JPH06217794A - Method of measuring chemoluminescence - Google Patents

Method of measuring chemoluminescence

Info

Publication number
JPH06217794A
JPH06217794A JP1394693A JP1394693A JPH06217794A JP H06217794 A JPH06217794 A JP H06217794A JP 1394693 A JP1394693 A JP 1394693A JP 1394693 A JP1394693 A JP 1394693A JP H06217794 A JPH06217794 A JP H06217794A
Authority
JP
Japan
Prior art keywords
chemiluminescence
concentration
sample
blood
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1394693A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
清和 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1394693A priority Critical patent/JPH06217794A/en
Publication of JPH06217794A publication Critical patent/JPH06217794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure a whole blood specimen as it is without pretreatment of the specimen and to completely remove influence of Hb. CONSTITUTION:Quenching effect (negative interference) of Hb existing in a specimen on chemoluminescence is suppressed or eliminated by a spectral element or solution filter effect and a chemical component concentration and Hb concentration in blood are obtained in combination with measured values before and after using the spectral element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、血液、血清および血漿
試料中の特定成分を化学発光により測定する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for measuring specific components in blood, serum and plasma samples by chemiluminescence.

【0002】[0002]

【従来技術】血液、血清および血漿試料中のグルコー
ス、乳酸、尿素、コレステロール、リン脂質などを分析
する方法として、化学発光法が知られている。
2. Description of the Related Art The chemiluminescence method is known as a method for analyzing glucose, lactate, urea, cholesterol, phospholipids, etc. in blood, serum and plasma samples.

【0003】これは、血液、血清および血漿試料に特定
の酸化酵素を加えあるいは樹脂ビーズ上に固定した同酵
素と接触させて、過酸化水素などの励起剤を生成させた
後、これにルミノールなどの励起物質、赤血塩などの触
媒を加えてルミノールなどの化学発光を生じさせて、そ
のスペクトルを測定するものである。
This is because after adding a specific oxidase to a blood, serum or plasma sample or contacting it with the same enzyme immobilized on resin beads to generate an exciter such as hydrogen peroxide, luminol or the like is added thereto. Is added to a catalyst such as an exciting substance or red blood salt to generate chemiluminescence such as luminol, and the spectrum is measured.

【0004】例えば、血液中の乳酸(LA)を化学発光
により測定するときは下記の反応を起こさせる。
For example, when lactic acid (LA) in blood is measured by chemiluminescence, the following reaction is caused.

【0005】[0005]

【式1】 [Formula 1]

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
測定法においては血液、血清および血漿試料に混入して
いるヘモグロビン(Hb)による影響については特に配
慮しておらず、そのため化学発光のスペクトルの一部が
Hbによる干渉を受けていた。
However, in the conventional measuring method, no particular consideration is given to the influence of hemoglobin (Hb) mixed in blood, serum and plasma samples, and therefore one of the spectra of chemiluminescence is not considered. The department had received interference from Hb.

【0007】この影響をなくすためには、試料の測定前
に遠心分離により赤血球(Hb含有)を除去することが
考えられるが、血液採取の段階で一部の赤血球が壊れた
場合は遠心分離した上澄液中にHbが混入するため、こ
の手法によってもHbの影響を完全に除去することがで
きず、しかも測定前に前処理工程が必要となるので測定
終了までに多大の時間を要していた。
In order to eliminate this effect, it is conceivable to remove red blood cells (containing Hb) by centrifugation before measuring the sample, but if some red blood cells were broken at the stage of blood collection, centrifugation was performed. Since Hb is mixed in the supernatant, the effect of Hb cannot be completely removed even by this method, and a pretreatment step is required before the measurement, which requires a large amount of time until the measurement is completed. Was there.

【0008】そこで、本発明は、試料の前処理なしに全
血試料をそのまま測定でき、しかもHbの影響を完全に
除去できる新たな方法を提供することを目的とする。
[0008] Therefore, it is an object of the present invention to provide a new method capable of measuring a whole blood sample as it is without pretreatment of the sample and completely eliminating the influence of Hb.

