JPH06217495A - Cooling system for electric rotating machine - Google Patents

Cooling system for electric rotating machine

Info

Publication number
JPH06217495A
JPH06217495A JP364193A JP364193A JPH06217495A JP H06217495 A JPH06217495 A JP H06217495A JP 364193 A JP364193 A JP 364193A JP 364193 A JP364193 A JP 364193A JP H06217495 A JPH06217495 A JP H06217495A
Authority
JP
Japan
Prior art keywords
cooling
electric machine
air
outside air
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP364193A
Other languages
Japanese (ja)
Inventor
Kikuo Fukuchi
喜久夫 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP364193A priority Critical patent/JPH06217495A/en
Publication of JPH06217495A publication Critical patent/JPH06217495A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prolong service life of electric rotating machine by lowering the temperature of cooled inner air in a split space on the flow-out side of outer air defined by partitioning the container for cooler. CONSTITUTION:A partition board 74A is disposed on the flow-out side of outer air 82, i.e., a position shifted to the right on the drawing, thus increasing the volume of a split space 701A on the flow-in side of the outer air 82 as compared with a split space 702A on the flow-out side. When the outer air 82 is fed into the split space 701A to cool the body 1 of electric rotating machine, volume of overheated inner air 81 increases and the temperature thereof increases after cooling. On the contrary, temperature of the inner air 81 lowers after cooling in the split space 702A thus prolonging the service life of the body 1 of electric rotating machine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、全閉外扇形の回転電
機の冷却装置、特に固定子や回転子を冷却するために内
部で循環される内気を外気によって冷却する空気─空気
冷却方式の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a rotating electric machine of a totally enclosed outer fan type, and more particularly, an air-air cooling system for cooling the inside air circulated inside for cooling the stator and the rotor by the outside air. Regarding the device.

【0002】[0002]

【従来の技術】図4は従来の全閉外扇形の回転電機の側
面断面図である。この図において、固定子11と回転子
13とからなる回転電機本体1が鎖線の矢印で流れる方
向を示す内気81によって冷却される。回転子13は回
転軸4に固定されて同期して回転するが、回転軸4の両
側には内部ファン41が固定して取付けられていて、エ
アガイド3によって案内される内気81が回転電機本体
1内に導かれて回転電機本体1を構成するコアやコイル
が冷却される。
2. Description of the Related Art FIG. 4 is a side sectional view of a conventional fully-closed fan-shaped rotating electric machine. In this figure, the rotary electric machine main body 1 including the stator 11 and the rotor 13 is cooled by the inside air 81 which indicates the direction of flow by the chain line arrow. The rotor 13 is fixed to the rotary shaft 4 and rotates synchronously, but the internal fans 41 are fixedly attached to both sides of the rotary shaft 4, and the internal air 81 guided by the air guide 3 is the main body of the rotating electric machine. The cores and coils that are guided into the rotary electric machine main body 1 to be cooled are cooled.

【0003】固定子11と回転子13にはそれぞれ冷却
ダクト12、14が設けられていて、回転子13に設け
られた空気孔15を介して内気81が冷却ダクト14と
その次に冷却ダクト12に流れそれぞれのコア及びコイ
ルが冷却される。固定子11のコイル端部を符号を付さ
ないで図示してあるが、この部分は直接内部ファン41
から中に入った内気81によって冷却される。
The stator 11 and the rotor 13 are provided with cooling ducts 12 and 14, respectively, and inside air 81 is passed through the air holes 15 provided in the rotor 13 to the cooling duct 14 and then to the cooling duct 12. To cool each core and coil. Although the coil end portion of the stator 11 is shown without a reference numeral, this portion is directly connected to the internal fan 41.
It is cooled by the inside air 81 that has entered inside.

