JPH06216461A - Manufacture of semiconductor laser element - Google Patents
Manufacture of semiconductor laser elementInfo
- Publication number
- JPH06216461A JPH06216461A JP629493A JP629493A JPH06216461A JP H06216461 A JPH06216461 A JP H06216461A JP 629493 A JP629493 A JP 629493A JP 629493 A JP629493 A JP 629493A JP H06216461 A JPH06216461 A JP H06216461A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor laser
- conductivity type
- laser device
- current blocking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体レーザ素子の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser device.
【0002】[0002]
【従来の技術】一般に、半導体レーザ素子は、コンパク
トディスクやビデオディスク等の光源として利用される
ので、素子の構造は光の損失と無駄な再結合をできるだ
け少なくするために、特定の領域に光エネルギーおよび
注入電流を閉じ込めること、さらに1μmオーダーの微
小スポットに光を絞り込む必要があり、素子の活性層に
平行な方向の光の閉じ込め、即ち横モード発振の制御可
能な構造を有する。実際にはこれらの構造条件を満たす
リッジ埋め込み型の半導体レーザ素子が知られている。2. Description of the Related Art In general, a semiconductor laser device is used as a light source for a compact disc, a video disc, etc., and therefore the structure of the device is designed so that light loss and wasteful recombination are minimized. It is necessary to confine energy and injected current, and further to confine light to a minute spot on the order of 1 μm, and to confine light in a direction parallel to the active layer of the device, that is, a structure capable of controlling transverse mode oscillation. In fact, a ridge-embedded semiconductor laser device that satisfies these structural conditions is known.
【0003】図2(a)〜(d)に、このリッジ埋め込
み型半導体レーザ素子の主な製造工程とその素子構造を
示す。まず、n型GaAsの基板1の上に、n型AlG
aAsのバッファ層2を形成し、さらにその上にn型A
lX Ga1-x As(0.3<X<1)の第一クラッド層
3,AlY Ga1-Y As(0<Y<0.2)の活性層
4,p型AlX Ga1-xAsの第二クラッド層5,p型
GaAsのオーミックコンタクト層6をこの順に積層し
た後、この積層体上の必要な部分にSiO2 マスク7を
形成する[図2(a)]。2 (a) to 2 (d) show main manufacturing steps of the ridge-embedded semiconductor laser device and its device structure. First, on the n-type GaAs substrate 1, n-type AlG
A buffer layer 2 of aAs is formed, and n-type A is further formed on the buffer layer 2.
l X Ga 1-x As ( 0.3 <X <1) first cladding layer 3, Al Y Ga 1-Y As (0 <Y <0.2) active layer 4, p-type Al X Ga 1 After laminating the second cladding layer 5 of -x As 5 and the ohmic contact layer 6 of p-type GaAs in this order, a SiO 2 mask 7 is formed on a necessary portion of this laminated body [FIG. 2 (a)].
【0004】次に、硫酸と過酸化水素水の混合水溶液で
あるSHエッチング液を用いて、第二クラッド層5の厚
さhの部分を0.3μmだけを残すように選択エッチン
グを行ない、第二クラッド層5にコンタクト層6を含む
条状のメサ部8を形成する[図2(b)]。次いで、減
圧有機金属化学気相成長(MOCVD)法を用い、メサ
部8の側面に接するように、SiO2 マスク7により選
択成長させたn型GaAsからなる電流阻止層9を埋め
込む[図2(c)]。Next, using an SH etching solution which is a mixed aqueous solution of sulfuric acid and hydrogen peroxide, selective etching is performed so that the thickness h of the second cladding layer 5 is left to 0.3 μm. The strip-shaped mesa portion 8 including the contact layer 6 is formed on the second cladding layer 5 [FIG. 2 (b)]. Then, reduced pressure metalorganic using chemical vapor deposition (MOCVD), in contact with the side surfaces of the mesa portion 8, embedding the current blocking layer 9 made of n-type GaAs which is selectively grown by SiO 2 mask 7 [2 ( c)].
