JPH06216854A - Optical receiver circuit - Google Patents

Optical receiver circuit

Info

Publication number
JPH06216854A
JPH06216854A JP5003881A JP388193A JPH06216854A JP H06216854 A JPH06216854 A JP H06216854A JP 5003881 A JP5003881 A JP 5003881A JP 388193 A JP388193 A JP 388193A JP H06216854 A JPH06216854 A JP H06216854A
Authority
JP
Japan
Prior art keywords
circuit
output
transistor
level
preamplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5003881A
Other languages
Japanese (ja)
Inventor
Hironori Tanaka
広紀 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5003881A priority Critical patent/JPH06216854A/en
Publication of JPH06216854A publication Critical patent/JPH06216854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Digital Transmission (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To generate the reference voltage in accordance with each receiver circuit by connecting a preamplifier circuit and a dummy circuit to a waveform shaping circuit and superimposing the half of output amplitude of the preamplifier circuit on the output of the dummy circuit. CONSTITUTION:The output of a transimpedance type preamplifier circuit 100 is connected to one of both sides of a waveform shaping circuit 101 consisting of a differential circuit. Meanwhile a dummy circuit 102 of the same constitution as the circuit 100 is connected to the other side of the circuit 101. The circuit 102 supplies a level approximately equal to the output level of the circuit 100 when an optical signal has a low level. Meanwhile the circuit 102 has an inverting action with the output amplitude of the circuit 100 used as an input when the optical signal has a high level and also outputs a level that is superposed by about 1/2 output amplitude by a transistor having a prescribed set size. In such a constitution, the reference voltage can be generated in a simple circuit constitution and in accordance with each of plural receiver circuits. Then each receiver circuit can operate with the pulse width distortion smaller than that caused by reception of the optical signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数本の光ファイバに
より伝送された光信号を電気信号に変換するための光受
信回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical receiving circuit for converting an optical signal transmitted by a plurality of optical fibers into an electric signal.

【0002】[0002]

【従来の技術】光信号を電気信号に変換する光受信回路
は、入力光信号を電気信号に変換するための受光素子
と、変換された電気信号を増幅するための前置増幅回
路、さらに、前置増幅回路の出力信号を受け、波形整形
するための波形整形回路から構成されるのが一般的であ
る。
2. Description of the Related Art An optical receiving circuit for converting an optical signal into an electric signal includes a light receiving element for converting an input optical signal into an electric signal, a preamplifier circuit for amplifying the converted electric signal, and It is generally composed of a waveform shaping circuit for receiving the output signal of the preamplifier circuit and shaping the waveform.

【0003】この中で波形整形回路については、差動回
路により構成されるのが一般的であり、基準電圧を差動
回路の一方に接続し、前置増幅回路の出力を他方に接続
することで基準電圧レベルに対して高レベルかあるいは
低レベルかにより、レベル判定をし、波形整形を行う。
光信号を伝送する場合、ファイバの距離により、光受信
電力が変化し、その結果、前置増幅回路の出力振幅も変
化することになる。従って、パルス幅歪を低減し、正常
な波形整形動作を行うためには、基準電圧も光受信電力
に応じて変化させる必要がある。
Among them, the waveform shaping circuit is generally composed of a differential circuit, and the reference voltage is connected to one of the differential circuits and the output of the preamplifier circuit is connected to the other. The level judgment is performed depending on whether the reference voltage level is high level or low level, and the waveform is shaped.
When transmitting an optical signal, the optical reception power changes depending on the distance of the fiber, and as a result, the output amplitude of the preamplifier circuit also changes. Therefore, in order to reduce the pulse width distortion and perform a normal waveform shaping operation, it is necessary to change the reference voltage according to the optical reception power.