【0004】冷却後温度の上がった内気81はエアガイ
ド3に導かれて冷却器7に流入する。冷却器7は回転電
機の上部に設けられているので、回転電機本体1から流
出する内気81は半径方向に放射状に外径側に向かって
流れエアガイド3にしたがって冷却器7に集まる。冷却
器7の容器70の断面形状はファンカバー6を除いて略
長方形で、その中を軸方向に複数の冷却管72が貫通し
ていて、その中を実線の矢印で示す外気82が流れる。
外気82は外部ファン42によって外部から吸引されフ
ァンカバー6に導かれて冷却管72に流入する。図では
冷却管72を2本だけ断面図で示し他は単に二点鎖線で
示しある。当然ながら紙面に直角の方向にも分布して設
けられている。冷却器7内の冷却管72の外の空間には
内気81が主に半径方向に流れる。冷却管72の管壁で
熱が交換されて温度の高い内気81が冷却され温度の低
い外気82の温度が上昇し、過熱した外気82が図の右
側から外部に放出される。冷却された内気81はエアガ
イド3に導かれ内部ファン41に吸引され再び回転電機
本体1内に入る。容器70内の冷却空間71は仕切り板
74によって分割空間701と702との2つの独立し
た空間に分割されている。分割空間701には図の左側
の内部ファン41で循環される内気81が、分割空間7
02には右側ノ内部ファン41で循環される内気81が
それぞれ流れる。また、それぞれの分割空間701,7
02にはそれぞれ案内板731,732によって上部が
連絡した2つの空間に更に分割されていて、回転電機本
体1を冷却した内気81は中央側の空間に入って上昇し
上部で反転して両端側の空間を下降する。
The inside air 81 whose temperature has risen after cooling is guided to the air guide 3 and flows into the cooler 7. Since the cooler 7 is provided in the upper part of the rotating electric machine, the inside air 81 flowing out from the rotating electric machine body 1 radially flows radially toward the outer diameter side and gathers in the cooler 7 along the air guide 3. The container 70 of the cooler 7 has a substantially rectangular cross-sectional shape except for the fan cover 6, a plurality of cooling pipes 72 pass through the container 70 in the axial direction, and the outside air 82 indicated by solid arrows flows through the container 70.
The outside air 82 is sucked from the outside by the external fan 42, guided to the fan cover 6, and flows into the cooling pipe 72. In the figure, only two cooling pipes 72 are shown in a sectional view, and the others are simply shown by a two-dot chain line. As a matter of course, they are distributed in the direction perpendicular to the paper surface. Inside air 81 mainly flows in the radial direction in the space outside the cooling pipe 72 in the cooler 7. Heat is exchanged on the wall of the cooling pipe 72, the high temperature inside air 81 is cooled, the temperature of the low temperature outside air 82 rises, and the overheated outside air 82 is discharged to the outside from the right side of the drawing. The cooled inside air 81 is guided to the air guide 3, sucked by the internal fan 41, and enters the inside of the rotary electric machine body 1 again. The cooling space 71 in the container 70 is divided by a partition plate 74 into two independent spaces 701 and 702. In the divided space 701, the inside air 81 circulated by the internal fan 41 on the left side of the drawing is divided into the divided space 7
Inside air 81 circulated by the right internal fan 41 flows through 02. In addition, the respective divided spaces 701 and 7
02 is further divided into two spaces whose upper parts are connected by guide plates 731 and 732, and the inside air 81 that has cooled the rotating electric machine main body 1 enters the space on the central side and rises, and is inverted at the upper part to both end sides. Down the space.

【0005】[0005]

【発明が解決しようとする課題】ところで、前述の冷却
器7の構成によれば、冷却器7に流入した外気82は先
ず分割空間701内の内気81を冷却して温度が上昇
し、その後に分割空間702の内気81を冷却する。し
たがって、分割空間702の冷却後の内気81の温度
は、分割空間701で内気81を冷却したことによる外
気82の温度上昇した分だけ内気81の温度よりも高く
なる。周知のように、電機機器の寿命は絶縁物の劣化程
度によって決まり、絶縁物の劣化速度は温度が高いほど
速いことから、このような回転電機本体1を冷却する内
気81の冷却後の温度が不平衡あると回転電機の寿命が
短くなるという問題がある。
By the way, according to the structure of the cooler 7 described above, the outside air 82 flowing into the cooler 7 first cools the inside air 81 in the divided space 701 to raise the temperature, and thereafter. The inside air 81 in the divided space 702 is cooled. Therefore, the temperature of the inside air 81 after cooling the divided space 702 becomes higher than the temperature of the inside air 81 by the amount of the temperature increase of the outside air 82 due to the cooling of the inside air 81 in the divided space 701. As is well known, the life of electrical equipment is determined by the degree of deterioration of the insulator, and the rate of deterioration of the insulator is higher as the temperature is higher. Therefore, the temperature of the inside air 81 for cooling the rotating electric machine body 1 after cooling is The imbalance causes a problem that the life of the rotating electric machine is shortened.