【0005】最後にSiO2 マスク7を除去し、この積
層体の上下にn型電極10およびp型電極11を形成す
ることにより、リッジ埋め込み型半導体レーザ素子を得
ることができる。[図2(d)]。このような半導体レ
ーザ素子の製造過程において、同様の構造を有し導電型
を逆にした素子を製造することも勿論可能である。Finally, the SiO 2 mask 7 is removed, and the n-type electrode 10 and the p-type electrode 11 are formed on the upper and lower sides of this laminated body to obtain a ridge-embedded semiconductor laser device. [FIG.2 (d)]. In the process of manufacturing such a semiconductor laser device, it is of course possible to manufacture a device having a similar structure and having opposite conductivity types.
【0006】[0006]
【発明が解決しようとする課題】しかし、以上の製造方
法にはつぎのような問題がある。即ち、リッジ埋め込み
型半導体レーザ素子をコンパクトディスクやビディオデ
ィスクに用いるとき、光ピックアップの戻り光ノイズを
抑えるためのレーザ光スペクトルモードのマルチモード
化と、小型化、省消費電力化のための動作電流の低減が
重要であり、これらの条件を満たすためには、活性層4
の横方向における適度の光の閉じ込めが必要である。リ
ッジ埋め込み型半導体レーザ素子のレーザ光スペクトル
モードをマルチモード化するためには、第二クラッド層
5の厚さhの部分を0.5μm以上とし、屈折率が大き
く光を吸収するGaAs層を活性層4から遠ざけること
により、横方向の光の閉じ込めを弱めなければならな
い。しかし、第二クラッド層5の厚さhを厚くすると、
注入電流の閉じ込めが弱くなってしまい、無効電流の発
生などによって動作電流が増大するようになる。したが
って、動作電流の増大をできるだけ抑えるとともに、レ
ーザ光スペクトルモードのマルチモード化を図ることが
望まれる。However, the above manufacturing method has the following problems. That is, when the ridge-embedded semiconductor laser device is used in a compact disc or a video disc, the laser light spectrum mode is multi-mode to suppress the return light noise of the optical pickup, and the operating current for downsizing and power consumption saving. Is important. To meet these conditions, the active layer 4
A modest light confinement in the lateral direction is required. In order to make the laser light spectrum mode of the ridge-embedded semiconductor laser device multi-mode, the thickness h of the second cladding layer 5 is set to 0.5 μm or more, and the GaAs layer having a large refractive index and absorbing light is activated. By keeping it away from layer 4, the lateral light confinement must be weakened. However, if the thickness h of the second cladding layer 5 is increased,
The confinement of the injection current becomes weak, and the operating current increases due to the generation of reactive current. Therefore, it is desired to suppress the increase of the operating current as much as possible and to make the laser light spectrum mode multi-mode.
【0007】本発明は上述の点に鑑みてなされたもので
あり、その目的は、電流阻止層をAlZ Ga1-Z As層
とGaAs層との2層構造とすることにより、適度に光
を閉じ込めて動作電流を低減するとともに、レーザ光ス
ペクトルモードをマルチモードとすることが可能な半導
体レーザ素子の製造方法を提供することにある。The present invention has been made in view of the above points, and an object thereof is to provide a light blocking layer with a two-layer structure of an Al Z Ga 1 -Z As layer and a GaAs layer. Another object of the present invention is to provide a method for manufacturing a semiconductor laser device capable of confining the laser light to reduce the operating current and making the laser light spectrum mode multimode.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明の方法は、第二クラッド層にコンタクト層
を含む条状のメサ部を形成した後、従来、n型GaAs
単独で形成していた電流阻止層を、屈折率が小さく光を
吸収しないAlZ Ga1-Z As層と、光を吸収するGa
As層との積層により形成する。In order to solve the above-mentioned problems, according to the method of the present invention, after forming a stripe-shaped mesa portion including a contact layer in the second cladding layer, conventionally, n-type GaAs is used.
The current blocking layer, which was formed independently, was composed of an Al Z Ga 1 -Z As layer having a small refractive index and not absorbing light, and a Ga absorbing light.
