JPH0621721B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH0621721B2
JPH0621721B2 JP60157611A JP15761185A JPH0621721B2 JP H0621721 B2 JPH0621721 B2 JP H0621721B2 JP 60157611 A JP60157611 A JP 60157611A JP 15761185 A JP15761185 A JP 15761185A JP H0621721 B2 JPH0621721 B2 JP H0621721B2
Authority
JP
Japan
Prior art keywords
pressure
evaporator
low
refrigerant
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60157611A
Other languages
Japanese (ja)
Other versions
JPS6217569A (en
Inventor
敬 滝沢
努 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60157611A priority Critical patent/JPH0621721B2/en
Publication of JPS6217569A publication Critical patent/JPS6217569A/en
Publication of JPH0621721B2 publication Critical patent/JPH0621721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は低温ショーケース、冷蔵庫、空気調和機に使用
される冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigerating apparatus used in a low temperature showcase, a refrigerator, an air conditioner.

(ロ) 従来の技術 特開昭57−67771号公報(F25D21/06)
には、ケース本体の外箱と内箱との間に各独立形成した
内外2層のインナダクトおよびアムタダクトにそれぞれ
蒸発器およびファンを収設し、かつ前記両蒸発器を減圧
素子とともに直列にして凝縮ユニットへ接続するととも
に、凝縮ユニットから見て冷凍サイクルの上流側蒸発器
の減圧素子および下流側蒸発器にそれぞれバイパス弁付
きのバイパス回路を並列接続して成り、前記各バイパス
弁を交互に切換えることにより、上流側蒸発器の冷却運
転時に下流側蒸発器をオフサイクル除霜し、下流側蒸発
器の冷却運転時には上流側蒸発器を液冷媒の顕熱で除霜
するようにしたことを特徴とする冷蔵ショーケースが開
示されている。
(B) Prior art JP-A-57-67771 (F25D21 / 06)
, An evaporator and a fan are housed respectively in the inner and outer two-layer inner duct and amta duct formed independently between the outer and inner boxes of the case body, and both evaporators and decompression elements are connected in series to condense. A bypass circuit with a bypass valve is connected in parallel to the pressure reducing element and the downstream evaporator of the upstream evaporator of the refrigeration cycle as seen from the condensing unit, and the bypass valves are alternately switched. Thus, the downstream evaporator is off-cycle defrosted during the cooling operation of the upstream side evaporator, and the upstream side evaporator is defrosted by the sensible heat of the liquid refrigerant during the cooling operation of the downstream side evaporator. A refrigerated showcase is disclosed.

(ハ) 発明が解決しようとする問題点 上記従来の技術では、上流側、下流側両蒸発器が直列に
接続されているため、下流側蒸発器から上流側蒸発器に
冷却運転を切り替えた際には、上流側蒸発器内の残留液
冷媒が圧縮機に多量に戻り、所謂液のパックで圧縮機が
破損する恐れがある等の問題点が生じた。
(C) Problems to be Solved by the Invention In the above conventional technique, since both the upstream side and the downstream side evaporators are connected in series, when the cooling operation is switched from the downstream side evaporator to the upstream side evaporator. However, a large amount of residual liquid refrigerant in the upstream evaporator returns to the compressor, which may cause damage to the compressor due to so-called liquid pack.

(ニ)問題点を解決するための手段 本発明は上記問題点を解決するために、冷媒圧縮機と凝
縮器とをつなぐ高圧ガス管と、蒸発器と冷媒圧縮機とを
つなぐ低圧ガス管とを容量調整回路で接続すると共に、
この容量調整回路には、蒸発器の除霜並びにポンプダウ
ン両運転時に開放される電磁弁と、この両運転時に低圧
ガス管内の冷媒の圧力によって開閉度が調整されこの冷
媒圧力の低下時に高圧ガス管内のホットガスの一部を低
圧ガス管に導くための容量調整弁とを備えるようにした
ものである。
(D) Means for Solving Problems In order to solve the above problems, the present invention provides a high-pressure gas pipe connecting a refrigerant compressor and a condenser, and a low-pressure gas pipe connecting an evaporator and a refrigerant compressor. Is connected with a capacitance adjustment circuit,
This capacity adjustment circuit has a solenoid valve that is opened during both defrosting of the evaporator and pump down operation, and the opening / closing degree is adjusted by the pressure of the refrigerant in the low pressure gas pipe during both operations, and the high pressure gas is reduced when this refrigerant pressure decreases. A capacity control valve for guiding a part of the hot gas in the pipe to the low pressure gas pipe is provided.