【0006】この発明の目的は、このような問題を解決
し、内気の冷却後の温度が均一化されて回転電機の寿命
が長くなる回転電機の冷却装置を提供することにある。
An object of the present invention is to provide a cooling device for a rotary electric machine, which solves such a problem, and which makes the temperature of the internal air after cooling uniform, thereby extending the life of the rotary electric machine.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、回転電機本体の上部に設けられ
た容器、この容器を軸方向に貫通する複数の冷却管、こ
の冷却管を包む容器内の冷却空間及びこの冷却空間を外
気の流入側と流出側との2つの分割空間に分割する仕切
り板からなる冷却器と、回転電機本体を挟んで回転軸の
両側に2つ固定された内部ファンにより回転機本体内の
内気を前記2つの分割空間にそれぞれ強制循環させて冷
却する回転電機の冷却装置において、外気の流入側の分
割空間の容積が流出側の分割空間のそれに対して1より
も大きな所定の比率であるものとし、また、冷却器の断
面形状が長方形であり、仕切り板がこの長方形の外気が
冷却管内を流れる方向に対向する2つの辺に平行で外気
の流出側に偏った位置に設けられてなるものとし、ま
た、冷却器の断面形状が台形状であり、外気の流入側の
辺の長さが流出側のそれに対して1よりも大きな所定の
比率であるものとし、また、前述の冷却器が、仕切り板
が流出側に偏った位置に設けられてなる代わりに、仕切
り板が冷却空間を仕切る主要部と、この主要部とエアガ
イドとの間を接続しエアガイドから流入する内気をそれ
ぞれの分割空間に案内する案内部とで構成され、主要部
が長方形断面の外気が冷却管内を流れる方向の中央部に
配置され、案内部とエアガイドとの接続部が外気の流出
側に偏った位置に設けられなるものとする。
In order to solve the above-mentioned problems, according to the present invention, a container provided on the upper part of a rotating electric machine body, a plurality of cooling pipes penetrating the container in the axial direction, and this cooling pipe. A cooling space inside the container that encloses the space and a cooler that is composed of a partition plate that divides this cooling space into two divided spaces, an inflow side and an outflow side of the outside air, and two fixings on both sides of the rotating shaft with the rotating electric machine main body sandwiched between them. In the cooling device of the rotating electric machine, in which the internal air in the main body of the rotating machine is forcibly circulated in each of the two divided spaces by the internal fan, the volume of the divided space on the inflow side of the outside air is different from that of the divided space on the outflow side. The cross-sectional shape of the cooler is rectangular, and the partition plate is parallel to two sides of the rectangular outside air that are opposed to the direction in which the outside air flows in the cooling pipe and the outside air flows out. Biased to the side The cross-sectional shape of the cooler is trapezoidal, and the length of the side on the inflow side of the outside air is a predetermined ratio larger than 1 with respect to that on the outflow side. Further, instead of the cooler described above in which the partition plate is provided in a position biased to the outflow side, the partition plate connects the main part that partitions the cooling space and the air guide by connecting this main part and the air guide. It is composed of a guide part that guides the inside air flowing in from each of the divided spaces, and the main part is located in the central part in the direction in which the outside air of rectangular cross section flows in the cooling pipe, and the connecting part between the guide part and the air guide is the outside air. It should be provided at a position biased to the outflow side of.

【0008】[0008]

【作用】この発明の構成において、冷却器を仕切り板に
よって分割された2つの分割空間のうちの外気の流入側
の分割空間を、もう流出側の分割空間よりも容積を大き
くすることによって、回転電機本体を冷却して過熱した
内気がこの容積の大きな方の分割空間に流入する量が増
加するか冷却効果が低下するので、結果的に冷却後の内
気の温度が高くなる。逆に容積の小さい側の分割空間で
は冷却後の内気の温度が低くなる。その結果、外気の温
度差による外気の流入側と流出側との分割空間での冷却
後の内気の温度差が補償されて小さくなり、2つの分割
空間の容積の比率を適切に設定することによって、この
温度差を実質的に一致させることができる。
In the structure of the present invention, of the two divided spaces of the cooler divided by the partition plate, the divided space on the inflow side of the outside air is made larger in volume than the divided space on the outflow side to rotate. The amount of the inside air that has been overheated by cooling the electric machine body flowing into the divided space having the larger volume increases or the cooling effect decreases, so that the temperature of the inside air after cooling rises. On the contrary, in the divided space having the smaller volume, the temperature of the inside air after cooling becomes low. As a result, the temperature difference of the inside air after cooling in the divided space between the inflow side and the outflow side of the outside air due to the temperature difference of the outside air is compensated and becomes small, and by appropriately setting the ratio of the volumes of the two divided spaces. The temperature difference can be substantially matched.

【0009】また、仕切り板を、長方形の軸方向に対向
する2つの辺に平行で外気の流出側に偏った位置に設け
ることによって、従来の断面形状が長方形の冷却器に対
して容易に2つの分割空間の容積の比率を変えるととも
に、流入する内気の量が容積の大きな方が多くなること
から、この分割容器内での交換熱量が増大して冷却後の
温度が高くなり、容積の小さな方の温度が低くなる。
Further, by providing the partition plate at a position parallel to the two sides of the rectangular shape which are opposed to each other in the axial direction and biased to the outflow side of the outside air, the conventional cooling device having a rectangular sectional shape can be easily provided. As the volume ratio of the two divided spaces is changed and the amount of the inflowing air increases with the volume, the amount of heat exchanged in this divided container increases and the temperature after cooling rises. The temperature of one side becomes low.

