sharply and It can be seen that the defect index is also significantly reduced.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、溶
鋼を汚染することなく、しかも小さな投入エネルギーで
鋳型内溶鋼の表層部を加熱することができ、表面性状の
良好な鋳片を工業的規模で安定製造することが可能とな
る。
As described above, according to the present invention, the surface layer portion of the molten steel in the mold can be heated without contaminating the molten steel and with a small input energy, and a slab having a good surface property can be manufactured. It is possible to manufacture stably on a dynamic scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続鋳造における鋳片の表面欠陥の生成機構を
説明する模式図である。
FIG. 1 is a schematic diagram illustrating a generation mechanism of a surface defect of a slab in continuous casting.

【図2】本発明に従う鋳型内溶鋼の表層部の加熱方法を
説明する模式図である。
FIG. 2 is a schematic diagram illustrating a method for heating a surface layer portion of molten steel in a mold according to the present invention.

【図3】溶鋼表層部の加熱機構を説明する模式図であ
る。
FIG. 3 is a schematic diagram illustrating a heating mechanism of a molten steel surface layer portion.

【図4】通電電流値Iと湯面の溶鋼過熱度ΔTとの関係
を示すグラフである。
FIG. 4 is a graph showing a relationship between an energization current value I and a molten steel superheat degree ΔT on a molten metal surface.

【図5】通電電流値Iと表面欠陥指数との関係を示すグ
ラフである。
FIG. 5 is a graph showing a relationship between an energization current value I and a surface defect index.

【符号の説明】[Explanation of symbols]

1 鋳型 2 ノズル 3 溶鋼 4 モールドパウダー 5 アルミナ介在物 6 気泡 7 初期凝固シェル 8 電極棒 9 交流電源 1 Mold 2 Nozzle 3 Molten Steel 4 Mold Powder 5 Alumina Inclusion 6 Bubble 7 Initial Solidification Shell 8 Electrode Rod 9 AC Power Supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 反町 健一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 藤井 徹也 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Sorimachi, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Tetsuya Fujii 1, Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Corporation Technical Research Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用鋳型内の溶融金属湯面に、周
波数200 Hz以上の交流電流を通電して加熱することを特
徴とする溶融金属の連続鋳造方法。
1. A continuous casting method for molten metal, which comprises heating an molten metal surface in a continuous casting mold by applying an alternating current having a frequency of 200 Hz or more.
【請求項2】 溶融金属中に浸漬した一対の電極を介し
て通電を行うことを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the current is applied through a pair of electrodes immersed in the molten metal.
【請求項3】 相互に電気的に絶縁された、相対する鋳
型内壁面間で通電を行うことを特徴とする請求項1に記
載の方法。
3. The method according to claim 1, wherein electric current is applied between opposing inner wall surfaces of the mold which are electrically insulated from each other.
【請求項4】 印加電流値I(A)が下記式を満足する
範囲で通電を行うことを特徴とする請求項1、2または
3のいずれか1つに記載の方法。 記 I≧3.26×104 {t/(l・f1/2 )}1/2 ここで、t:鋳型厚み(m) l:電極間距離(m) f:交流周波数(s-1
4. The method according to claim 1, wherein the applied current value I (A) is energized in a range satisfying the following formula. Note I ≧ 3.26 × 10 4 {t / (l · f 1/2 )} 1/2 where t: mold thickness (m) l: distance between electrodes (m) f: alternating frequency (s −1 ).
JP888193A 1993-01-22 1993-01-22 Method for continuously casting molten metal Pending JPH06218505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP888193A JPH06218505A (en) 1993-01-22 1993-01-22 Method for continuously casting molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP888193A JPH06218505A (en) 1993-01-22 1993-01-22 Method for continuously casting molten metal

Publications (1)

Publication Number Publication Date
JPH06218505A true JPH06218505A (en) 1994-08-09

Family

ID=11705024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP888193A Pending JPH06218505A (en) 1993-01-22 1993-01-22 Method for continuously casting molten metal

Country Status (1)

Country Link
JP (1) JPH06218505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018559A (en) * 2000-07-06 2002-01-22 Nippon Steel Corp Method for casting cast slab or cast block having fine solidified structure and its casting apparatus
JP2020157333A (en) * 2019-03-26 2020-10-01 日本製鉄株式会社 Learning model creation device, slab quality estimation device, learning model creation method, slab quality estimation method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018559A (en) * 2000-07-06 2002-01-22 Nippon Steel Corp Method for casting cast slab or cast block having fine solidified structure and its casting apparatus
JP2020157333A (en) * 2019-03-26 2020-10-01 日本製鉄株式会社 Learning model creation device, slab quality estimation device, learning model creation method, slab quality estimation method, and program

Similar Documents

Publication Publication Date Title
JPH06218505A (en) Method for continuously casting molten metal
JP2009233729A (en) Preheating method of immersion nozzle for continuous casting, and continuous casting method
JP4548483B2 (en) Casting method for molten alloy
JP6611331B2 (en) Continuous casting method of slab made of titanium or titanium alloy
JP2007098399A (en) Method for producing composite steel material, composite steel material and rail steel obtained by using the same
US5375648A (en) Apparatus and method for continuous casting of steel
US3875990A (en) Methods of producing large steel ingots
Zhou et al. Study of the Ni–Cr–Fe‐Based Alloy Casting Process using a Mold Simulator Technique
JPS6119722A (en) Metallurgical posttreatment device and method for metal molten in advance
JP2568076B2 (en) Method for preventing the formation of deposits on the walls of metallurgical vessels and metallurgical vessels suitable for carrying out this method
JPH07238327A (en) Vacuum electroslag remelting furnace
ES2029673T3 (en) PROCEDURE FOR THE SECONDARY METALLURGICAL TREATMENT OF METALLIC BROTHS, ESPECIALLY CAST STEEL.
RU2061089C1 (en) Method of thermal treatment of steel parts
Gertsyk et al. Technology of melting an invar in an induction furnace
JPS6261666B2 (en)
JP3752740B2 (en) Heat raising method for molten steel in ladle
US2486281A (en) Arc cutting of metal and electrode therefor
JP2009167511A (en) Method for producing ingot by electroslag remelting process
JPH0464772B2 (en)
JPS5923839A (en) Production of low-carbon alloy iron
JP6725250B2 (en) Front powder design method and front powder manufacturing method
JPH067907A (en) Production of continuously cast slab excellent in surface characteristic
RU2567424C1 (en) Method of steel melting out of iron-ore iron-rich pellets in electric arc furnace
JPS6253569B2 (en)
JPS60223648A (en) Heating method of molten steel