(ホ)作用 蒸発器の除霜並びにポンプダウン両運転時に、電磁弁は
開放され、且つこの除霜運転時において低圧ガス管内の
冷媒の圧力が低下した時には、その圧力低下に応じて自
動的に容量調整弁の開閉度が調整され高圧ガス管内のホ
ットガスの一部を容量調整回路を介して低圧ガス管に導
き、低圧ガス管の冷媒圧力を上昇させて、所定の圧力以
上に維持させる所謂低圧補償を付与する作用をおこな
う。またポンプダウン運転時において、低圧ガス管を流
れる気液混合状態の冷媒の圧力が低下した時には、この
圧力低下に応じて自動的に容量調整弁が開いてホットガ
スを低圧ガス管に供給してこの低圧ガス管の冷媒圧力を
上昇させると共に、気液混合状態の冷媒中の液相を蒸発
させ、冷媒圧縮機に液冷媒が戻りにくくしている。
(E) Action The solenoid valve is opened during both defrosting and pump down operation of the evaporator, and when the pressure of the refrigerant in the low pressure gas pipe drops during this defrosting operation, it automatically responds according to the pressure drop. The degree of opening and closing of the capacity control valve is adjusted so that a part of the hot gas in the high-pressure gas pipe is guided to the low-pressure gas pipe via the capacity control circuit to raise the refrigerant pressure in the low-pressure gas pipe and maintain it above a predetermined pressure. It acts to provide low voltage compensation. Also, during pump down operation, when the pressure of the refrigerant in the gas-liquid mixed state flowing through the low pressure gas pipe drops, the capacity adjustment valve automatically opens in response to this pressure drop and hot gas is supplied to the low pressure gas pipe. The refrigerant pressure in the low-pressure gas pipe is increased and the liquid phase in the gas-liquid mixed refrigerant is evaporated to make it difficult for the liquid refrigerant to return to the refrigerant compressor.

(ヘ)実施例 第9図に示す(1)は前面に商品の収納及び取出用の開口
(3)を形成した断熱壁(2)にて本体を構成してなる開放形
の低温ショーケースで、前記断熱壁の内壁より適当間隔
を存して後述する内層側に開く第1ダンパ(4A)、後述す
る外層側に開く第2ダンパ(4B)及びこの両ダンパには夫
々閉塞される第1及び第2両窓(4C)(4D)を備えた断熱性
の第1区画板(4)を配設してプレートフィン型の外層用
蒸発器(5)と軸流型の外層用送風機(6)とを配置する外層
(7)と、前記開口の上縁に沿って位置する外層用吹出口
(8)と、前記開口の下縁に沿って位置し、前記外層用吹
出口に相対向する外層用吸込口(9)とを形成し、又前記
第1区画板の内壁より適当間隔を存して金属製の第2区
画板(10)を配設してプレートフィン型の内層用蒸発器(1
1)と軸流型の内層用送風機(12)とを配置する内層(13)
と、前記開口の上縁で且つ外層用吹出口(8)の内方に並
設された内層用吹出口(14)と、前記開口の下縁で外層用
吸込口(9)の内方に並設され、前記内層用吹出口に相対
向する内層用吸込口(15)と、複数段の棚(16)を配置した
貯蔵室(17)とを形成している。前記第1、第2両ダンパ
は熱絶縁材、例えば樹脂からなる板状のものであり、第
1ダンパ(4A)は第2ダンパ(4B)から見て循環空気の流れ
方向上流側に設けられており、開放時その先端が第2区
画板(10)の外壁に当接することが好ましく、又第2ダン
パ(4B)は開放時その先端が断熱壁(2)の内壁に当接乃至
近接することが好ましい。前記外層用蒸発器は第1、第
2両ダンパ(4A)(4B)間に位置する様、外層(5)内に配置
されており、又内層用蒸発器(11)は第1ダンパ(4A)から
みて循環空気の流れ方向上流柄となる位置に配置されて
いる。尚、前記第1、第2両ダンパはギヤモータ、シリ
ンダー等を利用した1個の駆動装置(M)によって双方同
時に開閉されるものである。
(F) Example (1) shown in Fig. 9 has an opening on the front for storing and taking out products.
An open type low temperature showcase in which a main body is composed of a heat insulating wall (2) forming (3), and a first damper (4A) which opens to an inner layer side described later with an appropriate distance from the inner wall of the heat insulating wall. ), A second damper (4B) that opens to the outer layer side, which will be described later, and first and second windows (4C) and (4D) that are closed on both dampers, respectively. The outer layer in which the plate fin type outer layer evaporator (5) and the axial flow type outer layer blower (6) are arranged
(7), and the outer layer outlet located along the upper edge of the opening
(8) and an outer-layer suction port (9) located along the lower edge of the opening and facing the outer-layer air outlet, and having an appropriate distance from the inner wall of the first partition plate. Then, a second partition plate (10) made of metal is provided and a plate fin type inner layer evaporator (1
Inner layer (13) that arranges 1) and axial flow type inner layer blower (12)
An inner layer outlet (14) arranged in parallel at the upper edge of the opening and inside the outer layer outlet (8), and at the lower edge of the opening inside the outer layer inlet (9). An inner layer suction port (15), which is arranged in parallel and faces the inner layer outlet, and a storage chamber (17) in which a plurality of shelves (16) are arranged are formed. The first and second dampers are plate-shaped ones made of a heat insulating material such as resin, and the first damper (4A) is provided on the upstream side in the flow direction of the circulating air when viewed from the second damper (4B). It is preferable that the tip of the second damper (4B) contacts the outer wall of the second partition plate (10) when opened, and the tip of the second damper (4B) contacts or approaches the inner wall of the heat insulating wall (2) when opened. It is preferable. The outer layer evaporator is arranged in the outer layer (5) so as to be located between the first and second dampers (4A) and (4B), and the inner layer evaporator (11) is arranged in the first damper (4A). ) As seen from the above, it is arranged at a position which is an upstream handle in the flow direction of the circulating air. Both the first and second dampers are simultaneously opened and closed by a single drive unit (M) using a gear motor, a cylinder and the like.