【0010】また、冷却器の断面形状を台形状にし、外
気の流出側の辺の長さに対する流入側の辺の長さの比率
を1よりも大きくして外気の流入側の分割空間の容積を
流出側の分割空間の容積よりも大きくすることによっ
て、容積の大きな分割空間内の内気の流速が小さくなる
ので冷却効果が低下し冷却後の内気の温度が高くなり、
逆に容積の小さな分割空間の冷却後の内気の温度が低く
なる。
Further, the cross-sectional shape of the cooler is made trapezoidal, and the ratio of the length of the side on the inflow side to the length of the side on the outflow side of the outside air is made larger than 1 to make the volume of the divided space on the inflow side of the outside air. By increasing the volume of the divided space on the outflow side, the flow velocity of the inside air in the divided space having a large volume is reduced, so that the cooling effect decreases and the temperature of the inside air after cooling increases.
On the contrary, the temperature of the inside air after cooling the divided space having a small volume becomes low.

【0011】また、前述の断面が長方形の冷却器の仕切
り板を偏った位置に設ける代わりに、仕切り板を冷却空
間を仕切る主要部と案内部とで構成し、主要部を従来通
り長方形断面の軸方向の中央部に配置し、案内部のエア
ガイドとの接続部を外気の流出側に偏った位置に設ける
ことによって、外気の流入側の分割空間には流出側の分
割空間に比べてより多くの内気が流入するので熱交換量
が増大し冷却された内気の温度は高くなる。逆に流出側
の分割空間では熱交換量が減少して冷却された内気の温
度が低くなる。
Further, instead of disposing the partition plate of the cooler having a rectangular cross section at an eccentric position, the partition plate is composed of a main part for partitioning the cooling space and a guide part, and the main part has a rectangular cross section as usual. By arranging it in the central part in the axial direction and providing the connecting part of the guide part with the air guide at a position biased to the outflow side of the outside air, the divided space on the inflow side of the outside air is more Since a large amount of inside air flows in, the amount of heat exchange increases and the temperature of the cooled inside air rises. On the contrary, in the divided space on the outflow side, the amount of heat exchange decreases and the temperature of the cooled inside air becomes low.

【0012】[0012]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の第1の実施例を示す全閉外扇形の回転
電機の要部側面断面図であり、図4と同じ部材について
は共通の符号を付け、類似のものには添字Aを付けて適
宜詳しい説明を省く。また、回転電機本体1の一部を残
して省略してある図の下部は図4と全く同じ構成であ
る。この図において、図4との違いは仕切り板74Aを
図の右方向である外気82の流出側に近い位置に偏って
設けたことである。その結果、左側の分割空間701A
は大きくなり、右側の分割空間702Aは小さくなって
これら2つの分割空間の容積が変わる。更に、回転電機
本体1からエアガイド3を介して冷却器7Aに流入する
内気81の量は分割空間701Aの方が多い。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a side sectional view of a main part of a fully-enclosed fan-shaped rotating electric machine showing a first embodiment of the present invention. The same members as those in FIG. And omit detailed explanations as appropriate. Further, the lower part of the drawing, which is omitted while leaving a part of the rotary electric machine main body 1, has the same configuration as that of FIG. In this figure, the difference from FIG. 4 is that the partition plate 74A is provided near the outflow side of the outside air 82, which is the right direction in the figure. As a result, the left divided space 701A
Becomes larger and the right divided space 702A becomes smaller, and the volumes of these two divided spaces change. Further, the amount of the inside air 81 flowing into the cooler 7A from the rotary electric machine body 1 via the air guide 3 is larger in the divided space 701A.

【0013】ところで、内気81の流入量が多いという
ことは分割空間701A内での熱交換量が大きいという
ことであり、その結果分割空間701Aでの冷却後の内
気の温度は図4の従来のものよりも高くなる。逆に、分
割空間702Aでは冷却後の内気の温度が低くなる。前
述のように従来の冷却器では分割空間702の内気の冷
却後の温度は分割空間701のそれよりも高くなるとい
う傾向にあったので、前述のように仕切り板74Aの位
置を外気の流出側に偏って設けることによって外気温度
の差による内気の冷却後の温度の差を補償してその値を
小さくすることができ、仕切り板74Aを設ける位置を
適切に設定することによってこの温度差を実質的になく
すことが可能である。内気の冷却後の温度に違いがある
ときには、高いの方の温度によって回転電機の寿命が決
まることになるから、高い方の温度を低くすることによ
って寿命が長くなるという効果が得られる。そして両方
の温度差をなくしたときが高い方の温度を最も低くする
ことができることになるので、このときが寿命が最も長
い場合ということになる。
By the way, the fact that the inflow amount of the inside air 81 is large means that the heat exchange amount in the divided space 701A is large. As a result, the temperature of the inside air after cooling in the divided space 701A is the same as that in the conventional case of FIG. It will be higher than the one. On the contrary, in the divided space 702A, the temperature of the inside air after cooling becomes low. As described above, in the conventional cooler, the temperature of the inside air in the divided space 702 after cooling tends to be higher than that in the divided space 701. Therefore, as described above, the position of the partition plate 74A is set to the outside air outflow side. The temperature difference after cooling the inside air due to the difference in the outside air temperature can be compensated for by reducing the value, and this temperature difference can be substantially reduced by appropriately setting the position where the partition plate 74A is provided. It is possible to eliminate it. When there is a difference in the temperature of the inside air after cooling, the life of the rotating electric machine is determined by the higher temperature, and therefore the life is extended by lowering the higher temperature. When the temperature difference between the two is eliminated, the higher temperature can be the lowest, and this is the case where the life is longest.