【0004】しかし、基準電圧を光受信電力に応じて変
化させるためには、時間を要するため、信号送出直後で
は基準電圧が信号レベルに対して最適値とはならず、パ
ルス幅歪を発生させることになる。多チャネルの光伝送
を行う場合、クロック信号も同時に並送されるため、ク
ロック信号のデューティ比が50%であることを利用
し、前置増幅回路の出力振幅の1/2のレベルを発生さ
せ、他の複数の受信回路に基準信号として供給すること
で信号送出直後から、基準電圧を最適値とする方法が特
開平3−13036号公報に記載されている。
However, since it takes time to change the reference voltage according to the received optical power, the reference voltage does not become an optimum value for the signal level immediately after the signal is transmitted, and pulse width distortion occurs. It will be. When performing multi-channel optical transmission, the clock signal is also transmitted in parallel, so the fact that the duty ratio of the clock signal is 50% is used to generate a level of 1/2 the output amplitude of the preamplifier circuit. JP-A-3-13036 discloses a method of supplying a reference signal to a plurality of other receiving circuits so that the reference voltage becomes an optimum value immediately after signal transmission.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は複数の
光受信回路における前置増幅回路の出力信号振幅が全て
等しい事を前提としている。しかし、実際には、各受信
回路で光結合の状況が異なることによる光受信電力のば
らつき、さらには、受信回路自体のばらつきが加わるた
め、各受信回路共通に同一の基準信号を用いることは困
難である。
The above prior art is premised on that the output signal amplitudes of the preamplifier circuits in the plurality of optical receiver circuits are all equal. However, in reality, it is difficult to use the same reference signal for all the receiving circuits because variations in the optical receiving power due to different optical coupling conditions in each receiving circuit and further variations in the receiving circuits themselves are added. Is.

【0006】また、他の実施例として、各受信回路にし
きい値設定回路を設け、クロック信号より発生するレベ
ルを初期値とすることで、各受信回路ごとに基準電圧レ
ベルを最適化すると共に、基準電圧の最適化に要する時
間を短縮する方法も示されているが、各受信回路におけ
るしきい値設定回路については、その内容が開示されて
おらず、また、基準電圧の設定時間についても述べられ
ていない。
As another embodiment, each receiving circuit is provided with a threshold value setting circuit, and the level generated from the clock signal is set to an initial value to optimize the reference voltage level for each receiving circuit. A method for shortening the time required to optimize the reference voltage is also shown, but the contents of the threshold setting circuit in each receiving circuit are not disclosed, and the setting time of the reference voltage is also described. Has not been done.

【0007】本発明の目的は、複数の受信回路で光受信
電力がばらつき、かつ伝送距離の変化により光受信電力
が変化しても、各受信回路に応じた基準電圧を簡単な回
路構成で発生させ、光信号受信時より受信回路が少ない
パルス幅歪で動作する多チャネル光受信装置を提供する
ことにある。
An object of the present invention is to generate a reference voltage corresponding to each receiving circuit with a simple circuit configuration even if the optical receiving power varies among a plurality of receiving circuits and the optical receiving power changes due to a change in transmission distance. Another object of the present invention is to provide a multi-channel optical receiving device that operates with pulse width distortion in which the number of receiving circuits is smaller than when receiving optical signals.

【0008】[0008]

【課題を解決するための手段】上記目的は、差動回路か
らなる波形整形回路の一方に前置増幅回路の出力を接続
し、他の一方にダミー回路となる前置増幅回路と同一の
回路構成を接続すると共に、前置増幅回路の出力振幅の
約1/2をダミー回路の出力レベルに重畳させることに
より達成される。
The above object is to connect the output of the preamplifier circuit to one of the waveform shaping circuits formed of a differential circuit, and to connect the output of the preamplifier circuit to the other side of the same circuit as the preamplifier circuit. This is achieved by connecting the configuration and superimposing about 1/2 of the output amplitude of the preamplifier circuit on the output level of the dummy circuit.

【0009】[0009]

【作用】ダミー回路となる前置増幅回路は光信号がロー
(Low)レベルの場合、前置増幅回路の出力レベルにほぼ
等しいレベルを供給し、光信号がハイ(High)レベルの
場合、前置増幅回路の出力振幅を入力としてインバート
動作すると共に、サイズを所定の値に設定されたトラン
ジスタにより出力振幅の約1/2が重畳されたレベルを
出力する。回路構成により、複数の受信回路で各受信回
路に応じた基準電圧を発生させ、かつ、光信号受信時よ
り受信回路の低パルス幅歪での動作が可能となる。
[Operation] In the preamplifier circuit, which is a dummy circuit, the optical signal is low.
In the case of (Low) level, a level that is almost equal to the output level of the preamplifier circuit is supplied, and when the optical signal is in a high level, the output amplitude of the preamplifier circuit is used as input and the size is changed. The level of about 1/2 of the output amplitude is output by the transistor set to a predetermined value. With the circuit configuration, the plurality of receiving circuits can generate the reference voltage corresponding to each receiving circuit, and the receiving circuits can operate with low pulse width distortion from the time of receiving the optical signal.