第1図に示す(18)は、前記低温ショーケースを冷却する
ための冷凍装置で、冷媒圧縮機(19)、空冷式の熱交換器
(20)、受液器(21)、感温部(22A)を備えた膨張弁等の減
圧弁(22)、内層用蒸発器(11)、気液分離器(23)を高圧ガ
ス管(24)、高圧液管(25)、低圧液管(26)及び低圧ガス管
(27)でもって環状に接続して閉回路を構成している。(2
8)は減圧弁(22)に並列接続された逆止弁、(29)は受液器
(21)と減圧弁(22)との間の高圧液管(25)に配置された第
1電磁弁、(30)は内層用蒸発器(11)と気液分離器(23)と
の間の低圧ガス管(27)に配置された第2電磁弁、(31)は
一端を前記受液器と第1電磁弁(29)との間、他端を前記
内層用蒸発器と第2電磁弁(30)との間に接続され、内層
用蒸発器(11)の除霜時開放される第3電磁弁(32)付バイ
パス回路である。
Reference numeral (18) shown in FIG. 1 is a refrigerating device for cooling the low temperature showcase, which includes a refrigerant compressor (19) and an air-cooled heat exchanger.
(20), liquid receiver (21), pressure reducing valve (22) such as expansion valve equipped with temperature sensing part (22A), inner layer evaporator (11), gas-liquid separator (23) through high pressure gas pipe ( 24), high pressure liquid pipe (25), low pressure liquid pipe (26) and low pressure gas pipe
(27) A closed circuit is formed by connecting them in a ring shape. (2
8) is a check valve connected in parallel to the pressure reducing valve (22), and (29) is a receiver
The first solenoid valve arranged in the high pressure liquid pipe (25) between the (21) and the pressure reducing valve (22), (30) is between the inner layer evaporator (11) and the gas-liquid separator (23) Second electromagnetic valve disposed in the low-pressure gas pipe (27), (31) has one end between the liquid receiver and the first electromagnetic valve (29), and the other end at the inner layer evaporator and the second electromagnetic valve. It is a bypass circuit with a third solenoid valve (32) that is connected to the valve (30) and is opened when the inner layer evaporator (11) is defrosted.

又、前記外層用蒸発器(5)は、内層用蒸発器(11)に対し
並列に配され、高圧液枝管(33)、低圧液枝管(34)及び低
圧ガス枝管(35)によって高圧液管(25)と、低圧液管(27)
とに接続されている。(36)は高圧液枝管(33)に配置され
た電動弁で、該弁は液冷媒を減圧する減圧機能と、液冷
媒を外層用蒸発器(5)に対して供給及び停止する開閉機
能とを備えている。(37)は前記電動弁に対して並列接続
された第4電磁弁で、後述するポンプダウン運転時に開
放される。(38)は一端を高圧ガス管(24)に、他端を低圧
ガス管(27)に接続された容量調整回路で、除霜運転時及
びポンプダウン運転時に開放される第5電磁弁(39)と、
低圧ガス管(27)内の冷媒圧力によって自動的に開閉され
てその開閉度が調整される容量調整弁(40)とを具備して
いる。
Further, the outer layer evaporator (5) is arranged in parallel with the inner layer evaporator (11), by a high pressure liquid branch pipe (33), a low pressure liquid branch pipe (34) and a low pressure gas branch pipe (35). High pressure liquid pipe (25) and low pressure liquid pipe (27)
Connected to. (36) is a motor-operated valve arranged in the high-pressure liquid branch pipe (33), which has a decompression function for decompressing the liquid refrigerant and an opening / closing function for supplying and stopping the liquid refrigerant to the outer layer evaporator (5). It has and. (37) is a fourth solenoid valve connected in parallel to the motor-operated valve and is opened during a pump down operation described later. (38) is a capacity adjusting circuit having one end connected to the high pressure gas pipe (24) and the other end connected to the low pressure gas pipe (27). The fifth solenoid valve (39) is opened during defrosting operation and pump down operation. )When,
The low pressure gas pipe (27) is provided with a capacity adjusting valve (40) that is automatically opened and closed by the pressure of the refrigerant in the low pressure gas pipe (27) and the degree of opening and closing is adjusted.

上述した第1図の冷凍装置(18)は低温ショーケース(1)
を1台又は2台に適応させた実施例で、水冷式の凝縮器
(20)を使用した場合には第2図に示す実施例となる。こ
の場合、ホットガスが熱交換される水の温度は、外気の
温度程に四季を通じて変化しないので、受液器(21)を削
除することができる。
The refrigeration system (18) shown in FIG. 1 is a low temperature showcase (1).
In an embodiment in which one or two units are adapted, a water-cooled condenser
When (20) is used, the embodiment shown in FIG. 2 is obtained. In this case, since the temperature of the water with which the hot gas is heat-exchanged does not change as much as the temperature of the outside air throughout the four seasons, the liquid receiver (21) can be eliminated.