【0014】図2はこの発明の第2の実施例を示す全閉
外扇形の回転電機の要部側面断面図であり、図1と同じ
部材については共通の符号を付け、類似のものには添字
Bを付けて適宜詳しい説明を省く。この図の図1との違
いは、仕切り板74Bのエアガイド3との接続位置を外
気の流出側に偏った位置に設けたことであり、冷却空間
71Bを左右に仕切る仕切り板74Bの主要部741は
従来の図4と同じ中央位置のままにし、代わりに主要部
742とエアガイド3との間をつなぐ案内部742のエ
アガイド3との接続部の位置を外気の流出側に偏らせた
ことである。そのために案内部7は図示のように斜めに
配置されることになる。このようにすることによって、
回転電機本体1からエアガイド3を介して冷却空間71
Bに流入する冷却前の内気は、分割空間701Bの方に
より多く流入することになる。その結果、図1の場合と
同様に、分割空間701Bでの冷却後の内気の温度が高
くなり、逆に分割空間702Bでの冷却後の内気の温度
が低くなって、外気の温度差による内気の冷却後の温度
差が補償されて前述のと同様の効果が得られる。
FIG. 2 is a side sectional view of a main part of a fully-closed outer fan type rotary electric machine showing a second embodiment of the present invention. The same members as those in FIG. Add B to omit detailed explanations as appropriate. The difference from FIG. 1 of this figure is that the connection position of the partition plate 74B with the air guide 3 is provided at a position biased to the outflow side of the outside air, and the main part of the partition plate 74B that partitions the cooling space 71B into the left and right sides. The position of 741 is kept at the same central position as in FIG. 4 of the related art, and instead, the position of the connecting portion of the guide portion 742 connecting the main portion 742 and the air guide 3 to the air guide 3 is biased to the outflow side of the outside air. That is. Therefore, the guide portion 7 is arranged obliquely as shown in the figure. By doing this,
Cooling space 71 from rotating electric machine body 1 via air guide 3
A large amount of the inside air that has flowed into B before cooling flows into the divided space 701B. As a result, as in the case of FIG. 1, the temperature of the inside air after cooling in the divided space 701B becomes higher, and conversely, the temperature of the inside air after cooling in the divided space 702B becomes lower, and the inside air due to the temperature difference between the outside air becomes The temperature difference after cooling is compensated and the same effect as described above is obtained.

【0015】図3はこの発明の第3の実施例を示す全閉
外扇形の回転電機の要部側面断面図であり、図1や図2
と同じ部材については共通の符号を付け、類似のものに
は添字Cを付けて適宜詳しい説明を省く。この図におい
て、冷却器7Cの容器70Cの断面形状は図の左側の外
気の流入側の辺が大きく流出側の辺が小さな台形になっ
ていて、多数の冷却管72は容器70Cの図の上下の辺
の延長線が右側で交わる点に交わるような線におおよそ
平行になるように配置されている。仕切り板74Cは従
来の図4と同様に中央位置に設けてある。したがって、
図の上下寸法が分割空間702Cに比べて分割空間70
1Cの方が大きいことによって容積が大きくなる。仕切
り板74Cのエアダクト3との接続位置も図4のそれと
同じなので分割空間701Cと分割空間702Cとで流
入する内気81の量は同じである。一方、容積の違いか
ら分割空間701C内の内気81の流速が小さくなるこ
とから冷却管72の表面での熱伝達係数が小さくなって
冷却効果が低下し、結果的に冷却後の内気の温度が高く
なる。分割空間702Cでは逆に冷却後の内気の温度が
低くなり、前述の2つ実施例と同様に外気の温度差によ
る冷却後の内気の温度の差が補償されて寿命が長くなる
という同様の効果を得ることができる。
FIG. 3 is a side sectional view of a main part of a fully-enclosed outer fan type rotary electric machine showing a third embodiment of the present invention.
The same members are designated by the same reference numerals, and the similar members are denoted by the subscript C, and a detailed description thereof is appropriately omitted. In this figure, the vessel 70C of the cooler 7C has a trapezoidal cross-sectional shape on the left side of the figure with a large outside air inflow side and a small outflow side side, and a large number of cooling pipes 72 are shown above and below the vessel 70C in the figure. The extension line of the side of is arranged so as to be approximately parallel to a line that intersects with the intersection point on the right side. The partition plate 74C is provided at the central position as in FIG. 4 of the related art. Therefore,
The vertical dimension of the figure is smaller than that of the divided space 702C.
The larger 1C results in a larger volume. The connection position of the partition plate 74C with the air duct 3 is also the same as that in FIG. 4, so the amount of the inside air 81 flowing into the divided spaces 701C and 702C is the same. On the other hand, since the flow velocity of the inside air 81 in the divided space 701C is reduced due to the difference in volume, the heat transfer coefficient on the surface of the cooling pipe 72 is reduced, the cooling effect is reduced, and as a result, the temperature of the inside air after cooling is reduced. Get higher In the divided space 702C, on the contrary, the temperature of the inside air after cooling becomes low, and the same effect that the difference in the temperature of the inside air after cooling due to the temperature difference of the outside air is compensated for and the life is extended similarly to the two embodiments described above. Can be obtained.