【0010】[0010]

【実施例】図1に本発明を光受信回路に適用した場合の
一実施例を示す。図1において、1は受光素子、Q1〜
Q10はトランジスタ、R1〜R14は抵抗、Vcsは定
電流設定用の制御端子、VCC,VEEは電源、Vo は受光
素子用電源、Io は光入力により受光素子から流れ出す
電流、VOT,VOBは波形整形回路の出力端子である。
FIG. 1 shows an embodiment in which the present invention is applied to an optical receiving circuit. In FIG. 1, 1 is a light receiving element, Q1 to
Q10 is a transistor, R1 to R14 are resistors, V cs is a control terminal for setting a constant current, V CC and V EE are power sources, V o is a light receiving element power source, I o is a current flowing from the light receiving element by optical input, V o OT and V OB are output terminals of the waveform shaping circuit.

【0011】図1において、100は一般的によく用い
られているトランスインピーダンス型の前置増幅回路、
101は差動回路からなる波形整形回路、102は前置
増幅回路とほぼ同一の回路構成であるダミー回路であ
る。
In FIG. 1, reference numeral 100 is a transimpedance type preamplifier circuit which is generally used.
Reference numeral 101 is a waveform shaping circuit formed of a differential circuit, and 102 is a dummy circuit having a circuit configuration substantially the same as that of the preamplification circuit.

【0012】今、光信号がローレベル、すなわち光入力
が無い場合を考える。この時Io は存在しないため、Q
1のベースはローレベル、Q2,Q3のベースはハイレ
ベルとなるため、前置増幅回路100の出力端子OL
ローレベルとなる。一方、102のダミー回路では、受
光素子が設けられていないため、常に光入力が無い場合
に相当する。従って、光入力が無い場合、Q3,Q7,
Q8のベース電圧は全て等しいことになり、Q7,Q8
のトランジスタサイズをQ3のそれの1/2に、抵抗R
10,R11の値をR5の2倍に設定しておくと、端子
L,ORのレベルは同一となる。光入力が無い場合にO
L,ORのレベルが同一であると、101の波形整形回路が
L のレベル判定を行えないため、抵抗R9の値をR4
より小さくすることでOR のレベルを多少上昇させ、こ
の場合のOL のレベルをローレベルとして判定するよう
設定してある。
Now, consider a case where the optical signal is at a low level, that is, there is no optical input. At this time, I o does not exist, so Q
Since the base of 1 is low level and the bases of Q2 and Q3 are high level, the output terminal O L of the preamplifier circuit 100 is low level. On the other hand, in the dummy circuit 102, since no light receiving element is provided, it corresponds to the case where there is no light input at all times. Therefore, when there is no light input, Q3, Q7,
The base voltages of Q8 are all equal, and Q7 and Q8
Transistor size of 1/2 of that of Q3, resistor R
If the values of 10 and R11 are set to twice the value of R5, the levels of the terminals O L and O R will be the same. O when there is no optical input
L, and the level of O R are identical, since the 101 waveform shaping circuit is unable to level determination of O L, the value of the resistor R9 R4
Slightly increases the level of O R by smaller, is set so as to determine the level of O L in this case a low level.

【0013】次に、光入力がハイレベルとなり、Io
流れると、Q1のベースはハイレベル、Q2,Q3のベ
ースはローレベルとなるため、前置増幅回路100の出
力端子OL はハイレベルとなる。この時、Q7のベース
にはQ3のベースと同一の電圧が加わるが、Q7のトラ
ンジスタサイズはQ3のそれの1/2であるためQ7を
流れる電流変化はQ3の電流変化の1/2となる。この
ため,OR に発生するレベル変化はOL に発生するレベ
ル変化と方向は同じであるが、変化量は1/2となる。
このことは、波形整形回路の基準電圧が光入力に対し、
光入力が無い場合のレベルに重畳して変化すると共に、
前置増幅回路100の信号振幅の1/2に近づく動きを
することを意味し、この結果、光受信電力がばらついて
も、各受信回路でパルス幅歪の少ない波形整形が可能と
なる。図1において、容量C1は、基準電圧の変化時間
を調節するために設けられており、波形整形回路の判定
動作を最適化する働きをしている。
Next, when the optical input becomes high level and I o flows, the base of Q1 becomes high level and the bases of Q2 and Q3 become low level, so that the output terminal O L of the preamplifier circuit 100 becomes high. It becomes a level. At this time, the same voltage as that of the base of Q3 is applied to the base of Q7, but since the transistor size of Q7 is 1/2 that of Q3, the change in current flowing through Q7 is half that of Q3. . Therefore, the level change generated in O R has the same direction as the level change generated in O L , but the amount of change is ½.
This means that the reference voltage of the waveform shaping circuit is
It changes and superimposes on the level when there is no optical input,
This means that the preamplifier circuit 100 moves to be close to ½ of the signal amplitude. As a result, even if the received optical power varies, each receiving circuit can perform waveform shaping with less pulse width distortion. In FIG. 1, the capacitor C1 is provided to adjust the change time of the reference voltage, and has the function of optimizing the determination operation of the waveform shaping circuit.

