JPH06215626A - Microwave dielectric porcelain composition and manufacture thereof - Google Patents

Microwave dielectric porcelain composition and manufacture thereof

Info

Publication number
JPH06215626A
JPH06215626A JP5023715A JP2371593A JPH06215626A JP H06215626 A JPH06215626 A JP H06215626A JP 5023715 A JP5023715 A JP 5023715A JP 2371593 A JP2371593 A JP 2371593A JP H06215626 A JPH06215626 A JP H06215626A
Authority
JP
Japan
Prior art keywords
powder
composition
mno
tio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5023715A
Other languages
Japanese (ja)
Other versions
JP3436770B2 (en
Inventor
Yoshiaki Yokoyama
義昭 横山
Hirobumi Ozeki
博文 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP02371593A priority Critical patent/JP3436770B2/en
Publication of JPH06215626A publication Critical patent/JPH06215626A/en
Application granted granted Critical
Publication of JP3436770B2 publication Critical patent/JP3436770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To provide a microwave dielectric porcelain composition which is provided with a high Qu-value and a high dielectric constant (epsilonr) of 37 to 38 and the temperature coefficient of a small value near to zero, and further shows stable performance even when the kind (purity) of a ZrO2 component material is changed, and also the manufacture thereof. CONSTITUTION:A ZrO2 powder, an SnO2 powder and a TiO2 powder are mixed so as to produce a composition as represented by the following composition formula: (Zr1-xSnx)TiO4 (however, 0.1<=x<=0.3) and also a MnO2 power is mixed so as to have a mixture rate of 0.2 to 0.8 parts by weight relative to the foregoing (Zr1-xSnx)TiO4 of 100 parts by weight. After that, primary heating (provisional heating) is applied to the composition at a temperature of 900 to 1100 deg.C in the atmosphere, and a predetermined organic binder and water are added to a powder to which the primary heating has been applied and then the powder is ground, and the ground powder is dried and granulated, and the granulated powder is molded into a predetermined shape. Next, the molded product is baked at a temperature of 1300 to 1425 deg.C in the atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波誘電体磁器
組成物に関し、更に詳しく言えば、無負荷Q(以下、単
にQuという。)を実用的な特性範囲で維持しつつ、3
7〜38という高い比誘電率(以下、単にεr とい
う。)を備え、共振周波数の温度係数(以下、単にτf
という。)をゼロ付近の小さな値とし、更にZrO2
分の原料の種類(純度)を変えても安定した性能を示す
マイクロ波誘電体磁器組成物及びその製造方法に関す
る。本発明は、マイクロ波領域において誘電体共振器、
マイクロ波集積回路基板、各種マイクロ波回路のインピ
ーダンス整合等に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave dielectric porcelain composition, and more specifically, it maintains an unloaded Q (hereinafter referred to simply as "Q") within a practical characteristic range.
It has a high relative permittivity of 7 to 38 (hereinafter, simply referred to as ε r ) and has a temperature coefficient of resonance frequency (hereinafter simply referred to as τ f).
Say. ) Is a small value near zero, and the microwave dielectric ceramic composition exhibits stable performance even when the raw material (purity) of the ZrO 2 component is changed, and a method for producing the same. The present invention relates to a dielectric resonator in the microwave region,
It is used for impedance matching of microwave integrated circuit boards and various microwave circuits.

【0002】[0002]