It is formed by stacking with an As layer.
【0009】[0009]
【作用】第二クラッド層のメサ部を形成してない領域の
厚さを0.3μm以下とし、電流狭窄を強めて動作電流
を小さく抑え、屈折率の小さな電流阻止層により、横方
向の光の閉じ込めを弱め、レーザ光スペクトルモードを
マルチモードとすることができる。The thickness of the region of the second clad layer where the mesa portion is not formed is 0.3 μm or less, the current confinement is strengthened to suppress the operating current, and the current blocking layer having a small refractive index is used for lateral light Can be weakened and the laser light spectral mode can be made multimode.
【0010】[0010]
【実施例】以下、本発明を実施例に基づき説明する。図
1(a)〜(d)は本発明の方法による半導体レーザ素
子の主な製造工程を示し、図2(a)〜(d)と共通す
る部分を同一符号で表わしてある。まず、n型GaAs
の基板1の上に、n型AlGaAsのバッファ層2を形
成し、その上にn型AlX Ga1-x As(0.3<X<
1)の第一クラッド層3,AlY Ga1-Y As(0<Y
<0.2)の活性層4,0.9μmの厚さを持つp型A
lX Ga1-x Asの第二クラッド層5をMOCVD法に
より順次成長させた後、さらにその上に0.1μmの厚
さを持つp型GaAsのオーミックコンタクト層6を順
次積層した後、この積層体上の必要な部分にSiO2 マ
スク7を形成する[図1(a)]。EXAMPLES The present invention will be described below based on examples. 1 (a) to 1 (d) show the main manufacturing steps of a semiconductor laser device according to the method of the present invention, and the portions common to FIGS. 2 (a) to 2 (d) are represented by the same reference numerals. First, n-type GaAs
N-type AlGaAs buffer layer 2 is formed on a substrate 1 of, and n-type Al X Ga 1-x As (0.3 <X <
1) First clad layer 3, Al Y Ga 1-Y As (0 <Y
<0.2) active layer 4, p-type A with 0.9 μm thickness
After the second cladding layer 5 of l x Ga 1-x As is grown by MOCVD in sequence, a p-type GaAs ohmic contact layer 6 having a thickness of 0.1 μm is further deposited thereon, and A SiO 2 mask 7 is formed on a necessary portion on the laminated body [FIG. 1 (a)].
【0011】次に、SiO2 マスク7に覆われていない
部分のコンタクト層6および第二クラッド層5をSHエ
ッチング液を用いて、第二クラッド層5の厚さhの部分
を0.2μmだけを残すように選択エッチングを行な
い、第二クラッド層5にコンタクト層6を含む条状のメ
サ部8を形成する[図1(b)]。次いで、減圧MOC
VD法を用い、メサ部8の側面に接するように、SiO
2マスク7により選択成長させたn型AlZ Ga1-Z A
s(0<Z<X)層12aの0.3μmと、n型GaA
s層12bの0.7μmとを、第二クラッド層5上に形
成し、これら2層からなる電流阻止層12を埋め込む
[図1(c)]。Next, the contact layer 6 and the second cladding layer 5 which are not covered with the SiO 2 mask 7 are treated with an SH etching solution, and the thickness h of the second cladding layer 5 is reduced to 0.2 μm. Are selectively etched so as to leave the stripe-shaped mesa portion 8 including the contact layer 6 in the second cladding layer 5 [FIG. 1 (b)]. Next, decompression MOC
Using the VD method, SiO 2 is contacted with the side surface of the mesa portion 8.
N-type Al Z Ga 1-Z A selectively grown by 2 mask 7
0.3 μm of s (0 <Z <X) layer 12a and n-type GaA
0.7 μm of the s layer 12b is formed on the second cladding layer 5, and the current blocking layer 12 composed of these two layers is embedded [FIG. 1 (c)].