【0014】図2は、図1に示す回路の動作を回路シミ
ュレーションにより求めたものである。光入力が無い場
合が時間T1,T3,T5 に相当し、光入力がハイレベル
の場合がT2,T4に相当する。光入力は500psごとに
ハイ,ローレベルを繰返しており、パルス幅は500ps
である。光レベルがローレベルの場合、101の波形整
形回路でレベル判定が可能なようOL のレベルに対して
R のレベルを多少高くしてある。なお、このレベル差
により、最小受信感度が決定される。光入力がハイレベ
ルとなると、OL のレベルは上昇するが、OR のレベル
もこれに伴って上昇し、その上昇量はOL のそれの1/
2であり、OL のレベル変化の1/2の値を追跡する方
向の動きをしていることがわかる。この動作のため、1
01の出力であるVOT,VOBはパルス幅歪の少ない波形
となる。なお、シミュレーションでは、光入力がハイレ
ベルの時、100μAのIo が発生した場合を示してあ
る。
FIG. 2 shows the operation of the circuit shown in FIG. 1 obtained by circuit simulation. The case where there is no light input corresponds to times T 1 , T 3 and T 5 , and the case where the light input is at high level corresponds to T 2 and T 4 . The optical input repeats high and low levels every 500ps, and the pulse width is 500ps.
Is. If the light level is low, it is somewhat higher level of O R relative to the level of the O L so as to enable the level determined by the waveform shaping circuit 101. The minimum receiving sensitivity is determined by this level difference. When the optical input becomes high level, the level of O L rises, but the level of O R also rises with it, and the amount of rise is 1 / of that of O L.
It is 2 and it can be seen that the movement is in the direction of tracking the half value of the level change of O L. Because of this action, 1
The outputs of 01, V OT and V OB, are waveforms with little pulse width distortion. In the simulation, the case where I o of 100 μA occurs when the optical input is at high level is shown.

【0015】図3は、図1において、Q7,R10を除
き、さらに、Q8,R11をそれぞれQ3,R5と等し
くした場合のシミュレーションを示してある。この場合
は、OR が光入力に関係なく一定となるため光入力が各
受信回路でばらついた場合、また同一の受信回路でも伝
送距離が変化し、その結果光入力が変化した場合、
OT,VOBにパルス幅歪が発生しやすくなる。
FIG. 3 shows a simulation in which Q7 and R10 are removed from FIG. 1 and Q8 and R11 are made equal to Q3 and R5, respectively. In this case, since O R is constant regardless of the optical input, if the optical input varies in each receiving circuit, or if the transmission distance changes even in the same receiving circuit and the optical input changes as a result,
Pulse width distortion easily occurs in V OT and V OB .

【0016】図2,図3の各ケースにつきIo の値を変
化させたシミュレーションを行い、パルス幅歪を評価す
ることで本発明の効果を調べたのが図4である。図4に
おいて、横軸は、Io 、縦軸はパルス幅500psに対し
てのVDT,VDBのパルス幅歪を示したものである。この
図からわかるように、Io が50μAから200μAに
変化しても、本発明ではパルス幅歪は80ps以下とな
り、本発明を用いない場合に対して、パルス幅歪を1/
2程度にできることがわかる。
FIG. 4 shows the effect of the present invention by investigating the pulse width distortion by performing a simulation in which the value of I o is changed in each case of FIGS. 2 and 3. In FIG. 4, the horizontal axis represents I o , and the vertical axis represents the pulse width distortion of V DT and V DB with respect to the pulse width of 500 ps. As can be seen from this figure, even if I o changes from 50 μA to 200 μA, the pulse width distortion of the present invention is 80 ps or less, and the pulse width distortion is 1/100 of that of the case without the present invention.
You can see that it can be about 2.

【0017】本発明による受信回路を用いれば、信号受
信時より、基準電圧の追従が可能であり、最初のパルス
信号受信時より、低パルス幅歪動作が可能となる。
When the receiving circuit according to the present invention is used, the reference voltage can be tracked more than when a signal is received, and the low pulse width distortion operation can be performed when the first pulse signal is received.