【従来の技術】マイクロ波誘電体磁器組成物(以下、単
に誘電体磁器組成物という。)は、使用周波数が高周波
となるに従って誘電損失が大きくなる傾向にあるので、
マイクロ周波数領域でQuの大きな誘電体磁器組成物が
望まれている。従来の高εr を有する誘電体磁器材料と
しては、所定量のTiO2 、ZrO2及びSnO2 を主
成分とし、これに所定量のZnOを含有した誘電体磁器
組成物(特開昭54−35678号公報)、上記主成分
に所定量のZnO及びNiOを含有した誘電体磁器組成
物(特開昭55−34526号公報)、上記主成分に所
定量のZnO及びTa2 5 を含有した誘電体磁器組成
物(特開昭61−13326号公報)、並びに上記主成
分に所定量のZnO、NiO及びMnO2 を含有した誘
電体磁器組成物(特開平3−28162号公報)等が知
られている。
2. Description of the Related Art Microwave dielectric porcelain compositions (hereinafter simply referred to as dielectric porcelain compositions) tend to increase in dielectric loss as the operating frequency becomes higher.
A dielectric ceramic composition having a large Qu in the micro frequency range is desired. As a conventional dielectric porcelain material having a high ε r , a dielectric porcelain composition mainly containing a predetermined amount of TiO 2 , ZrO 2 and SnO 2 and containing a predetermined amount of ZnO (JP-A-54- No. 35678), a dielectric porcelain composition containing a predetermined amount of ZnO and NiO in the main component (JP-A-55-34526), and a predetermined amount of ZnO and Ta 2 O 5 in the main component. Known are dielectric ceramic compositions (Japanese Patent Application Laid-Open No. 61-13326), and dielectric ceramic compositions (Japanese Patent Application Laid-Open No. 3-28162) containing a predetermined amount of ZnO, NiO and MnO 2 in the main components. Has been.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の誘
電体磁器組成物では、高Qu、高εr 及び0近辺の
τf、更に製造条件による性能のバラツキの少なさにお
いて、全て満足するわけではない。特に、上記ZnO系
の誘電体磁器組成物のうちの代表的なものである特開昭
54−35678号公報に係るものでは、表5に示すよ
うに、ZrO2 成分原料の種類(例えば純度)により、
いずれの性能のバラツキも大きい。
However, the above-mentioned conventional dielectric ceramic compositions are all satisfied in terms of high Qu, high ε r and τ f near 0, and a small variation in performance due to manufacturing conditions. is not. Particularly, in the one disclosed in JP-A-54-35678, which is a typical one of the above-mentioned ZnO-based dielectric ceramic composition, as shown in Table 5, the type (for example, purity) of the ZrO 2 component raw material Due to
There are large variations in both performances.

【0004】本発明は、上記問題点を解決するものであ
り、Quを実用的な特性範囲に維持しつつ、37〜38
という高いεr を備え、τf をゼロ付近の小さな値と
し、更にZrO2 成分原料の種類(純度)を変えても安
定した性能を示すマイクロ波誘電体磁器組成物及びその
製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems and maintains 37 to 38 while maintaining Qu within a practical characteristic range.
A microwave dielectric ceramic composition having a high ε r , a small τ f value near zero, and stable performance even when the type (purity) of the ZrO 2 component raw material is changed, and a method for producing the same. The purpose is to

【0005】[0005]

【課題を解決するための手段】本発明者らは、誘電体磁
器組成物において、Quを実用的な特性範囲に維持しつ
つ、τf をゼロに近づけることができ、且つ仮焼・焼成
温度及びZrO2 成分原料の種類を変えても安定した品
質を備える組成について種々検討した結果、MnO2
添加することによりこの欠点が解消されることを見出し
て、本発明を完成するに至ったのである。
DISCLOSURE OF THE INVENTION In the dielectric ceramic composition, the present inventors have made it possible to bring τ f close to zero while maintaining Qu within a practical characteristic range, and to provide a calcination / firing temperature. As a result of various studies on a composition having stable quality even when the type of the ZrO 2 component raw material was changed, the inventors found that the addition of MnO 2 eliminates this drawback, and thus completed the present invention. is there.

【0006】即ち、本第1発明の誘電体磁器組成物は、
(Zr1-X SnX )TiO4 (但し0.1≦x≦0.
3)で示される組成を主成分とし、これに上記(Zr
1-X SnX )TiO4 100重量部に対して0.1〜
1.0重量部のMnO2 が添加含有されたことを特徴と
する。上記Xが0.1未満では、焼結性不充分となり、
0.3を越えると、急激な特性の低下となり、好ましく
ない。また、上記MnO2 添加量が0.1未満では、焼
結性不充分とεr の低下となり、1.0を越えると、Q
uの低下となり、好ましくない。
That is, the dielectric ceramic composition of the first invention is
(Zr 1-X Sn X ) TiO 4 (where 0.1 ≦ x ≦ 0.
The composition shown in 3) is the main component.
1-X Sn X ) TiO 4 0.1 to 100 parts by weight
It is characterized in that 1.0 part by weight of MnO 2 was additionally contained. If the above X is less than 0.1, the sinterability becomes insufficient,
When it exceeds 0.3, the characteristics are rapidly deteriorated, which is not preferable. Further, if the amount of MnO 2 added is less than 0.1, the sinterability is insufficient and ε r decreases, and if it exceeds 1.0, Q
This is unfavorable because it lowers u.