【0009】[0009]

【課題を解決するための手段】本発明は、前記課題を解
決するため、先ず第1の発明は、血液、血清および血漿
試料に酸化酵素を加えあるいは接触させて励起剤を生成
させた後、これに被励起物質及び触媒を加えて化学発光
させて試料中の特定成分を測定する方法において、化学
発光測定液収容部と検出器の間に試料中のヘモグロビン
の吸収を示す450nm以下の波長域の光を透さない分光
素子を配置して化学発光を測定することを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the first invention is that the oxidase is added to or brought into contact with blood, serum and plasma samples to form an exciter, In the method of measuring a specific component in a sample by adding a substance to be excited and a catalyst to it and causing chemiluminescence, a wavelength range of 450 nm or less showing absorption of hemoglobin in the sample between the chemiluminescence measurement liquid storage part and the detector. Is arranged to measure chemiluminescence by disposing a spectroscopic element which does not transmit the light.

【0010】ここで、酸化酵素は試料中の測定したい成
分によって決定付けられ、例えば、乳酸を測定するとき
は乳酸オキシダーゼ、グルコースではグルコースオキシ
ダーゼ、尿酸ではウリカーゼ、ピルビン酸ではピルビン
酸オキシダーゼ、コレステロールではコレステロールオ
キシダーゼ、リン脂質ではホリホリパーゼなどを挙げる
ことができるが、これらには限定されず、遊離脂肪酸、
L,D−アミノ酸、クレアチニンなどもこれにあった酵
素を選択することにより測定が可能となる。
Here, the oxidase is determined by the component to be measured in the sample. For example, when measuring lactic acid, lactate oxidase, glucose is glucose oxidase, uric acid is uricase, pyruvate is pyruvate oxidase, and cholesterol is cholesterol. Examples of oxidases and phospholipids include, but are not limited to, hollilipase, free fatty acids,
L, D-amino acids, creatinine, etc. can be measured by selecting an enzyme suitable for them.

【0011】また、生成される励起剤は、例えば過酸化
水素で、被励起物質はルミノール、ルミノール誘導体、
ルシゲニン、N−メチルアクリジニウムなどを挙げるこ
とができるが、これらに限定されない。更に、触媒とし
ては、赤血塩などの遷移金属化合物、銅などの金属イオ
ンのアミン錯体などを挙げることができる。
The generated exciter is, for example, hydrogen peroxide, and the substance to be excited is luminol, a luminol derivative,
Examples include, but are not limited to, lucigenin, N-methylacridinium, and the like. Further, examples of the catalyst include transition metal compounds such as red blood salts and amine complexes of metal ions such as copper.

【0012】分光素子は、例えばフィルタを挙げること
ができるが、これに限定されず実質的に大部分のヘモグ
ロビンの吸収を示す450nm以下の波長域の光を透さな
いものならば何でも良い。
The spectroscopic element may be, for example, a filter, but is not limited to this and may be any element as long as it does not transmit light in the wavelength region of 450 nm or less which substantially absorbs most hemoglobin.

【0013】分光素子の化学発光測定液収容部と検出器
の間への配置は、分光素子をチョッパなどに装着して出
し入れ可能にしたり、検出器の前に固定配置するなどし
てもいずれでも良い。
The spectroscopic element may be arranged between the chemiluminescence measurement liquid storage part and the detector by mounting the spectroscopic element on a chopper or the like so that the spectroscopic element can be put in and taken out, or fixedly arranged in front of the detector. good.

【0014】なお、化学発光測定液収容部とは、励起
剤、被励起物質及び触媒が混合されるところで、反応コ
イル、ビーカー、光学セルなどあらゆるものが該当する
が、フローインジェクション分析を行うときは反応コイ
ルが好ましい。また、検出器は、例えば、光電子像倍
管、フォトンカウンターなどを挙げることができる。
Incidentally, the chemiluminescence measurement liquid storage part is a place where an exciter, a substance to be excited and a catalyst are mixed, and all things such as a reaction coil, a beaker, an optical cell, etc. correspond, but when performing a flow injection analysis. Reaction coils are preferred. The detector may be, for example, a photomultiplier tube or a photon counter.

【0015】次に、本発明の第2は、血液、血清および
血漿試料に酸化酵素を加えあるいは接触させて励起剤を
生成させた後、これに被励起物質び触媒を加えて化学発
光させて試料中の特定成分を測定する方法において、触
媒の濃度を化学発光の最高感度を得る濃度よりもさらに
濃度をあげて試料中のヘモグロビンの干渉を抑制して化
学発光を測定することを特徴とする。
Next, in the second aspect of the present invention, an oxidase is added to or brought into contact with blood, serum and plasma samples to generate an exciter, and then a substance to be excited and a catalyst are added thereto to cause chemiluminescence. In the method for measuring a specific component in a sample, the chemiluminescence is measured by increasing the concentration of the catalyst more than the concentration at which the highest sensitivity of chemiluminescence is obtained to suppress the interference of hemoglobin in the sample. .