第3図は3台以上の低温ショーケース(1)に空冷式の冷
凍装置(18)を使用した実施例を示し、この場合、高圧液
管(25)に冷却運転時に開、除霜運転時及びポンプダウン
運転時と閉となる第6電磁弁(41)を設けると共に、この
第6電磁弁(41)と各第1電磁弁(29)との間の高圧液管(2
5)に一端を、前記高圧ガス管(24)に他端を接続され、除
霜運転時に開となる第7電磁弁(42)を備えたホットガス
管(43)を設けている。第4図は3台以上の低温ショーケ
ース(1)に水冷式の冷凍装置(18)を使用した実施例を示
す。この場合も上記第3図と同様に受液器(21)は削除さ
れる。尚、低温ショーケース(1)を複数台並列して冷
却、除霜、ポンプダウン各運転を行なう場合には、各低
温ショーケース(1)の各運転を同期させて行なうこと
が、循環気流の関係から好ましい。
FIG. 3 shows an embodiment in which three or more low temperature showcases (1) are equipped with an air-cooled refrigeration system (18). In this case, the high pressure liquid pipe (25) is opened during cooling operation and during defrosting operation. And a sixth solenoid valve (41) that is closed when the pump is down, and a high pressure liquid pipe (2) between the sixth solenoid valve (41) and each first solenoid valve (29).
A hot gas pipe (43) having a seventh solenoid valve (42) opened at the time of defrosting operation is provided, one end of which is connected to 5) and the other end of which is connected to the high pressure gas pipe (24). FIG. 4 shows an embodiment in which a water-cooled refrigeration system (18) is used in three or more low temperature showcases (1). Also in this case, the liquid receiver (21) is deleted as in the case of FIG. When performing cooling, defrosting, and pump-down operations in parallel with multiple low-temperature showcases (1), it is important to synchronize the operations of the low-temperature showcases (1) with each other. It is preferable from the relationship.

次に低温ショーケース(1)の運転を第1図に示した冷凍
装置(18)に基づいて説明する。
Next, the operation of the low temperature showcase (1) will be described based on the refrigeration system (18) shown in FIG.

いま、第1ダンパ(4A)、第2ダンパ(4B)は第9図実線の
如く閉じており、内層(13)及び外層(7)は夫々独立して
いる。この時、第1、第2両電磁弁(29)(30)が開、第
3、第4、第5各電磁弁(32)(37)(39)及び電動弁(36)が
閉となっており、かゝる状態で、冷媒圧縮機(19)を稼働
させると、冷媒は第5図矢印で示す如く圧縮機(19)−凝
縮器(20)−受液器(21)−電磁弁(29)−減圧弁(22)−内層
用蒸発器(11)−電磁弁(30)−気液分離器(23)−圧縮機(1
9)と流れる周知の第1のサイクルを形成し、この間凝縮
器(20)で凝縮液化、減圧弁(22)で減圧、内層用蒸発器で
蒸発気化される。この冷却運転(例えば4時間)におい
て、内層用送風機(12)もって、内層(13)を通過中の循環
空気は、内層用蒸発器(11)を通過中の低圧液冷媒(例え
ば−10℃の蒸発温度)と熱交換されて−4℃の冷却空
気となり、第9図矢印に示す如く開口(3)に冷たいエア
ーカーテン(CA)を形成して貯蔵室(17)の温度が−2℃
に維持される冷却を図る。この間第1、第2両電磁弁(2
9)(30)は貯蔵室(17)の温度検出器によって同時に開閉を
繰り返し、貯蔵室(17)の温度を適温に維持する。一方、
外層用送風機(6)でもって外層(7)を通過中の循環空気
は、第9図矢印の如く開口(3)において冷たいエアーカ
ーテン(CA)の外側に沿って流れ、この冷たいエアーカ
ーテンの影響を受けて低温ショーケース(1)を包囲する
外気より漸低い温度となり、前記の冷たいエアーカーテ
ン(CA)と外気との接触を阻止する保護エアーカーテン
(GA)として作用する。
Now, the first damper (4A) and the second damper (4B) are closed as shown by the solid line in FIG. 9, and the inner layer (13) and the outer layer (7) are independent of each other. At this time, the first and second solenoid valves (29) and (30) are opened, and the third, fourth and fifth solenoid valves (32) (37) (39) and the motor operated valve (36) are closed. When the refrigerant compressor (19) is operated in such a state, the refrigerant is compressed as shown by the arrow in Fig. 5: compressor (19) -condenser (20) -receiver (21) -solenoid valve (29) -pressure reducing valve (22) -evaporator for inner layer (11) -solenoid valve (30) -gas-liquid separator (23) -compressor (1
A well-known first cycle that flows with 9) is formed, during which the condenser (20) is condensed and liquefied, the pressure reducing valve (22) is depressurized, and the inner layer evaporator is vaporized. In this cooling operation (for example, 4 hours), the circulating air passing through the inner layer (13) with the blower (12) for the inner layer is a low-pressure liquid refrigerant (for example, at -10 ° C.) passing through the evaporator (11) for the inner layer. The temperature of the storage chamber (17) is -2 ° C by forming a cold air curtain (CA) at the opening (3) as shown by the arrow in Fig. 9 by exchanging heat with the (evaporation temperature).
Aim for cooling maintained at. During this time, the first and second solenoid valves (2
9) (30) repeats opening and closing simultaneously by the temperature detector of the storage room (17) to maintain the temperature of the storage room (17) at an appropriate temperature. on the other hand,
The circulating air passing through the outer layer (7) by the outer layer blower (6) flows along the outside of the cold air curtain (CA) at the opening (3) as shown by the arrow in FIG. In response to this, the temperature becomes gradually lower than the temperature of the outside air surrounding the low temperature showcase (1), and it acts as a protective air curtain (GA) that prevents contact between the cold air curtain (CA) and the outside air.