【0007】本第2発明の誘電体磁器組成物の製造方法
は、ZrO2 粉末、SnO2 粉末及びTiO2 粉末を
(Zr1-X SnX )TiO4 (但し0.1≦x≦0.
3)の組成式組成になるように、且つMnO2 粉末を上
記(Zr1-X SnX )TiO4 100重量部に対して
0.1〜1.0重量部(以下、この場合を単に「重量
%」という。)の配合割合になるように、混合し、その
後、大気雰囲気中にて900〜1100℃の温度で仮焼
し、次いで、この仮焼粉末に所定の有機バインダー及び
水を加えて粉砕し、その後、この粉砕物を凍結乾燥にて
造粒し、次いで、この造粒粉末を用いて所定形状に成形
し、大気雰囲気中、1350〜1425℃にて焼成する
ことを特徴とする。上記仮焼温度を900〜1100℃
に限定した理由は、900℃未満の場合は、例えばMn
2 の添加量が少ない場合にはεr が低下してそのバラ
ツキが大きくなる場合があり、1100℃を越えると、
特にMnO2 の添加量が多い場合にはεr 及びQuが大
きく低下し、バラツキが大きくなる場合があるからであ
る。
In the method for producing a dielectric ceramic composition according to the second aspect of the present invention, ZrO 2 powder, SnO 2 powder and TiO 2 powder are converted into (Zr 1-X Sn X ) TiO 4 (where 0.1 ≦ x ≦ 0.
The composition formula 3) is used, and 0.1 to 1.0 parts by weight of MnO 2 powder is added to 100 parts by weight of the above (Zr 1-x Sn x ) TiO 4 (hereinafter, this case is simply referred to as ""% By weight"), and then calcinated in an air atmosphere at a temperature of 900 to 1100 ° C, and then added a predetermined organic binder and water to the calcined powder. It is characterized in that the pulverized product is granulated by freeze-drying, then granulated by freeze-drying, then molded into a predetermined shape using the granulated powder, and fired at 1350 to 1425 ° C. in the air atmosphere. . The calcination temperature is 900 to 1100 ° C.
The reason why it is limited to
If the addition amount of O 2 is small, ε r may decrease and the variation may increase, and if it exceeds 1100 ° C,
This is because, particularly when the amount of MnO 2 added is large, ε r and Qu are greatly reduced, and variations may be increased.

【0008】特に、上記MnO2 の添加量が0.3〜
0.8重量%、高純度品のZrO2 を用い、仮焼温度が
900℃、且つ焼成温度が1350〜1400℃である
場合は、表1〜3に示すように、εr が37.9〜3
8.6、Quが2940〜3780、τf が−0.95
〜+0.87ppm/℃であり、その性能のバラツキが
極めて小さい。また、上記MnO2 の添加量が0.3〜
0.8重量%、高純度品及び低純度品のZrO2 を用
い、仮焼温度が1000℃、且つ焼成温度が1350℃
の場合を一例として示せば、表1〜3に示すように、高
純度品ZrO2 と低純度品ZrO2 を用いた場合の各性
能差は、各々、Δεr ;0.2〜0.8、ΔQu;20
〜80、Δτf が0.17〜0.35ppm/℃であ
り、ZrO2 の種類を変えても、その性能のバラツキが
極めて小さい。
In particular, the amount of MnO 2 added is 0.3 to
When 0.8 wt% of high-purity ZrO 2 is used and the calcination temperature is 900 ° C. and the firing temperature is 1350 to 1400 ° C., ε r is 37.9 as shown in Tables 1 to 3. ~ 3
8.6, Qu is 2940 to 3780, and τ f is -0.95.
It is +0.87 ppm / ° C, and the variation in the performance is extremely small. Further, the addition amount of MnO 2 is 0.3 to
0.8% by weight, high-purity and low-purity ZrO 2 is used, the calcination temperature is 1000 ° C., and the firing temperature is 1350 ° C.
As an example, as shown in Tables 1 to 3, the difference in performance between the high-purity product ZrO 2 and the low-purity product ZrO 2 is Δε r ; , ΔQu; 20
To 80, .DELTA..tau f is 0.17~0.35ppm / ℃, even changing the type of ZrO 2, variation in the performance is extremely small.