【0016】ここで、触媒とは、前述したものと同様の
もので、化学発光の最高感度を得る濃度よりもさらに濃
度をあげるとは、いわゆる“溶液フィルタ”として作用
させるもので、以下の実施例で明らかになるが、例え
ば、血液中の乳酸を赤血塩を触媒としたルミノールの化
学発光により測定する場合、化学発光の最高感度は赤血
塩濃度1 g/dl で得られるが、Hbの干渉を抑えるには
少なくとも約6.6 g/dl が必要となる。
Here, the catalyst is the same as that described above, and to raise the concentration higher than the concentration at which the maximum chemiluminescence sensitivity is obtained is to act as a so-called "solution filter". For example, when lactic acid in blood is measured by chemiluminescence of red blood salt-catalyzed luminol, the maximum chemiluminescence sensitivity is obtained at a red blood salt concentration of 1 g / dl. At least about 6.6 g / dl is required to suppress the interference of.

【0017】また、本発明の第3は、第1の発明を利用
して血液中の化学成分とヘモグロビン濃度を算出するこ
とにある。すなわち、分光素子を配置したとき(分光光
量測定)の測定値をCSPとし、分光素子を配置しなかっ
たとき(非分光光量測定)の測定値をCsp' とすると、
SPは血液中の化学成分濃度を示し、Csp' は血液中の
化学成分濃度+Hb濃度を示すことになる。
A third aspect of the present invention is to calculate the chemical components and hemoglobin concentration in blood by utilizing the first aspect of the present invention. That is, assuming that the measured value when the spectroscopic element is arranged (spectral light amount measurement) is C SP, and the measured value when the spectroscopic element is not arranged (non-spectral light amount measurement) is C sp ' ,
C SP represents the chemical component concentration in blood, and C sp ' represents the chemical component concentration in blood + Hb concentration.

【0018】なお、Hb濃度(CHb)は以下の式で算出
する(但し、FHbはHb濃度を求めるための変換係数で
ある)。 CHb=[(CSP−Csp' )/CSP]×FHb 前記測定値を得るための装置としては、分光素子をチョ
ッパなどに装着して、化学発光測定液収容部と検出器の
間を出し入れして両測定値を順次求めるもの、あるいは
化学発光測定液収容部から二方向に検出部を配置して、
分光光量測定用の検出部の前には分光素子を配置し、非
分光および分光光量を別々に検出するものが考えられる
が、これらに限定されない。
The Hb concentration (C Hb ) is calculated by the following formula (where F Hb is a conversion coefficient for obtaining the Hb concentration). C Hb = [(C SP −C sp ′ ) / C SP ] × F Hb As a device for obtaining the measurement value, a spectroscopic element is attached to a chopper or the like, and a chemiluminescence measurement liquid storage unit and a detector are provided. One that sequentially obtains both measured values by putting in and out the space, or by arranging the detection parts in two directions from the chemiluminescence measurement liquid storage part,
It is conceivable that a spectroscopic element is arranged in front of the detection unit for measuring the amount of spectroscopic light and the non-spectral light and the amount of spectroscopic light are detected separately, but the present invention is not limited thereto.

【0019】[0019]

【作用】本発明では、分光素子や溶液フィルタ効果によ
り試料中に共存するHbによる化学発光に対する消光効
果(負の干渉)を抑制または無くすとともに、分光素子
を使用する前後の測定値と合わせて血液中の化学成分濃
度とHb濃度を求めることができる。
The present invention suppresses or eliminates the quenching effect (negative interference) on the chemiluminescence due to Hb coexisting in the sample due to the spectroscopic element and the solution filter effect, and combines the measured values before and after using the spectroscopic element with blood. The chemical component concentration and the Hb concentration in the inside can be obtained.