【0016】[0016]

【発明の効果】この発明は前述のように、外気の流入側
の分割空間をもう一方の分割空間よりも容積を大きくす
ることによって、過熱した内気がこの分割空間に流入す
る量が増加するか冷却効果が低下するので、結果的に冷
却後の内気の温度が高くなる。逆に容積の小さい側の分
割空間では冷却後の内気の温度が低くなる。その結果、
外気の温度差による外気の流入側と流出側の分割空間で
の冷却後の内気の温度の差が補償されて小さくなり、2
つの分割空間の容積の比率を適切に設定することによっ
て、この温度差を実質的に一致させることができる。そ
のため、回転電機の寿命を決めていた流出側の分割空間
の冷却後の内気の高かった温度が低くなって寿命が長く
なるという効果が得られる。
As described above, according to the present invention, by increasing the volume of the divided space on the outside air inflow side compared to the other divided space, is it possible to increase the amount of the overheated inside air flowing into this divided space? Since the cooling effect is lowered, the temperature of the inside air after cooling is consequently increased. On the contrary, in the divided space having the smaller volume, the temperature of the inside air after cooling becomes low. as a result,
The difference in the temperature of the inside air after cooling in the divided space on the inflow side and the outflow side of the outside air due to the temperature difference of the outside air is compensated and becomes small.
By appropriately setting the ratio of the volumes of the two divided spaces, this temperature difference can be substantially matched. Therefore, there is an effect that the temperature of the inside air after cooling the divided space on the outflow side, which has determined the life of the rotary electric machine, is lowered, and the life is extended.

【0017】また、仕切り板を、長方形の軸方向に対向
する2つの辺に平行で外気の流出側に偏った位置に設け
ることによって、従来の断面形状が長方形の冷却器に対
して容易に2つの分割空間の容積の比率を変えた構造を
採用することができ、そのために前述の効果を容易に得
ることができる。また、冷却器の断面形状を台形状に
し、外気の流入側の辺の長さに対する流出側の辺の長さ
の比率を1よりも小さくして外気の流入側の分割空間の
容積を流出側の分割空間の容積よりも小さくすることに
よっても前述と同じ効果を得ることができる。
Further, by providing the partition plate at a position parallel to the two sides of the rectangular shape which are opposed to each other in the axial direction and biased to the outflow side of the outside air, the conventional cooling device having a rectangular sectional shape can be easily provided. A structure in which the ratio of the volumes of the two divided spaces is changed can be adopted, and therefore the above-mentioned effects can be easily obtained. Further, the cross-sectional shape of the cooler is trapezoidal, and the ratio of the length of the side on the outflow side to the length of the side on the outflow side of the outside air is smaller than 1 to reduce the volume of the divided space on the inflow side of the outside air to the outflow side. The same effect as described above can be obtained by making the volume smaller than the volume of the divided space.

【0018】また、前述の断面が長方形の冷却器の仕切
り板を偏った位置に設ける代わりに、仕切り板を冷却空
間を仕切る主要部と案内部とで構成し、主要部を従来通
り長方形断面の軸方向の中央部に配置し、案内部のエア
ガイドとの接続部を外気の流出側に偏った位置に設ける
ことによって、流出側の分割空間には流入側の分割空間
に比べてより多くの内気が流入するので熱交換量が増大
して冷却された内気の温度は高くなり、逆に流出側の分
割空間では熱交換量が低下して冷却された内気の温度が
低くなり、結果的に前述と同じように外気の温度差を補
償することができ、その結果回転電機本体寿命が長くな
るという同様の効果が得られる。
Further, instead of disposing the partition plate of the cooler having a rectangular cross section at an eccentric position, the partition plate is composed of a main part for partitioning the cooling space and a guide part, and the main part has a rectangular cross section as usual. By arranging in the central part in the axial direction and arranging the connecting part of the guide part with the air guide in a position biased to the outflow side of the outside air, the outflow side divided space has a larger number of parts than the inflow side divided space. Since the inside air flows in, the amount of heat exchange increases and the temperature of the cooled inside air rises.On the contrary, in the divided space on the outflow side, the amount of heat exchange decreases and the temperature of the cooled inside air decreases, resulting in Similar to the above, the temperature difference of the outside air can be compensated, and as a result, the same effect that the life of the rotating electric machine main body is extended can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例である全閉外扇形の回
転電機の要部側面断面図
FIG. 1 is a side sectional view of a main part of a fully-closed fan-shaped rotating electric machine according to a first embodiment of the present invention.