冷却運転の進行に伴ない内層用蒸発器(11)への着霜が多
くなると、電動弁(36)が開き、第1電磁弁(29)からの液
冷媒の1部は高圧液枝管(33)に分流される。この分流さ
れた液冷媒は、電動弁(36)で減圧され、外層用蒸発器
(5)で蒸発気化して低圧ガス枝管(35)を通り、低圧ガス
管(27)に流れ、内層用蒸発器(11)を通過した低圧ガス冷
媒と合流し圧縮機(19)に流れる第6図矢印で示す第2の
サイクルを形成する。この第2のサイクルは冷却運転終
了前、即ち冷却運転から除霜運転に切り替る直前に数十
秒乃至数分間にわたって行なわれ、この運転によって、
内層用蒸発器(11)と同様に外層用蒸発器(5)も低温とな
り、外層(7)を通過中の循環空気は、外層用蒸発器(5)を
通過中の低圧液冷媒(例えば−17℃の蒸発温度)と熱
交換され、内層(13)を循環中の冷却空気と略同じ乃至は
若干高い例えば−2℃の温度に維持される。尚、この冷
却運転においては外層用送風機(6)の運転を停止しても
よい。
When the frost on the inner layer evaporator (11) increases with the progress of the cooling operation, the motor-operated valve (36) opens, and a part of the liquid refrigerant from the first solenoid valve (29) is connected to the high pressure liquid branch pipe ( It is divided into 33). The divided liquid refrigerant is decompressed by the electric valve (36), and the outer layer evaporator is decompressed.
(5) Evaporates and vaporizes in (5), passes through the low pressure gas branch pipe (35), flows into the low pressure gas pipe (27), merges with the low pressure gas refrigerant that has passed through the inner layer evaporator (11), and flows into the compressor (19). The second cycle shown by the arrow in FIG. 6 is formed. This second cycle is performed for several tens of seconds to several minutes before the cooling operation is completed, that is, immediately before switching from the cooling operation to the defrosting operation.
Like the inner layer evaporator (11), the outer layer evaporator (5) also has a low temperature, and the circulating air passing through the outer layer (7) is a low-pressure liquid refrigerant (e.g., −) passing through the outer layer evaporator (5). (Evaporation temperature of 17 ° C.), and is maintained at a temperature of, for example, −2 ° C. which is substantially the same as or slightly higher than the temperature of the cooling air circulating in the inner layer (13). In this cooling operation, the operation of the outer layer blower (6) may be stopped.

この冷却運転中、除霜開始信号が出力され第1、第2両
電磁弁(29)(30)が閉まり、第3及び第5両電磁弁(32)(3
9)が開き、又第1、第2両ダンパ(4A)(4B)が第9図鎖線
の如く開くと、除霜運転に切り換わり、受液器(21)から
の液冷媒は、バイパス管(31)−内層用蒸発器(11)−逆止
弁(28)−第4電磁弁(37)−電動弁(36)−外層用蒸発器
(5)−気液分離器(23)−圧縮機(19)と流れ、又、一方冷
媒圧縮機(19)から吐出されるホットガスの1部は容量調
整回路(38)から低圧ガス管(27)に流れる第1図矢印で示
す第3のサイクルを形成する。この第3のサイクルは例
えば10分乃至20分間行なわれる内層用蒸発器(11)の
除霜運転サイクルであり、バイパス管(31)からの液冷媒
は内層用蒸発器(11)で熱交換されて過冷却液となりつゝ
且つその顕熱でもって内層用蒸発器(11)の霜を徐々に解
かす。又、この除霜サイクルにおいて、低圧ガス管(27)
中の冷媒圧力が所定圧力より低下した場合には、容量調
整弁(40)が開き、ホットガスを低圧ガス管(27)に導いて
低圧圧力を所定圧力に上昇させて低圧補償を行うと共に
低圧冷媒に含まれている液相をホットガスの顕熱でもっ
て蒸発させる。一方、この内層用蒸発器を通過した循環
空気は第1ダンパ(4A)により内層(13)における流れを中
断されて第1窓(4C)から外層(7)に流れ、外層用蒸発器
(5)を通過中の低圧液冷媒と熱交換されて冷却される。
この冷却された循環空気は第2ダンパ(4B)により指向さ
れ、第2窓(4D)から内層(13)に帰還し、内層用吹出口(1
4)から開口(3)に向けて吹き出され、冷却運転時と同様
に冷たいエアーカーテン(CA)を形成し、内層用吸込口
(15)から内層(13)に帰還する第9図鎖線矢印の循環を繰
り返す。
During this cooling operation, the defrosting start signal is output, the first and second solenoid valves (29) (30) are closed, and the third and fifth solenoid valves (32) (3)
When 9) opens and both the first and second dampers (4A) and (4B) open as shown by the chain line in Fig. 9, the defrosting operation is switched to, and the liquid refrigerant from the receiver (21) is bypassed. (31) -Evaporator for inner layer (11) -Check valve (28) -Fourth solenoid valve (37) -Motor operated valve (36) -Evaporator for outer layer
(5) -Gas-liquid separator (23) -Compressor (19) and a part of the hot gas discharged from the refrigerant compressor (19) is discharged from the capacity adjusting circuit (38) to the low pressure gas pipe ( The third cycle shown by the arrow in FIG. 1 flowing in 27) is formed. This third cycle is, for example, a defrosting operation cycle of the inner layer evaporator (11) that is performed for 10 to 20 minutes, and the liquid refrigerant from the bypass pipe (31) is heat-exchanged in the inner layer evaporator (11). As a result, it becomes supercooled liquid and its sensible heat gradually defrosts the frost on the inner layer evaporator (11). Also, in this defrost cycle, the low pressure gas pipe (27)
When the pressure of the inside refrigerant drops below a predetermined pressure, the capacity adjustment valve (40) opens and guides hot gas to the low-pressure gas pipe (27) to raise the low-pressure pressure to the predetermined pressure to perform low-pressure compensation and low-pressure compensation. The liquid phase contained in the refrigerant is evaporated by the sensible heat of the hot gas. On the other hand, the circulating air that has passed through the inner layer evaporator is interrupted by the first damper (4A) in the inner layer (13) and flows from the first window (4C) to the outer layer (7), and the outer layer evaporator is then discharged.
It is cooled by exchanging heat with the low-pressure liquid refrigerant passing through (5).
This cooled circulating air is directed by the second damper (4B), returns from the second window (4D) to the inner layer (13), and is blown out to the inner layer outlet (1
It is blown out from 4) toward the opening (3), forming a cold air curtain (CA) as in the cooling operation, and the suction port for the inner layer
The circulation of the chain line arrow in FIG. 9 returning from (15) to the inner layer (13) is repeated.