【0012】最後に図2(d)の場合と同様に、SiO
2 マスク7を除去し、この積層体の上下にn型電極10
およびp型電極11を形成することにより、リッジ埋め
込み型半導体レーザ素子を得ることができる。[図1
(d)]。以上のように、本発明の方法が従来と異なる
ところは、電流阻止層12を埋め込むに当たって、n型
GaAs9単独の層[図2(c)]ではなく、n型Al
ZGa1-Z As層12aとn型GaAs層12bの2層
構造として形成したことにある。Finally, as in the case of FIG. 2D, SiO
2 The mask 7 is removed, and the n-type electrodes 10 are formed above and below this laminated body.
By forming the p-type electrode 11 and the p-type electrode 11, a ridge-embedded semiconductor laser device can be obtained. [Figure 1
(D)]. As described above, the difference between the method of the present invention and the conventional method is that when the current blocking layer 12 is buried, the n-type Al layer is used instead of the n-type GaAs 9 alone layer [FIG. 2 (c)].
The Z Ga 1 -Z As layer 12a and the n-type GaAs layer 12b have a two-layer structure.
【0013】[0013]
【発明の効果】以上述べた如く本発明によれば、得られ
た半導体レーザ素子は、電流の狭窄を強めるn型AlZ
Ga1-Z As層と、その上に形成し活性層からの距離を
適度に定めたn型GaAs層との2層からなる電流阻止
層によって、光の閉じ込めを最適状態とすることがで
き、低動作電流で、しかもレーザ光スペクトルモードを
マルチモードとすることができる。As described above, according to the present invention, the obtained semiconductor laser device has an n-type Al Z which enhances current confinement.
The current blocking layer composed of two layers, a Ga 1 -Z As layer and an n-type GaAs layer formed on the Ga 1 -Z As layer and having an appropriate distance from the active layer, makes it possible to optimize the optical confinement, With a low operating current, the laser light spectrum mode can be multimode.
【図1】本発明の方法による半導体レーザ素子の主な製
造工程を示し、それぞれ(a)は各半導体の積層状態,
(b)はメサ部を形成した状態,(c)は電流阻止層を
埋め込んだ状態,(d)は上下電極を取り付けた状態を
表わす模式断面図FIG. 1 shows main manufacturing steps of a semiconductor laser device according to the method of the present invention, in which (a) is a laminated state of each semiconductor,
(B) is a schematic sectional view showing a state in which a mesa portion is formed, (c) is a state in which a current blocking layer is embedded, and (d) is a state in which upper and lower electrodes are attached.
【図2】従来の方法による半導体レーザ素子の主な製造
工程を示し、それぞれ(a)は各半導体の積層状態,
(b)はメサ部を形成した状態,(c)は電流阻止層を
埋め込んだ状態,(d)は上下電極を取り付けた状態を
表わす模式断面図FIG. 2 shows main manufacturing steps of a semiconductor laser device according to a conventional method, in which (a) is a laminated state of each semiconductor,
(B) is a schematic sectional view showing a state in which a mesa portion is formed, (c) is a state in which a current blocking layer is embedded, and (d) is a state in which upper and lower electrodes are attached.