【0009】尚、MnO2 を添加すると、Quは小さく
なる傾向にあるが(図1)、εr は上がる傾向にあり
(図2)、τf はあまり変わらず、しかも0ppm/℃
前後となり(図3)、大変好ましい。また、焼結密度は
あまり変わらない(図4)。更に、仮焼温度が900〜
1000℃であれば、εr 、Qu及びτf ともに安定し
ている(図5〜7)。また、焼成温度が1350〜14
00℃の場合(例えば組成式が〔(Zr0.8 Sn0.2
TiO4 +0.3重量部MnO2 〕、仮焼温度が100
0℃、高純度品のZrO2 を用いた場合)は、εr が3
8.0〜38.1、Quが3550〜3620、τf
−0.88〜+0.31ppm/℃であり、そのバラツ
キは極めて小さい。以上より、図1〜7及び表1〜4に
示すように、MnO2 の適当量の添加により、ZrO2
原料の種類を変えても、また広い温度範囲(仮焼温度、
焼成温度)にて焼成しても、性能が安定し且つ焼結密度
の高い焼結体を製造できる。
When MnO 2 is added, Qu tends to decrease (FIG. 1), ε r tends to increase (FIG. 2), τ f does not change so much, and 0 ppm / ° C.
Before and after (Fig. 3), it is very preferable. Also, the sintered density does not change much (Fig. 4). Furthermore, the calcination temperature is 900-
At 1000 ° C., ε r , Qu and τ f are all stable (FIGS. 5-7). Further, the firing temperature is 1350 to 14
In case of 00 ° C (for example, the composition formula is [(Zr 0.8 Sn 0.2 ))
TiO 4 +0.3 parts by weight MnO 2 ], calcination temperature is 100
At 0 ° C., when using a high-purity product ZrO 2 ), ε r is 3
The value is 8.0 to 38.1, the Qu is 3550 to 3620, and the τ f is −0.88 to +0.31 ppm / ° C., and the variation is extremely small. From the above, as shown in FIGS. 1 to 7 and Tables 1 to 4, by adding an appropriate amount of MnO 2 , ZrO 2
Even if the type of raw material is changed, a wide temperature range (calcination temperature,
Even when fired at a firing temperature, it is possible to manufacture a sintered body with stable performance and high sintering density.

【0010】[0010]

【実施例】以下、試験例及び実施例により本発明を具体
的に説明する。 (1)MnO2 添加量、仮焼温度及び焼成温度と性能と
の関係 ZrO2 粉末(純度;99.35%、低純度品ともい
う。)或いはZrO2 粉末(純度;99.95%、高純
度品ともいう。)、SnO2 粉末(純度;99.7
%)、TiO2 粉末(純度;99.98%)、MnO2
粉末(純度;96%)を出発原料として、準備する。そ
して、表1〜3及び図1〜7に示すように、MnO2
加量が0.3〜0.8重量%の範囲にて変化させた組成
になるように、所定量(全量として約600g)を秤
量、混合した。
EXAMPLES The present invention will be specifically described below with reference to test examples and examples. (1) Relationship between MnO 2 Addition Amount, Calcination Temperature and Firing Temperature and Performance ZrO 2 powder (purity; 99.35%, also called low-purity product) or ZrO 2 powder (purity; 99.95%, high) Purified product), SnO 2 powder (purity: 99.7)
%), TiO 2 powder (purity; 99.98%), MnO 2
Prepare powder (purity; 96%) as a starting material. Then, as shown in Tables 1 to 3 and FIGS. 1 to 7, a predetermined amount (the total amount is about 600 g) is adjusted so that the composition is changed in the range of 0.3 to 0.8% by weight of MnO 2. ) Was weighed and mixed.