【0020】[0020]

【実施例】【Example】

<実施例1:分光素子によるHbの影響の除去>図1の
装置を用いて分光素子によるHbの影響の除去効果を測
定した。図中1は試料カップ、2は試料サンプリングポ
ンプ、3は緩衝液送液ポンプ、4は緩衝液溜、5は固定
化酵素カラム、6はルミノール液溜、7はルミノール液
送液ポンプ、8は赤血塩液溜、9は赤血塩液送液ポン
プ、10は反応コイル、11は分光素子、12は検出器
である。
<Example 1: Removal of influence of Hb by spectroscopic element> The effect of removing the influence of Hb by the spectroscopic element was measured using the apparatus of FIG. In the figure, 1 is a sample cup, 2 is a sample sampling pump, 3 is a buffer solution delivery pump, 4 is a buffer solution reservoir, 5 is an immobilized enzyme column, 6 is a luminol solution reservoir, 7 is a luminol solution delivery pump, and 8 is A red blood salt solution reservoir, 9 is a red blood salt solution sending pump, 10 is a reaction coil, 11 is a spectroscopic element, and 12 is a detector.

【0021】かかる装置において、試料は試料サンプリ
ングポンプ2により一定量計量され緩衝液にて固定化酵
素カラム5へ送られる。固定化酵素カラム5では試料中
の特定成分が酸素と反応し、有機物質と過酸化水素を生
成する。この過酸化水素にルミノールと赤血塩が加えら
れて反応コイル10にて化学発光が生じ、これが分光素
子11を介して検出器12で検出される。
In such a device, a sample is weighed by the sample sampling pump 2 and sent to the immobilized enzyme column 5 as a buffer solution. In the immobilized enzyme column 5, a specific component in the sample reacts with oxygen to produce an organic substance and hydrogen peroxide. Luminol and red blood salt are added to this hydrogen peroxide to generate chemiluminescence in the reaction coil 10, which is detected by the detector 12 via the spectroscopic element 11.

【0022】測定条件は次の通りである。 測定試料; 20倍希釈血液 8×10-3 ml 固定化酵素カラム;乳酸オキシダーゼ 緩衝液; NaHPO( 190mg/l)/KHPO
( 160mg/l) (pH=7.5) ルミノール液; ルミノール(26mg/l)/KOH(11g/l)
/ほう酸 (12.4g/l)/NaCl(117g/l) 赤血塩; 0.13〜13g/dl 検出器; 光電子増倍管 分光素子; フィルタV−Y45、V−Y47(保谷硝
子製)
The measurement conditions are as follows. Measurement sample; 20-fold diluted blood 8 × 10 −3 ml Immobilized enzyme column; Lactate oxidase buffer solution; Na 2 HPO 4 (190 mg / l) / KH 2 PO 4
(160mg / l) (pH = 7.5) Luminol solution; Luminol (26mg / l) / KOH (11g / l)
/ Boric acid (12.4 g / l) / NaCl (117 g / l) red blood salt; 0.13 to 13 g / dl detector; photomultiplier tube spectroscopic element; filter V-Y45, V-Y47 (manufactured by Hoya Glass)

【0023】測定結果を図2に示す。図2はルミノール
の発光スペクトルで、図2中実線は原スペクトル、一点
鎖線はフィルタV−Y45を装着した場合のスペクト
ル、二点鎖線はフィルタV−Y47を装着した場合のス
ペクトルを示す(なお、ルミノールの化学発光のスペク
トトル極大波長は425〜430nmであるが、触媒と
して用いた赤血塩の吸収が500nm以下にある為、見
掛上極大波長は470nmになっている)。
The measurement results are shown in FIG. FIG. 2 is an emission spectrum of luminol. In FIG. 2, the solid line shows the original spectrum, the one-dot chain line shows the spectrum when the filter V-Y45 was attached, and the two-dot chain line shows the spectrum when the filter V-Y47 was attached. The maximum spectral wavelength of chemiluminescence of luminol is 425 to 430 nm, but the absorption maximum of the red blood salt used as a catalyst is 500 nm or less, so the apparent maximum wavelength is 470 nm).

【0024】また、図3はルミノールの発光スペクトル
測定に用いたフィルタとHbの透過率曲線を示す図であ
る。これら図より、本発明の分光素子によればHbの影
響が除去できたことがわかる。
FIG. 3 is a diagram showing the filter used for measuring the emission spectrum of luminol and the transmittance curve of Hb. From these figures, it is understood that the influence of Hb can be eliminated by the spectroscopic element of the present invention.