1 基板 2 バッファ層 3 第一クラッド層 4 活性層4 5 第二クラッド層 6 コンタクト層 7 マスク8 メサ部 9 電流阻止層 10 n型電極10 11 p型電極1112 電流阻止層 12a AlZ Ga1-Z As層 12b GaAs層1 substrate 2 buffer layer 3 first clad layer 4 active layer 4 5 second clad layer 6 contact layer 7 mask 8 mesa portion 9 current blocking layer 10 n-type electrode 10 11 p-type electrode 11 12 current blocking layer 12a Al Z Ga 1 -Z As layer 12b GaAs layer
Claims (2)
電型のAlX Ga1- x As(0.3<X<1)第一クラ
ッド層,AlY Ga1-Y As(0<Y<0.2)活性
層,第二導電型のAlX Ga1-x As第二クラッド層,
第二導電型のGaAsオーミックコンタクト層を順次積
層した後、選択エッチングにより前記第二クラッド層と
前記オーミックコンタクト層を含む条状メサ部を形成
し、このメサ部側面に第一導電型の電流阻止層を埋め込
む半導体レーザ素子の製造方法であって、前記電流阻止
層を埋め込むに当たり、第一導電型のAlZ Ga1-Z A
s(0<Z<X)層と第一導電型GaAsの順に2層か
らなる電流阻止層を形成することを特徴とする半導体レ
ーザ素子の製造方法。1. A first conductivity type Al X Ga 1- x As (0.3 <X <1) first cladding layer, Al Y Ga 1-Y As on one main surface of a first conductivity type semiconductor substrate. (0 <Y <0.2) active layer, second conductivity type Al X Ga 1-x As second cladding layer,
After sequentially stacking a second conductivity type GaAs ohmic contact layer, a striped mesa portion including the second cladding layer and the ohmic contact layer is formed by selective etching, and the first conductivity type current blocking is formed on the side surface of the mesa portion. A method of manufacturing a semiconductor laser device in which a layer is embedded, wherein the first conductivity type Al Z Ga 1 -Z A is used to fill the current blocking layer.
A method of manufacturing a semiconductor laser device, comprising forming a current blocking layer consisting of two layers in the order of an s (0 <Z <X) layer and a first conductivity type GaAs.
の形成されない領域表面の第二クラッド層の厚さを0.
3μm以下とすることを特徴とする半導体レーザ素子の
製造方法。2. The method according to claim 1, wherein the thickness of the second cladding layer on the surface of the region where the linear mesa portion is not formed is 0.
A method of manufacturing a semiconductor laser device, wherein the thickness is 3 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP629493A JPH06216461A (en) | 1993-01-19 | 1993-01-19 | Manufacture of semiconductor laser element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP629493A JPH06216461A (en) | 1993-01-19 | 1993-01-19 | Manufacture of semiconductor laser element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06216461A true JPH06216461A (en) | 1994-08-05 |
Family
ID=11634362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP629493A Pending JPH06216461A (en) | 1993-01-19 | 1993-01-19 | Manufacture of semiconductor laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06216461A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2365218A (en) * | 2000-02-21 | 2002-02-13 | Sony Corp | Stripe laser |
-
1993
- 1993-01-19 JP JP629493A patent/JPH06216461A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2365218A (en) * | 2000-02-21 | 2002-02-13 | Sony Corp | Stripe laser |
US6628687B2 (en) | 2000-02-21 | 2003-09-30 | Sony Corporation | Semiconductor laser emitting apparatus |
GB2365218B (en) * | 2000-02-21 | 2004-06-30 | Sony Corp | Semiconductor laser emitting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3429407B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2778178B2 (en) | Semiconductor laser | |
US5786234A (en) | Method of fabricating semiconductor laser | |
JPS6343908B2 (en) | ||
JPH1098233A (en) | Semiconductor laser and its manufacture | |
JP2863677B2 (en) | Semiconductor laser and method of manufacturing the same | |
KR100277561B1 (en) | Semiconductor laser device | |
JPH06260716A (en) | Semiconductor laser | |
US5304507A (en) | Process for manufacturing semiconductor laser having low oscillation threshold current | |
JPH06216461A (en) | Manufacture of semiconductor laser element | |
JP2000183449A (en) | Semiconductor laser | |
JP2003046193A (en) | Semiconductor laser and its manufacturing method | |
JPH06112592A (en) | Fabrication of semiconductor laser element | |
JP4117557B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JP2946781B2 (en) | Semiconductor laser | |
KR100284765B1 (en) | Semiconductor laser diode and manufacturing method thereof | |
KR100259003B1 (en) | Semiconductor laser diode | |
JP2712970B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP2003060312A (en) | Semiconductor laser element | |
JP3096419B2 (en) | Semiconductor laser device | |
JPH0256836B2 (en) | ||
JP3403180B2 (en) | Semiconductor laser | |
JPH07321408A (en) | Manufacture of semiconductor laser device | |
JP2000228564A (en) | Self-oscillation semiconductor laser | |
JP2001267689A (en) | Semiconductor laser element |