【0011】その後、ミキサーで乾式による混合(20
〜30分)及び一次粉砕を施した後、大気雰囲気中にて
1000℃の温度で2時間仮焼した。次いで、この仮焼
粉末に適量の有機バインダー(種類;ポリビニルアルコ
ール系)29gと水500〜650gを加え、20mm
φのアルミナボールで、90rpm、23時間粉砕し
た。その後、真空凍結乾燥(約0.4Torr、−35
〜50℃、約23時間)により造粒し、この造粒された
原料を用いて1000kg/cm2 のプレス圧で19m
mφ×10mmt(厚さ)の円柱状に成形した。
Then, dry mixing (20
˜30 minutes) and primary pulverization, and then calcination in the atmosphere at a temperature of 1000 ° C. for 2 hours. Then, to this calcined powder, 29 g of an appropriate amount of an organic binder (type; polyvinyl alcohol type) and 500 to 650 g of water are added, and 20 mm
It was crushed with a φ alumina ball at 90 rpm for 23 hours. Then, vacuum freeze-drying (about 0.4 Torr, -35
Granulation at about 50 ° C. for about 23 hours) and using the granulated raw material at a pressing pressure of 1000 kg / cm 2 for 19 m
It was formed into a cylindrical shape of mφ × 10 mmt (thickness).

【0012】次に、この成形体を大気中、650℃、2
時間にて脱脂し、その後、1350〜1400℃の範囲
の各温度で、3.5時間焼成し、最後に両端面を約16
mmφ×8mmt(厚さ)の円柱状に研磨して、誘電体
試料(表1〜3のNo.1〜9)とした。そして、各試
料につき、平行導体板型誘電体円柱共振器法(TE011
MODE)等により、εr 、Qu及びτf 、更に、アル
キメデス法により焼結密度を測定した。尚、測定周波数
は4.2GHz〜4.3GHzで、4.5GHzに換算
した値を示した。また、τf は20℃〜80℃の温度領
域で測定し、τf =(f80−f20)/(f20×ΔT)、
ΔT=80−20=60℃にて算出した。これらの結果
を表1〜3及び図1〜7に示す。尚、表1〜3中のZr
2 (1)は高純度品、ZrO2 (2)は低純度品を示
す。尚これらの高、低純度品中にはHfO2が2重量%
含まれる。また、図1〜7中の○は高純度品、●は低純
度品を示す。
Next, the molded body was placed in the atmosphere at 650 ° C. for 2 hours.
After degreasing for 3 hours, it is baked at each temperature in the range of 1350 to 1400 ° C for 3.5 hours, and finally both end surfaces are about 16
The dielectric sample (Nos. 1 to 9 in Tables 1 to 3) was polished into a cylindrical shape of mmφ × 8 mmt (thickness). Then, for each sample, the parallel conductor plate type dielectric cylinder resonator method (TE 011
MODE, etc., ε r , Qu, and τ f , and the sintered density was measured by the Archimedes method. The measurement frequency was 4.2 GHz to 4.3 GHz, and the value converted to 4.5 GHz was shown. Further, τ f is measured in a temperature range of 20 ° C. to 80 ° C., and τ f = (f 80 −f 20 ) / (f 20 × ΔT),
It was calculated at ΔT = 80−20 = 60 ° C. The results are shown in Tables 1 to 3 and FIGS. Incidentally, Zr in Tables 1 to 3
O 2 (1) indicates a high-purity product, and ZrO 2 (2) indicates a low-purity product. 2% by weight of HfO 2 is contained in these high and low purity products.
included. Further, in FIGS. 1 to 7, ◯ indicates a high-purity product, and ● indicates a low-purity product.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】(2)Zr及びSnの組成比 表4に示すように、仮焼温度が900℃、焼成温度が1
350℃であって、組成式(Zr1-X SnX )TiO4
におけるXが0.1、0.2及び0.3であること以外
は、上記試験例と同様にして、各磁器組成物を製造し
た。この組成物について同様に性能を評価し、その結果
を表4に示す。
(2) Composition ratio of Zr and Sn As shown in Table 4, the calcination temperature is 900 ° C. and the firing temperature is 1.
350 ° C., composition formula (Zr 1-X Sn X ) TiO 4
Each porcelain composition was manufactured in the same manner as in the above-mentioned Test Example except that X in 0.1 was 0.2, 0.2 and 0.3. The performance of this composition was evaluated in the same manner, and the results are shown in Table 4.