除霜運転の進行に伴ない内層用蒸発器(11)の霜が解ける
と、第1、第2両電磁弁(29)(30)の閉状態が継続したま
ゝで、第3電磁弁(32)が閉じると共に、第4電磁弁(37)
が開くと、内層用蒸発器(11)に液冷媒が供給されなくな
り、内層用蒸発器(11)の残留液冷媒(1部飽和ガスを含
む)を受液器(21)に回収する所謂ポンプダウン運転とな
り、内層用蒸発器(11)内の液冷媒は第7図矢印で示す如
く逆止弁(28)−第4電磁弁(37)−外層用蒸発器(5)−気
液分離器(23)−圧縮機(19)−凝縮器(20)−受液器(21)と
流れ、この受液器(21)に高圧液冷媒として貯えられる。
一方、低圧ガス管(27)中の冷媒圧力が低い場合には、除
霜運転と同様に容量調整弁(40)が開き、低圧々力を所定
圧力に上昇させると共に、気液混合冷媒中の液相をホッ
トガスでもって蒸発させて液バックを防止する。このポ
ンプダウン運転は内層用蒸発器(11)の除霜運転の終了に
伴ない数分乃至十数分行なわれ、この間内層用蒸発器(1
1)内の冷媒のうち飽和ガス、液冷媒と順次外層用蒸発器
(5)に吸引されることにより、内層用蒸発器(11)でその
1部が蒸発気化してこの蒸発潜熱でもって内層用蒸発器
(11)に冷却作用を付与し、且つ液冷媒のまゝで外層用蒸
発器(5)で流れた冷媒はこの外層用蒸発器を通過するう
ちに蒸発気化してこの蒸発潜熱でもって外層用蒸発器
(5)に冷却作用を付与することになる。又、このポンプ
ダウン運転は内層用蒸発器(11)に付着した露の水切り時
間でもある。ポンプダウン運転の終了に伴ない、第4、
第5両電磁弁(37)(39)が閉じると共に、第1、第2両電
磁弁(29)(30)が開き、第5図に示す冷却運転に復帰す
る。
When the frost on the inner layer evaporator (11) is thawed as the defrosting operation progresses, the third solenoid valve (29) is kept closed until the first and second solenoid valves (29) (30) remain closed. 32) closes and the 4th solenoid valve (37)
When the open, the liquid refrigerant is not supplied to the inner layer evaporator (11), and the so-called pump that collects the residual liquid refrigerant (including a part of saturated gas) of the inner layer evaporator (11) into the liquid receiver (21) The operation is down, and the liquid refrigerant inside the evaporator (11) for the inner layer is a check valve (28) -fourth solenoid valve (37) -evaporator (5) -outer layer vapor-liquid separator as shown by the arrow in FIG. (23) -Compressor (19) -Condenser (20) -Liquid receiver (21), and it is stored in this liquid receiver (21) as a high pressure liquid refrigerant.
On the other hand, when the refrigerant pressure in the low-pressure gas pipe (27) is low, the capacity adjustment valve (40) is opened in the same manner as in the defrosting operation, and the low-pressure force is increased to a predetermined pressure. The liquid phase is evaporated with hot gas to prevent liquid back. This pump-down operation is performed for several minutes to several tens of minutes with the completion of the defrosting operation of the inner layer evaporator (11), and the inner layer evaporator (1
1) Saturated gas and liquid refrigerant among the refrigerant in
By being sucked into (5), a part of the inner layer evaporator (11) is vaporized and evaporated, and the inner layer evaporator is heated by the latent heat of vaporization.
The refrigerant that gives a cooling effect to (11) and evaporates while the liquid refrigerant is flowing in the outer layer evaporator (5) while passing through the outer layer evaporator and evaporates and vaporizes to the outer layer due to this latent heat of vaporization. Evaporator
A cooling effect will be added to (5). This pump down operation is also the time for draining dew attached to the inner layer evaporator (11). With the end of pump down operation,
The fifth solenoid valves (37) and (39) are closed, the first and second solenoid valves (29) and (30) are opened, and the cooling operation shown in FIG. 5 is restored.

尚、上記第1、第2、第3の各サイクル、即ち内層用蒸
発器(11)のみの冷却運転、内層用、外層用両蒸発器(11)
(5)の両冷却運転、内層用蒸発器(11)の除霜運転{外層
用蒸発器(5)は冷却運転}及びポンプダウン運転の4つ
の運転モードA,B,C,Dは第2図乃至第4図で示し
た冷凍装置(18)でも同様に行なえる。
The first, second, and third cycles, that is, the cooling operation of only the inner layer evaporator (11), the inner layer and outer layer evaporators (11)
The four cooling modes A, B, C and D are the second cooling operation (5), the defrosting operation of the inner layer evaporator (11) {cooling operation of the outer layer evaporator (5)} and the pump down operation The refrigeration system (18) shown in FIGS. 4 to 4 can be similarly operated.