【図2】この発明の第2の実施例である全閉外扇形の回
転電機の要部側面断面図
FIG. 2 is a side sectional view of a main part of a fully-closed fan-shaped rotating electric machine according to a second embodiment of the present invention.

【図3】この発明の第3の実施例である全閉外扇形の回
転電機の要部側面断面図
FIG. 3 is a side sectional view of a main part of a fully-enclosed outer fan type rotary electric machine according to a third embodiment of the present invention.

【図4】図4は従来の全閉外扇形の回転電機の側面断面
FIG. 4 is a side sectional view of a conventional fully-closed fan-shaped rotating electric machine.

【符号の説明】[Explanation of symbols]

1 回転電機本体 3 エアガイド 4 回転軸 41 内部ファン 42 外部ファン 7A 冷却器 70A 冷却空間 71A 冷却空間 701A 分割空間 702A 分割空間 72 冷却管 74A 仕切り板 7B 冷却器 70B 容器 71B 冷却空間 701B 分割空間 702B 分割空間 74B 仕切り板 7C 冷却器 70C 容器 71C 冷却空間 701C 分割空間 702C 分割空間 74C 仕切り板 81 内気 82 外気 1 Rotating Electric Machine Main Body 3 Air Guide 4 Rotating Shaft 41 Internal Fan 42 External Fan 7A Cooler 70A Cooling Space 71A Cooling Space 701A Divided Space 702A Divided Space 72 Cooling Tube 74A Partition Plate 7B Cooler 70B Container 71B Cooling Space 701B Divided Space 702B Space 74B Partition plate 7C Cooler 70C Container 71C Cooling space 701C Divided space 702C Divided space 74C Partition plate 81 Inside air 82 Outside air

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】回転電機本体の上部に設けられた容器、こ
の容器を軸方向に貫通する複数の冷却管、この冷却管を
包む容器内の冷却空間及びこの冷却空間を外気の流入側
と流出側との2つの分割空間に分割する仕切り板からな
る冷却器と、回転電機本体を挟んで回転軸の両側に2つ
固定された内部ファンにより回転機本体内の内気を前記
2つの分割空間にそれぞれ強制循環させて冷却する回転
電機の冷却装置において、 外気の流入側の分割空間の容積が流出側の分割空間のそ
れに対して1よりも大きな所定の比率であることを特徴
とする回転電機の冷却装置。
1. A container provided on an upper part of a rotating electric machine main body, a plurality of cooling pipes penetrating the container in an axial direction, a cooling space inside the container that encloses the cooling pipes, and an outside air inflow side and an outflow side of the cooling space. The inside air in the main body of the rotating machine is divided into the two divided spaces by a cooler composed of a partition plate that divides the rotary electric machine into two divided spaces, and two internal fans that are fixed on both sides of the rotating shaft with the rotating electric machine main body sandwiched therebetween. In a cooling device for a rotating electric machine that is forcedly circulated and cooled, the volume of the divided space on the inflow side of the outside air has a predetermined ratio larger than 1 with respect to that of the divided space on the outflow side. Cooling system.
【請求項2】冷却器の断面形状が長方形であり、仕切り
板がこの長方形の外気が冷却管内を流れる方向に対向す
る2つの辺に平行で外気の流出側に偏った位置に設けら
れてなることを特徴とする請求項1記載の回転電機の冷
却装置。
2. The cooler has a rectangular cross-sectional shape, and a partition plate is provided at a position parallel to two sides of the rectangular outside air which face each other in the direction in which the outside air flows in the cooling pipe and which is biased toward the outflow side of the outside air. The cooling device for a rotating electric machine according to claim 1, wherein:
【請求項3】冷却器の断面形状が台形状であり、外気の
流入側の辺の長さが流出側のそれに対して1よりも大き
な所定の比率であることを特徴とする請求項1記載の回
転電機の冷却装置。
3. The cooler has a trapezoidal cross-sectional shape, and the length of the side on the inflow side of the outside air is a predetermined ratio larger than 1 with respect to that on the outflow side. Cooling device for rotating electric machine.
【請求項4】請求項2記載の回転電機の冷却装置の冷却
器が、仕切り板が流出側に偏った位置に設けられてなる
代わりに、仕切り板が冷却空間を仕切る主要部と、この
主要部とエアガイドとの間を接続しエアガイドから流入
する内気をそれぞれの分割空間に案内する案内部とで構
成され、主要部が長方形断面の外気が冷却管内を流れる
方向の中央部に配置され、案内部とエアガイドとの接続
部が外気の流出側に偏った位置に設けられなることを特
徴とする回転電機の冷却装置。
4. The cooler of the cooling device for a rotary electric machine according to claim 2, wherein the partition plate is provided at a position biased to the outflow side, and the partition plate partitions the cooling space and a main part of the cooling plate. And a guide part that connects the air guide and the inside air that flows in from the air guide to the respective divided spaces, and the main part is arranged in the central part in the direction in which the outside air having a rectangular cross section flows in the cooling pipe. A cooling device for a rotary electric machine, wherein a connecting portion between the guide portion and the air guide is provided at a position biased to an outside air outflow side.
JP364193A 1993-01-13 1993-01-13 Cooling system for electric rotating machine Pending JPH06217495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP364193A JPH06217495A (en) 1993-01-13 1993-01-13 Cooling system for electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP364193A JPH06217495A (en) 1993-01-13 1993-01-13 Cooling system for electric rotating machine