【0017】[0017]

【表4】 [Table 4]

【0018】(3)従来技術との比較 表5に示すように、組成式(Zr0.8 Sn0.2 )TiO
4 +0.3重量%MnO2 であって高純度品(実施例
1)、低純度品(実施例2)のZrO2 を用いて、表5
に示す仮焼、焼成条件下にて製造した磁器組成物の特性
値を同表に示す。比較例1は、組成式(Zr0.8 Sn
0.2 )TiO4 +0.3重量%ZnOであって高純度品
のZrO2 を用いたもの、比較例2は、組成式(Zr
0.8 Sn0.2 )TiO4 +0.3重量%ZnOであって
低純度品のZrO2 を用いたものである。
(3) Comparison with Prior Art As shown in Table 5, the composition formula (Zr 0.8 Sn 0.2 ) TiO 2
4 + 0.3 wt% MnO 2 of high-purity product (Example 1) and low-purity product (Example 2) of ZrO 2 was used.
Characteristic values of the porcelain composition produced under the conditions of calcination and firing shown in are shown in the same table. Comparative Example 1 is a composition formula (Zr 0.8 Sn
0.2 ) TiO 4 +0.3 wt% ZnO, using high-purity ZrO 2 , Comparative Example 2 shows the composition formula (Zr
0.8 Sn 0.2 ) TiO 4 +0.3 wt% ZnO, which is a low-purity product of ZrO 2 .

【0019】[0019]

【表5】 [Table 5]

【0020】(4)試験例及び実施例の効果 表1〜3の結果によれば、MnO2 の添加により、τf
はあまり変わらないものの、Quはやや小さくなり、逆
にεr は大きくなる傾向にある。従って、MnO2
0.3〜0.8重量%の添加により、Quの低下を抑え
つつ、εr を37以上に維持でき、且つτf を0ppm
/℃近辺に維持できる。また、仮焼温度は900〜10
00℃が好ましく、1100℃になると性能のバラツキ
が生じ、特に0.8重量%のMnO2 の添加の場合に
は、そのバラツキが生じる場合がある。更に、焼成温度
を1350〜1400℃の範囲にて変動させても、τf
及びεr の性能(特にτf )のバラツキが少ないので、
0ppm/℃付近の小さな値を極めて容易に調節でき
る。また、ZrO2 の種類(純度)を変えた原料粉末を
使用しても、比較例と比べると、各性能のバラツキが著
しく小さい。以上より、仮焼温度を900〜1000℃
程度とすれば、ZrO2 の種類(純度)、焼成温度及び
MnO2 の適度な添加量を変えても、安定した性能を有
する磁器組成物を製造できる。
(4) Effects of Test Examples and Examples According to the results of Tables 1 to 3, the addition of MnO 2 caused τ f
Although it does not change much, Qu tends to be slightly smaller, and conversely, ε r tends to be larger. Therefore, by adding 0.3 to 0.8 wt% of MnO 2 , it is possible to maintain ε r of 37 or more while suppressing the decrease of Qu, and τ f of 0 ppm.
Can be maintained near / ° C. The calcination temperature is 900 to 10
00 ° C. is preferable, and at 1100 ° C., variations in performance may occur, and particularly when 0.8% by weight of MnO 2 is added, the variations may occur. Furthermore, even if the firing temperature is changed in the range of 1350 to 1400 ° C., τ f
And the variation of ε r (especially τ f ) is small,
A small value around 0 ppm / ° C can be adjusted very easily. Further, even if the raw material powders in which the type (purity) of ZrO 2 is changed are used, the variation in each performance is remarkably small as compared with the comparative example. From the above, the calcination temperature is 900 to 1000 ° C.
If the amount is set to a certain level, a porcelain composition having stable performance can be produced even if the type (purity) of ZrO 2 , the firing temperature, and the appropriate addition amount of MnO 2 are changed.