【0025】<実施例2:溶液フィルタ効果によるHb
の影響の除去>実施例1と同様の装置、条件で分光素子
を用いず、赤血塩の濃度を徐々に変えることによりHb
の影響の除去を行った。
<Example 2: Hb due to solution filter effect
Removal of the effect of Hb> by using the same apparatus and conditions as in Example 1 without using a spectroscopic element and gradually changing the concentration of red blood salt.
The effect of was removed.

【0026】図4に乳酸(LA)測定系試薬中の赤血塩
とHbの透過率曲線を示す。この図より赤血塩の濃度を
変えることにより、図3に示したフィルタと同等の透過
率曲線を持たせることができ、Hbの吸収の大部分を除
去できることがわかる。
FIG. 4 shows a transmittance curve of red blood salt and Hb in the reagent for measuring lactic acid (LA). From this figure, it can be seen that by changing the concentration of red blood salt, a transmittance curve equivalent to that of the filter shown in FIG. 3 can be provided, and most of the absorption of Hb can be removed.

【0027】次に最適赤血塩濃度を求めるため、赤血塩
液中のフェリシアン化カリウム濃度と試料中のHb濃度
の関係を図5に示す。この図からHbの干渉を回避する
には少なくとも赤血塩濃度として6.6 g/dl 程度が必
要なことがわかる。
Next, in order to determine the optimum red blood salt concentration, the relationship between the potassium ferricyanide concentration in the red blood salt solution and the Hb concentration in the sample is shown in FIG. From this figure, it is understood that at least a red blood salt concentration of about 6.6 g / dl is necessary to avoid Hb interference.

【0028】なお、赤血塩濃度とLA測定感度の関係を
図6に示す。この図より、赤血塩濃度は1 g/dl 付近が
最も高いLA測定感度を得ることがわかる。従って、測
定感度に注目すれば赤血塩濃度は1 g/dl 付近が最適で
あるが、Hbの干渉を考慮すると6.6 g/dl 程度が必
要である。
The relationship between red blood salt concentration and LA measurement sensitivity is shown in FIG. From this figure, it is understood that the LA measurement sensitivity is highest when the red blood salt concentration is around 1 g / dl. Therefore, from the viewpoint of measurement sensitivity, the red blood salt concentration is optimal at around 1 g / dl, but considering Hb interference, about 6.6 g / dl is required.

【0029】<実施例3;血液中の化学成分とヘモグロ
ビン濃度の算出>図7にこの実施例を達成するための装
置の概略図を示す。図7中図1と同じものには同じ番号
が付してある。図7中11´は分光素子(フィルタ)で
これがチョッパに装着されている点が図1と大きく異な
る。チョッパはモータ13で駆動される。14は光量カ
ウンタ、15はCSP/Csp' 演算部、16はCHb演算
部、17は出力部である(但し、CSPは分光素子を配置
したとき(分光光量測定)の測定値、Csp' は分光素子
を配置しなかったとき(非分光光量測定)の測定値、C
HbはHb濃度である)。
<Embodiment 3; Calculation of chemical components in blood and hemoglobin concentration> FIG. 7 shows a schematic view of an apparatus for achieving this embodiment. 7, the same parts as those in FIG. 1 are designated by the same reference numerals. Reference numeral 11 'in FIG. 7 is a spectroscopic element (filter), which is greatly different from that in FIG. The chopper is driven by the motor 13. Reference numeral 14 is a light amount counter, 15 is a C SP / C sp ′ calculation unit, 16 is a C Hb calculation unit, and 17 is an output unit (where C SP is a measured value when a spectroscopic element is arranged (spectral light amount measurement), C sp ' is the measured value when no spectroscopic element is arranged (non-spectral light amount measurement), C
Hb is the Hb concentration).

【0030】なお、光量カウンタ14は、チョッパモー
タ13の回転と同期させて分光光量と非分光光量とを別
々にカウントしており、これらの光量からCSP、Csp'
を演算する。
The light quantity counter 14 separately counts the spectral light quantity and the non-spectral light quantity in synchronization with the rotation of the chopper motor 13, and based on these light quantities, C SP and C sp '.
Is calculated.