上記4つの運転モードは第8図に示すタイムチャートで
表わすことができる。
The above four operation modes can be represented by the time chart shown in FIG.

従ってかゝる冷凍装置(18)によれば、除霜運転時及びポ
ンプダウン運転時には容量調整回路(38)の電磁弁(39)を
開けているので、低圧ガス管(27)を通過中の低圧ガス冷
媒或いは低圧気液混合冷媒等の低圧冷媒の圧力が所定圧
力よりも低下したときには、容量調整弁(40)を低圧冷媒
の圧力損失により開放して高圧ガス管(24)からホットガ
スの1部を容量調整回路(38)を通して低圧ガス管(27)に
導くことができ、この結果、ホットガスにより低圧ガス
管(27)から冷媒圧縮機(19)に帰還する低圧冷媒を所定圧
力迄高めて冷媒圧縮機(19)の運転を良好な状態に維持で
きると共に、低圧冷媒中に液相がある場合には、蒸発さ
せて気相とするので冷媒圧縮機(19)への液バックを防止
できる。
Therefore, according to such a refrigeration system (18), the solenoid valve (39) of the capacity adjusting circuit (38) is opened during the defrosting operation and the pump down operation, so that the low pressure gas pipe (27) is passing through. When the pressure of the low-pressure refrigerant such as the low-pressure gas refrigerant or the low-pressure gas-liquid mixed refrigerant is lower than the predetermined pressure, the capacity control valve (40) is opened due to the pressure loss of the low-pressure refrigerant and the hot gas pipe (24) One part can be guided to the low-pressure gas pipe (27) through the capacity adjusting circuit (38), and as a result, the low-pressure refrigerant returned from the low-pressure gas pipe (27) to the refrigerant compressor (19) by hot gas up to a predetermined pressure. It is possible to maintain the operation of the refrigerant compressor (19) in a good state by raising it, and when there is a liquid phase in the low-pressure refrigerant, it is evaporated to a gas phase, so liquid back to the refrigerant compressor (19) is performed. It can be prevented.

(ト) 発明の効果 上述した本発明によれば下記に列挙するが効果が生じ
る。
(G) Effects of the Invention According to the present invention described above, the following effects are produced.

低圧ガス管内の冷媒の圧力が低下したときには、この
圧力低下に伴い自動的に容量調整弁が開かれ、容量調整
回路を通して高圧ガス管のホットガスの一部を低圧ガス
管に導き、低圧圧力を所定圧力まで上昇させる低圧補償
が行える関係上、低圧圧力の低下が起因する冷媒圧縮機
の停止を回避し、冷媒圧縮機を負荷変動に追従して連続
運転することができると共に、負荷変動に左右されない
安定した除霜及びポンプダウン両運転が行える。
When the pressure of the refrigerant in the low-pressure gas pipe decreases, the capacity adjustment valve is automatically opened with this pressure decrease, and a part of the hot gas in the high-pressure gas pipe is guided to the low-pressure gas pipe through the capacity adjustment circuit to reduce the low-pressure pressure. Since the low pressure compensation can be performed to raise the pressure to a predetermined level, it is possible to avoid the refrigerant compressor from stopping due to the low pressure drop, and to operate the refrigerant compressor continuously following the load fluctuation. Both stable defrosting and pump down operation can be performed.

低圧ガス管中の低圧冷媒に液相がある場合には、こ
れをホットガスで蒸発させて気相とするので、冷媒圧縮
機への液バックを阻止できる。
When the low-pressure refrigerant in the low-pressure gas pipe has a liquid phase, it is vaporized by hot gas into a gas phase, so that liquid back to the refrigerant compressor can be prevented.

【図面の簡単な説明】[Brief description of drawings]