【0021】更に、表4の結果によれば、SnO2 の増
加によって、εr は低下し、Quは向上するが、τf
マイナス側に移行する。一方、SnO2 の減少により、
εrは向上し、Quは低下し、τf はプラス側に移行す
る。また、表5の結果によれば、本発明の磁器組成物
(実施例1、2)は、従来のZnO系磁器組成物(比較
例1、2)と比較すると、ZrO2 成分原料の種類を変
えても、各性能(特に、εr 及びτf )の差が小さく、
このうち特にτf は著しく小さい。更に、焼結体のSE
M分析(図示せず)によれば、高純度ZrO2 品及び低
純度ZrO2 品のどちらを用いても、顕著な粒成長が認
められたが、その傾向は低純度品(粒径が微細で粉体の
活性度が高いもの)のほうが強い。また、この低純度品
のZrO2 を用いたほうは、焼結体中にクラックが多く
認められた(図示せず)。これは、組成の緻密化(SE
M分析)によって焼成時(降温時)に入ったものと思わ
れる。
Further, according to the results in Table 4, ε r decreases and Qu increases with increasing SnO 2 , but τ f shifts to the negative side. On the other hand, due to the decrease of SnO 2 ,
ε r improves, Qu decreases, and τ f shifts to the positive side. In addition, according to the results of Table 5, the porcelain composition of the present invention (Examples 1 and 2) was compared with the conventional ZnO-based porcelain composition (Comparative Examples 1 and 2) to determine the type of ZrO 2 component raw material. Even if changed, the difference between each performance (especially ε r and τ f ) is small,
Of these, τ f is particularly small. Furthermore, the SE of the sintered body
According to M analysis (not shown), remarkable grain growth was observed regardless of whether the high-purity ZrO 2 product or the low-purity ZrO 2 product was used. The one with high powder activity) is stronger. Further, when the low-purity ZrO 2 was used, many cracks were observed in the sintered body (not shown). This is due to the composition densification (SE
It is considered that the time of firing (when the temperature was lowered) was entered by M analysis.

【0022】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
前記仮焼温度等の仮焼条件、焼成温度等の焼成条件等は
種々選択できる。また、酸化物についても、加熱により
酸化物となる他種化合物を用いることができる。
The present invention is not limited to the specific examples described above, and various modifications may be made within the scope of the present invention depending on the purpose and application. That is,
Various calcination conditions such as the calcination temperature and the calcination conditions such as the calcination temperature can be selected. Further, as for the oxide, it is possible to use another compound which becomes an oxide by heating.

【0023】[0023]

【発明の効果】本発明の誘電体磁器組成物においては、
MnO2 の添加量を加減することによって、Qu及びε
r を実用的な(高い)特性範囲に維持しつつ、τf をゼ
ロに近づける又はゼロを中心としてプラス側とマイナス
側の所望の値に任意に調節するることができるので、大
変性能のバランスに優れる。また、ZrO2 成分原料の
粉末の種類を変えても極めて安定した性能を示す。本発
明の製造方法によれば、上記安定し且つ性能バランスの
優れた磁器組成物を、容易に製造できる。
In the dielectric ceramic composition of the present invention,
By adjusting the amount of MnO 2 added, Qu and ε
While maintaining r in a practical (high) characteristic range, τ f can be brought close to zero or adjusted to desired values on the plus side and minus side centered on zero, so a very good performance balance. Excellent in. Further, even if the type of powder of the ZrO 2 component raw material is changed, extremely stable performance is exhibited. According to the production method of the present invention, the porcelain composition which is stable and has an excellent performance balance can be easily produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】〔(Zr0.8 Sn0.2 )TiO4 +(0.3〜
0.8)重量%MnO2 〕磁器組成物において、MnO
2 量とQuとの関係を示すグラフである。
FIG. 1 [(Zr 0.8 Sn 0.2 ) TiO 4 + ( 0.3 to
0.8) wt% MnO 2 ] In the porcelain composition, MnO
It is a graph which shows the relationship between 2 quantity and Qu.