Publications (1)

Publication Number Publication Date
JPH06217495A true JPH06217495A (en) 1994-08-05

Family

ID=11563114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP364193A Pending JPH06217495A (en) 1993-01-13 1993-01-13 Cooling system for electric rotating machine

Country Status (1)

Country Link
JP (1) JPH06217495A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109549A (en) * 2004-10-01 2006-04-20 Hitachi Ltd Permanent magnet dynamo-electric machine and wind force power generating system
JP2006246603A (en) * 2005-03-03 2006-09-14 Hitachi Ltd Rotary electric machine
JP2011148331A (en) * 2010-01-19 2011-08-04 Toyota Central R&D Labs Inc In-wheel motor
CN107565755A (en) * 2017-10-18 2018-01-09 江苏兆胜科技股份有限公司 A kind of permanent magnet direct driving motor hollow cooler
CN109494932A (en) * 2018-10-08 2019-03-19 哈尔滨理工大学 A kind of cooler of electric motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109549A (en) * 2004-10-01 2006-04-20 Hitachi Ltd Permanent magnet dynamo-electric machine and wind force power generating system
JP4572647B2 (en) * 2004-10-01 2010-11-04 株式会社日立製作所 Permanent magnet rotating electrical machine and wind power generation system
JP2006246603A (en) * 2005-03-03 2006-09-14 Hitachi Ltd Rotary electric machine
JP4561408B2 (en) * 2005-03-03 2010-10-13 株式会社日立製作所 Rotating electric machine
JP2011148331A (en) * 2010-01-19 2011-08-04 Toyota Central R&D Labs Inc In-wheel motor
CN107565755A (en) * 2017-10-18 2018-01-09 江苏兆胜科技股份有限公司 A kind of permanent magnet direct driving motor hollow cooler
CN107565755B (en) * 2017-10-18 2023-11-03 江苏兆胜科技股份有限公司 Permanent magnet direct-drive motor air-air cooler
CN109494932A (en) * 2018-10-08 2019-03-19 哈尔滨理工大学 A kind of cooler of electric motor

Similar Documents

Publication Publication Date Title
KR101004122B1 (en) Rotary electric machine
JPS5952622B2 (en) gas cooled electric machine
JP2001145302A (en) Motor cooler
JPH0819218A (en) Cooling structure for rotating electric machine
US6359350B1 (en) Rotary electric machine
US3995180A (en) Generator rotor outlets for increased ventilation
JP4576309B2 (en) Rotating electric machine
JPH06217495A (en) Cooling system for electric rotating machine
JP2016093014A (en) Fully closed rotary electric machine
JP2020156264A (en) Rotary electric machine and rotor shaft
JP2018125904A (en) Totally-enclosed fan-cooled motor
JP2012244659A (en) Stator structure of rotary electric machine
JP6983136B2 (en) Fully enclosed fan-shaped rotary electric machine and outside air fan set
JPS63245239A (en) Rotor for induction motor
CN109599979B (en) Totally-enclosed rotating electrical machine and cooler
CN112072855B (en) Motor
JP6246388B2 (en) Rotating electric machine
JPH09154254A (en) Totally-enclosed main motor for vehicle
JPH0823661A (en) Cooling structure for totally-enclosed fan-cooled motor
JPH10174370A (en) Totally enclosed fan-cooled air-cooled heat exchanger type dynamo-electric machine
JP6586436B2 (en) Rotating electric machine and its rotor
SU1171908A1 (en) Electric machine
CN212627373U (en) Cross internal circulation cooling structure of closed box type motor
KR100549821B1 (en) Tightly closed and air cooled moter
CN211957392U (en) Transformer and transformer winding thereof