【0018】上記実施例でQ1〜Q10は、バイポーラ
トランジスタ以外の素子、たとえば、電界効果トランジ
スタであってもよい。
In the above embodiment, Q1 to Q10 may be elements other than bipolar transistors, for example, field effect transistors.

【0019】[0019]

【発明の効果】本発明によれば、複数の受信回路で光受
信電力がばらつき、かつ伝送距離の変化により光受信電
力が変化しても、各受信回路に応じた基準電圧を簡単な
回路構成で発生させることができるようになるため、装
置の小型化,低電力化が可能となる。また、光信号受信
時より受信回路の低パルス幅歪動作が可能な多チャネル
光受信装置を実現することもできる。
According to the present invention, even if the optical receiving power varies among a plurality of receiving circuits and the optical receiving power changes due to a change in transmission distance, the reference voltage corresponding to each receiving circuit can be set to a simple circuit configuration. It is possible to reduce the size and power consumption of the device. Further, it is also possible to realize a multi-channel optical receiving device capable of performing a low pulse width distortion operation of the receiving circuit more than when an optical signal is received.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す回路図。FIG. 1 is a circuit diagram showing a configuration of an embodiment of the present invention.

【図2】本発明における動作の特性図。FIG. 2 is a characteristic diagram of operation in the present invention.

【図3】本発明を用いない場合の動作の特性図。FIG. 3 is a characteristic diagram of an operation when the present invention is not used.

【図4】本発明の効果の説明図。FIG. 4 is an explanatory diagram of effects of the present invention.

【符号の説明】[Explanation of symbols]

1…受光素子、Q1〜Q10…トランジスタ、R1〜R
14…抵抗、Vcs…定電流設定用制御端子、VCC,VEE
…電源、Vo …受光素子用電源、Io …受光素子から流
れ出す電流、100…前置増幅回路、101…波形整形
回路、102…ダミー回路、VOT,VOB …波形整形回
路出力端子、OL…前置増幅回路出力、OR…ダミー回路
出力。
1 ... Light receiving element, Q1 to Q10 ... Transistor, R1 to R
14 ... Resistance, V cs ... Control terminal for constant current setting, V CC , V EE
... power supply, V o ... light receiving element power supply, I o ... current flowing out of light receiving element, 100 ... preamplifier circuit, 101 ... waveform shaping circuit, 102 ... dummy circuit, V OT , V OB ... waveform shaping circuit output terminal, O L ... Preamplifier circuit output, O R ... Dummy circuit output.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光信号を電気信号に変換するための受光素
子と、変換された電気信号を増幅するための第1の前置
増幅回路と、定電流源回路で駆動されるエミッタ共通の
一対のトランジスタからなる差動増幅回路と、ダミーと
して設けた第2の前置増幅回路とを含む光受信回路にお
いて、前記一対のトランジスタの一方のトランジスタの
ベースに前記第1の前値増幅回路の出力が接続され、他
方のトランジスタのベースには、前記第1の前値増幅回
路の出力振幅の約1/2が前記第2の前置増幅回路の出
力レベルに重畳される手段の出力が接続されていること
を特徴とする光受信回路。
1. A light receiving element for converting an optical signal into an electric signal, a first preamplifier circuit for amplifying the converted electric signal, and a pair of common emitters driven by a constant current source circuit. In a light receiving circuit including a differential amplifier circuit including transistors and a second preamplifier circuit provided as a dummy, an output of the first prevalue amplifier circuit is provided at the base of one of the pair of transistors. Is connected to the base of the other transistor, and to the base of the other transistor is connected the output of the means for overlapping about 1/2 of the output amplitude of the first pre-amplifier circuit with the output level of the second pre-amplifier circuit. An optical receiver circuit characterized in that
【請求項2】請求項1において、前記第1の前値増幅回
路の出力振幅の約1/2が前記第2の前置増幅回路の出
力レベルに重畳される手段は、前記第2の前置増幅回路
の出力部を構成する第1のトランジスタのエミッタが第
1の抵抗を介して第1の電源に接続され、ベースが前記
第2の前置増幅回路の前段の出力に接続されると共に、
コレクタが第2の抵抗を介して第2の電源に接続され、
第2のトランジスタのコレクタが前記第1のトランジス
タのコレクタに接続され、エミッタが第3の抵抗を介し
て前記第1の電源に接続され、ベースが前記第1の前値
増幅回路の出力部を構成する第3のトランジスタのベー
スに接続され、前記第1のトランジスタと前記第2のト
ランジスタのサイズは前記第3のトランジスタのサイズ
の1/2であり、前記第1のトランジスタと前記第2の
トランジスタのコレクタを出力端子とする光受信回路。
2. The means according to claim 1, wherein about 1/2 of the output amplitude of the first pre-amplifier circuit is superimposed on the output level of the second pre-amplifier circuit. The emitter of the first transistor forming the output section of the preamplifier circuit is connected to the first power supply via the first resistor, and the base is connected to the output of the previous stage of the second preamplifier circuit. ,
The collector is connected to the second power supply via the second resistor,
The collector of the second transistor is connected to the collector of the first transistor, the emitter is connected to the first power supply through a third resistor, and the base is the output of the first pre-value amplifier circuit. The size of the first transistor and the second transistor is ½ of the size of the third transistor connected to the base of the third transistor constituting the first transistor and the second transistor. An optical receiver circuit that uses the collector of the transistor as the output terminal.
JP5003881A 1993-01-13 1993-01-13 Optical receiver circuit Pending JPH06216854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5003881A JPH06216854A (en) 1993-01-13 1993-01-13 Optical receiver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5003881A JPH06216854A (en) 1993-01-13 1993-01-13 Optical receiver circuit