【0031】以上の装置の下、次の測定条件で血液中の
グルコース濃度とHb濃度を測定した。 測定試料; 血液 20倍希釈血液 8×10-3
ml 固定化酵素カラム;グルコースオキシダーゼ 緩衝液; NaHPO( 190mg/l)/KHPO
( 160mg/l) (pH=7.5) ルミノール液; ルミノール(26mg/l)/KOH(11g/l)
/ほう酸 (12.4g/l)/NaCl(117g/l) 赤血塩; 0.66g/dl 検出器; 光電子増倍管 分光素子; フィルタV−Y47(保谷硝子製)
Under the above apparatus, the glucose concentration and Hb concentration in blood were measured under the following measurement conditions. Measurement sample; Blood 20 times diluted blood 8 × 10 -3
ml immobilized enzyme column; glucose oxidase buffer solution; Na 2 HPO 4 (190 mg / l) / KH 2 PO 4
(160mg / l) (pH = 7.5) Luminol solution; Luminol (26mg / l) / KOH (11g / l)
/ Boric acid (12.4 g / l) / NaCl (117 g / l) red blood salt; 0.66 g / dl detector; photomultiplier tube spectroscopic element; filter V-Y47 (Hoya Glass)

【0032】図8にグルコースの分析におけるヘモグロ
ビンの干渉を示す。この図より化学発光光量をそのまま
分光せずに測定した場合、グルコースの定量値はHb濃
度に依存して低値を示すことがわかる。一方、分光光量
からグルコースを定量したときには正しい値になるの
で、両者の差からHb濃度を求めることが可能となる。
なお、血液中のグルコース(GLU )濃度とHb濃度の定
量は次の式による。
FIG. 8 shows the interference of hemoglobin in the glucose analysis. From this figure, it can be seen that when the chemiluminescent light quantity is measured as it is without being spectrally separated, the quantitative value of glucose shows a low value depending on the Hb concentration. On the other hand, when glucose is quantified from the amount of spectroscopic light, it becomes a correct value, so that the Hb concentration can be obtained from the difference between the two.
The glucose (GLU) concentration and the Hb concentration in blood are quantified by the following equations.

【0033】(1)キャリブレーション(GLU およびH
b濃度換算係数−KG とKHb−の算出)
(1) Calibration (GLU and H
b concentration conversion coefficient -K G and K Hb - calculation of)

【表1】 Hb濃度換算係数(KHb)は図8の関係からCHb=KHb
(1ーCNG/CDG)が成立し、KHb=CHb/(1ーCNG
/CDG) CNG、CDGは下記参照 (2)血液中のGLU およびHbの定量−非分光光量測定
値:INS,分光光量測定値:IDS [GLU 濃度の測定(CDG)]=KDG(IDS−IDO) ・・・(イ) Hbの定量はCDGと見掛けのGLU 濃度(CNG)から行
う。
[Table 1] From the relationship of FIG. 8, the Hb concentration conversion coefficient (K Hb ) is C Hb = K Hb
(1-C NG / C DG ) holds, and K Hb = C Hb / (1-C NG
/ C DG ) See below for C NG and C DG (2) Quantification of GLU and Hb in blood-non-spectrophotometric measurement value: INS , spectrophotometric measurement value: I DS [GLU concentration measurement (C DG )] = K DG (I DS −I DO ) ... (a) Hb is quantified from C DG and apparent GLU concentration (C NG ).

【0034】 [見掛けのGLU 濃度(CNG)]=KNG(INS−INO) Hb(CHb)は次式から求める。[Apparent GLU concentration (C NG )] = K NG (I NS −I NO ) Hb (C Hb ) is obtained from the following equation.

【0035】 CHb=KHb/(1ーCNG/CDG) ・・・(ロ) (イ)、(ロ)式の値をそれぞれ GLU値、Hb値として
出力する。
C Hb = K Hb / (1−C NG / C DG ) ... (B) The values of the equations (B) and (B) are output as the GLU value and the Hb value, respectively.

【0036】但し、分光素子の性能によって、Hbの干
渉を完全に回避できない場合は、キャリブレーション時
D >ID'となるので、次の式にて GLU値を補正す
る。
However, when the interference of Hb cannot be completely avoided due to the performance of the spectroscopic element, I D > I D ′ at the time of calibration, so the GLU value is corrected by the following equation.

【0037】[真の GLU値]=CDG+b(CDG−CNG) =CDG+ID /ID'(CDG−CNG) b=ID /ID'はキャリブレーション時に算出してお
く。
[True GLU value] = CDG + b ( CDG- CNG ) = CDG + ID / ID ' ( CDG- CNG ) b = ID / ID' is calculated at the time of calibration. Keep it.