図面は何れも本発明冷凍装置の実施例を示し、第1図は
空冷式の冷凍装置における除霜サイクル図、第2図は第
1図の冷凍装置を水冷式に変更した場合の要部回路図、
第3図は多系統の空冷式冷凍装置の冷媒回路図、第4図
は第3図の冷凍装置を水冷式に変更した場合の要部回路
図、第5図乃至第7図は第1図の冷凍装置における1エ
バ冷却サイクル、2エバ冷却サイクル、ポンプダウン運
転各図、第8図は冷凍装置の各運転を示すタイムチャー
ト、第9図は冷凍装置を組込んだ低温ショーケースの縦
断面図である。 (11)……蒸発器、(19)……冷媒圧縮機、(20)……凝縮
器、(24)……高圧ガス管、(27)……低圧ガス管、(38)…
…容量調整回路、(39)……電磁弁、(40)……容量調整
弁。
Each of the drawings shows an embodiment of the refrigerating apparatus of the present invention, FIG. 1 is a defrost cycle diagram in an air-cooling type refrigerating apparatus, and FIG. 2 is a main circuit when the refrigerating apparatus of FIG. 1 is changed to a water-cooling type. Figure,
FIG. 3 is a refrigerant circuit diagram of a multi-system air-cooled refrigerating apparatus, FIG. 4 is a circuit diagram of essential parts when the refrigerating apparatus of FIG. 3 is changed to a water-cooled type, and FIGS. 5 to 7 are FIG. Fig. 8 is a time chart showing each operation of the refrigeration system, Fig. 9 is a vertical cross section of a low temperature showcase incorporating the refrigeration system. It is a figure. (11) …… Evaporator, (19) …… Refrigerant compressor, (20) …… Condenser, (24) …… High pressure gas pipe, (27) …… Low pressure gas pipe, (38)…
… Volume adjustment circuit, (39) …… solenoid valve, (40) …… Volume adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷媒圧縮機、凝縮器、減圧弁、蒸発器を有
し、前記冷媒圧縮機と凝縮器とを高圧ガス管で、この凝
縮器と前記減圧弁とを高圧液管で、この減圧弁と前記蒸
発器とを低圧液管で、この蒸発器と前記冷媒圧縮機とを
低圧ガス管でそれぞれつないで冷却運転が行える冷凍回
路を形成し、この冷却運転によって前記蒸発器に霜が付
着した場合には、前記高圧液管内の冷媒をこの蒸発器へ
導く除霜運転と、この除霜運転終了後にこの蒸発器内の
冷媒を排除するためのポンプダウン運転とが行える冷凍
装置において、前記高圧ガス管と低圧ガス管とを容量調
整回路で接続すると共に、この容量調整回路には、前記
除霜並びにポンプダウン両運転時に開放される電磁弁
と、この両運転時に前記低圧ガス管内の冷媒の圧力によ
って開閉度が調整されこの圧力の低下時に前記高圧ガス
管内のホットガスの一部を前記低圧ガス管に導くための
容量調整弁とを備えたことを特徴とする冷凍装置。
1. A refrigerant compressor, a condenser, a pressure reducing valve, and an evaporator, wherein the refrigerant compressor and the condenser are high-pressure gas pipes, and the condenser and the pressure reducing valve are high-pressure liquid pipes. The pressure reducing valve and the evaporator are formed by a low pressure liquid pipe, and the evaporator and the refrigerant compressor are connected by a low pressure gas pipe to form a refrigeration circuit capable of a cooling operation, and frost is formed on the evaporator by the cooling operation. When adhered, a defrosting operation that guides the refrigerant in the high-pressure liquid pipe to the evaporator, and a refrigerating apparatus that can perform a pump down operation to remove the refrigerant in the evaporator after the defrosting operation ends, The high-pressure gas pipe and the low-pressure gas pipe are connected by a capacity adjusting circuit, and in the capacity adjusting circuit, a solenoid valve that is opened during both the defrosting and pump down operations, and the inside of the low-pressure gas tube during both operations. The opening and closing degree is adjusted by the pressure of the refrigerant. Refrigeration apparatus being characterized in that a capacity control valve for guiding during lowering of the pressure part of the hot gas in the high-pressure gas pipe into the low pressure gas pipe.
JP60157611A 1985-07-16 1985-07-16 Refrigeration equipment Expired - Lifetime JPH0621721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157611A JPH0621721B2 (en) 1985-07-16 1985-07-16 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157611A JPH0621721B2 (en) 1985-07-16 1985-07-16 Refrigeration equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5173124A Division JP2547703B2 (en) 1993-07-13 1993-07-13 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS6217569A JPS6217569A (en) 1987-01-26
JPH0621721B2 true JPH0621721B2 (en) 1994-03-23

Family

ID=15653509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157611A Expired - Lifetime JPH0621721B2 (en) 1985-07-16 1985-07-16 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0621721B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721002U (en) * 1980-07-10 1982-02-03
JPS5721002A (en) * 1980-07-15 1982-02-03 Matsushita Electric Works Ltd Indirect illumination system
JPS5746520U (en) * 1980-08-30 1982-03-15
JPS608680A (en) * 1984-02-20 1985-01-17 株式会社日立製作所 Refrigerator for air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721002U (en) * 1980-07-10 1982-02-03
JPS5721002A (en) * 1980-07-15 1982-02-03 Matsushita Electric Works Ltd Indirect illumination system
JPS5746520U (en) * 1980-08-30 1982-03-15
JPS608680A (en) * 1984-02-20 1985-01-17 株式会社日立製作所 Refrigerator for air conditioner

Also Published As

Publication number Publication date
JPS6217569A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
US4964281A (en) Low-temperature showcase
KR960016578B1 (en) Operating method for showcase
US20080184715A1 (en) Bottle Cooler Defroster And Methods
JP3049425B2 (en) Refrigerator with two evaporators
JP2547703B2 (en) Refrigeration equipment
CN104508408B (en) Refrigerator
JP2005241195A (en) Air conditioning refrigerator
KR102237596B1 (en) A refrigerator and a control method the same
KR102295155B1 (en) A refrigerator
JP2003194446A (en) Refrigerator
KR102306032B1 (en) Show case
JPH0621721B2 (en) Refrigeration equipment
KR20210040018A (en) A refrigerator and a control method the same
JP3348465B2 (en) Binary refrigeration equipment
JP3430160B2 (en) refrigerator
JP4108003B2 (en) Refrigeration system
KR102144467B1 (en) A refrigerator and a control method the same
JPH01318860A (en) Refrigeration cycle device
KR930004393B1 (en) Operating method for refrigerating device
JP2005049064A (en) Air-conditioning refrigeration unit
JPH071135B2 (en) Refrigeration equipment
JPH0663692B2 (en) Low temperature showcase
JPH0510591B2 (en)
JPH076713B2 (en) Operation circuit for multiple low-temperature shows
JPS5888563A (en) Cooling device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term