Publications (1)

Publication Number Publication Date
JPH06216854A true JPH06216854A (en) 1994-08-05

Family

ID=11569530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5003881A Pending JPH06216854A (en) 1993-01-13 1993-01-13 Optical receiver circuit

Country Status (1)

Country Link
JP (1) JPH06216854A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444911B1 (en) * 2002-01-29 2004-08-21 한국과학기술원 Differential transimpedance amplifier for optical receiver applications
KR100751920B1 (en) * 2006-04-11 2007-08-24 고려대학교 산학협력단 Optical receiver with compact dimension
US7635837B2 (en) 2007-03-20 2009-12-22 Kabushiki Kaisha Toshiba Optical receiving circuit
JP2014209700A (en) * 2013-03-22 2014-11-06 株式会社東芝 Light-receiving circuit and optical coupling device
JP2016048849A (en) * 2014-08-27 2016-04-07 株式会社東芝 Optical receiving circuit and optical coupling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444911B1 (en) * 2002-01-29 2004-08-21 한국과학기술원 Differential transimpedance amplifier for optical receiver applications
KR100751920B1 (en) * 2006-04-11 2007-08-24 고려대학교 산학협력단 Optical receiver with compact dimension
US7635837B2 (en) 2007-03-20 2009-12-22 Kabushiki Kaisha Toshiba Optical receiving circuit
JP2014209700A (en) * 2013-03-22 2014-11-06 株式会社東芝 Light-receiving circuit and optical coupling device
JP2016048849A (en) * 2014-08-27 2016-04-07 株式会社東芝 Optical receiving circuit and optical coupling device

Similar Documents

Publication Publication Date Title
CN100546175C (en) Receiving circuit and optical receiving circuit
US6181454B1 (en) Adaptive threshold controlled decision circuit immune to ringing components of digital signals
JPH06310937A (en) Automatic offset control circuit for digital receiver
US4896333A (en) Circuit for generating a trapezoidal current waveform with matched rise and fall times
JPS6012826B2 (en) receiving circuit
US4008390A (en) Optical pulse transmission system
JPH06216854A (en) Optical receiver circuit
JP2000315923A (en) Burst light receiving circuit
US5969579A (en) ECL pulse amplitude modulated encoder driver circuit
JP2566734B2 (en) AC coupled receiver and AC coupled optical fiber receiver
JP2002111410A (en) Improved slew rate for amplification circuit
JPS6338147B2 (en)
US5661754A (en) Receiver arrangement
JP2591339B2 (en) Transmission waveform correction circuit
JPH1075132A (en) Differential amplifier
JPH07231307A (en) Light pulse receiving circuit
JPS6223224A (en) Dc restoration circuit for digital repeater
JP2531922B2 (en) Unipolar code / bipolar code conversion circuit
JPH0441531B2 (en)
JPH07193474A (en) Waveform shaping circuit
JP2691632B2 (en) Variable gain type amplifier circuit
JPS61293053A (en) Reception circuit
JPH1032436A (en) Light reception circuit and light transmission system
JPH01141407A (en) Operational amplifier
JPH0353604A (en) Transistor amplifier