【0038】以上の説明は、図7の装置を用いて行った
場合についての説明であるが、例えば図9に示す検出系
を組んでも同様に測定できる。図9は、反応コイル10
から二方向に検出器12、12´を配置して、分光光量
測定用の検出部の前には分光素子11が配置されてい
る。14´は光量カウンタ、15´はCSP演算部、1
5''はCsp' 演算部で、それ以外は図7と同様である。
Although the above description is for the case where the apparatus of FIG. 7 is used, the same measurement can be performed with the detection system shown in FIG. 9, for example. FIG. 9 shows the reaction coil 10.
The detectors 12 and 12 ′ are arranged in two directions from the above, and the spectroscopic element 11 is arranged in front of the detection unit for measuring the amount of spectral light. 14 'is a light quantity counter, 15' is a C SP calculator, 1
5 ″ is a C sp ′ calculation unit, and other than that is the same as in FIG. 7.

【0039】[0039]

【発明の効果】本発明によれば、血清、血漿試料等の前
処理過程で溶血により混入してくるHbの影響を回避で
きる。また、全血試料の分析が可能となり、血清、血漿
を得る為の前処理が不要となり迅速分析できる。さら
に、全血試料を用いて血液中の特定成分とHb濃度が同
時に測定できる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to avoid the influence of Hb mixed by hemolysis in the pretreatment process of serum, plasma sample and the like. In addition, whole blood samples can be analyzed, pretreatment for obtaining serum and plasma is not required, and rapid analysis can be performed. Furthermore, a specific component and Hb concentration in blood can be simultaneously measured using a whole blood sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための装置図1 is an apparatus diagram for carrying out the method of the present invention.

【図2】ルミノールの発光スペクトルFigure 2: Luminol emission spectrum

【図3】ルミノールの発光スペクトル測定に用いたフィ
ルタとHbの透過率曲線を示す図
FIG. 3 is a diagram showing a filter used for measuring an emission spectrum of luminol and a transmittance curve of Hb.

【図4】乳酸測定系試薬中の赤血塩とHbの透過率曲線FIG. 4 Permeability curve of red blood salt and Hb in a reagent for measuring lactate

【図5】赤血塩中のフェリシアン化カリウム濃度と試料
中のHb濃度の関係を示す図
FIG. 5 is a diagram showing the relationship between the concentration of potassium ferricyanide in red blood salt and the concentration of Hb in a sample.

【図6】赤血塩濃度と乳酸測定感度を示す図FIG. 6 is a diagram showing red blood salt concentration and lactate measurement sensitivity.

【図7】血液中の化学成分とHb濃度を算出するための
装置図
FIG. 7 is a device diagram for calculating chemical components and Hb concentration in blood.

【図8】グルコースの分析におけるHbの干渉を示す図FIG. 8 is a diagram showing Hb interference in glucose analysis.

【図9】血液中の化学成分とHb濃度を算出するための
装置の別実施例図
FIG. 9 is a diagram of another embodiment of the apparatus for calculating the chemical composition and Hb concentration in blood.

【符号の説明】[Explanation of symbols]

1…試料カップ 5…固定化酵素カラム 6…ルミノール液溜 8…赤血塩液溜 10…反応コイル 11…分光素子 12…検出器 DESCRIPTION OF SYMBOLS 1 ... Sample cup 5 ... Immobilized enzyme column 6 ... Luminol liquid reservoir 8 ... Red blood salt liquid reservoir 10 ... Reaction coil 11 ... Spectroscopic element 12 ... Detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 血液、血清および血漿試料に酸化酵素を
加えあるいは接触させて励起剤を生成させた後、これに
被励起物質及び触媒を加えて化学発光させて試料中の特
定成分を測定する方法において、 化学発光測定液収容部と検出器の間に試料中のヘモグロ
ビンの吸収を示す450nm以下の波長域の光を透さない
分光素子を配置して化学発光を測定することを特徴とす
る化学発光測定方法。
1. A specific component in a sample is measured by adding or contacting an oxidase to a blood, serum or plasma sample to generate an exciter, and then adding a substance to be excited and a catalyst to chemiluminescence. In the method, a chemiluminescence is measured by disposing a spectroscopic element that does not transmit light in a wavelength range of 450 nm or less showing absorption of hemoglobin in the sample between the chemiluminescence measurement liquid storage part and the detector. Chemiluminescence measurement method.
【請求項2】 血液、血清および血漿試料に酸化酵素を
加えあるいは接触させて励起剤を生成させた後、これに
被励起物質び触媒を加えて化学発光させて試料中の特定
成分を測定する方法において、 触媒の濃度を化学発光の最高感度を得る濃度よりもさら
に濃度をあげて試料中のヘモグロビンの干渉を抑制して
化学発光を測定することを特徴とする化学発光測定方
法。
2. A specific component in a sample is measured by adding or contacting an oxidase to a blood, serum, or plasma sample to generate an exciter, and then adding a substance to be excited or a catalyst thereto and causing chemiluminescence. In the method, a chemiluminescence measuring method is characterized in that the chemiluminescence is measured by further increasing the concentration of the catalyst beyond the concentration at which the highest sensitivity of chemiluminescence is obtained to suppress the interference of hemoglobin in the sample.
【請求項3】 請求項1の方法において、分光素子を配
置したときの測定値と分光素子を配置しなかったときの
測定値を求め、これら両測定値を基に血液中の化学成分
とヘモグロビン濃度を算出することを特徴とする化学発
光測定方法。
3. The method according to claim 1, wherein a measured value when the spectroscopic element is arranged and a measured value when the spectroscopic element is not arranged are obtained, and the chemical components in blood and hemoglobin are obtained based on these both measured values. A method for measuring chemiluminescence, which comprises calculating a concentration.
JP1394693A 1993-01-29 1993-01-29 Method of measuring chemoluminescence Pending JPH06217794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1394693A JPH06217794A (en) 1993-01-29 1993-01-29 Method of measuring chemoluminescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1394693A JPH06217794A (en) 1993-01-29 1993-01-29 Method of measuring chemoluminescence

Publications (1)

Publication Number Publication Date
JPH06217794A true JPH06217794A (en) 1994-08-09

Family

ID=11847376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1394693A Pending JPH06217794A (en) 1993-01-29 1993-01-29 Method of measuring chemoluminescence

Country Status (1)

Country Link
JP (1) JPH06217794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054578A1 (en) * 1997-05-29 1998-12-03 Bio-Rad Laboratories, Inc. Chemiluminescent hemoglobin assay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054578A1 (en) * 1997-05-29 1998-12-03 Bio-Rad Laboratories, Inc. Chemiluminescent hemoglobin assay

Similar Documents

Publication Publication Date Title
CN1114098C (en) Method of optically measuring component in solution
JP3193634B2 (en) LDL cholesterol determination method
EP0315864B1 (en) Denaturant reagents for convenient determination of hemoglobin derivatives in blood
Oda et al. Determination of ultratrace cadmium by laser-induced photoacoustic absorption spectrometry
EP2319937B1 (en) Blood component measurement method utilizing hemolyzed whole blood, and kit for the method
JPH05509399A (en) How to analyze antioxidant capacity
HU195005B (en) Method and apparatus for quantitative determination of hemoglobin in biologic samples
US20080131918A1 (en) Cholesterol Assay
Grand et al. Determination of dissolved zinc in seawater using micro-Sequential Injection lab-on-valve with fluorescence detection
Chang et al. Determination of L-cysteine base on the reversion of fluorescence quenching of calcein by copper (II) ion
JPH09299A (en) Determination of cholesterol in lipoprotein fraction having high specific gravity and determination reagent kit
Kucherenko et al. Novel multiplexed biosensor system for the determination of lactate and pyruvate in blood serum
US20100227348A1 (en) Method and device for determining the concentration of an analyte using fluorescence measurement
Winckers et al. A simple automated determination of glucose in body fluids using an aqueous o-toluidine-acetic acid reagent
US8431410B2 (en) Amine-N-oxide redox indicators for fluorimetric determination of analytes
JPH0666808A (en) Chromogen measurement method
CN109563535B (en) Method for measuring HbA1c
CN109187469A (en) A method of with enzymatic oxidation TMB fluorescence spectrometry glucose
JPH06217794A (en) Method of measuring chemoluminescence
JP2000116400A (en) Quantitative analysis of cholesterol in lipoprotein
JP2934653B2 (en) Automatic analyzer
CN108007922A (en) A kind of kit using luminol chemiluminescence analysis detection glucose
Bright et al. Minimisation of bilirubin interference in the determination of fluorescein using first-derivative synchronous excitation fluorescence spectroscopy
JP3738789B2 (en) Method for measuring Amadori compounds by light scattering
EP0756168A2 (en) Method of measuring amadori compound by light scattering