【図2】図1にて示す磁器組成物において、(0.3〜
0.8重量%)MnO2 量とεr との関係を示すグラフ
である。
FIG. 2 shows the porcelain composition shown in FIG.
8 is a graph showing the relationship between the amount of MnO 2 (0.8 wt%) and ε r .

【図3】図1にて示す磁器組成物において、(0.3〜
0.8重量%)MnO2 量とτf との関係を示すグラフ
である。
3] In the porcelain composition shown in FIG.
8 is a graph showing the relationship between the amount of MnO 2 (0.8 wt%) and τ f .

【図4】図1にて示す磁器組成物において、(0.3〜
0.8重量%)MnO2 量と焼結密度との関係を示すグ
ラフである。
4] In the porcelain composition shown in FIG.
8 is a graph showing the relationship between the amount of MnO 2 (0.8 wt%) and the sintered density.

【図5】〔(Zr0.8 Sn0.2 )TiO4 +(0.3〜
0.8)重量%MnO2 〕磁器組成物において、仮焼温
度とQuとの関係を示すグラフである。
FIG. 5 [(Zr 0.8 Sn 0.2 ) TiO 4 + ( 0.3 to
8 is a graph showing the relationship between the calcination temperature and Qu in a 0.8) wt% MnO 2 ] porcelain composition.

【図6】図5にて示す磁器組成物において、仮焼温度と
εr との関係を示すグラフである。
6 is a graph showing the relationship between calcination temperature and ε r in the porcelain composition shown in FIG.

【図7】図5にて示す磁器組成物において、仮焼温度と
τf との関係を示すグラフである。
7 is a graph showing the relationship between calcination temperature and τ f in the porcelain composition shown in FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (Zr1-X SnX )TiO4 (但し0.
1≦x≦0.3)で示される組成を主成分とし、これに
上記(Zr1-X SnX )TiO4 100重量部に対して
0.1〜1.0重量部のMnO2 が添加含有されたこと
を特徴とするマイクロ波誘電体磁器組成物。
1. (Zr 1-X Sn X ) TiO 4 (provided that 0.
1 ≦ x ≦ 0.3) as a main component, and 0.1 to 1.0 part by weight of MnO 2 is added to 100 parts by weight of the above (Zr 1-x Sn x ) TiO 4. A microwave dielectric porcelain composition characterized by being contained.
【請求項2】 ZrO2 粉末、SnO2 粉末及びTiO
2 粉末を(Zr1-XSnX )TiO4 (但し0.1≦x
≦0.3)の組成式組成になるように、且つMnO2
末を上記(Zr1-X SnX )TiO4 100重量部に対
して0.1〜1.0重量部の配合割合になるように、混
合し、その後、大気雰囲気中にて900〜1100℃の
温度で仮焼し、次いで、この仮焼粉末に所定の有機バイ
ンダー及び水を加えて粉砕し、その後、この粉砕物を凍
結乾燥にて造粒し、次いで、この造粒粉末を用いて所定
形状に成形し、大気雰囲気中、1350〜1425℃に
て焼成することを特徴とするマイクロ波誘電体磁器組成
物の製造方法。
2. ZrO 2 powder, SnO 2 powder and TiO 2.
2 powders (Zr 1-X Sn X ) TiO 4 (where 0.1 ≦ x
≦ 0.3) and the compounding ratio of MnO 2 powder is 0.1 to 1.0 parts by weight with respect to 100 parts by weight of (Zr 1 -X Sn x ) TiO 4 described above. As described above, and then calcinated in the atmosphere at a temperature of 900 to 1100 ° C., and then pulverized by adding a predetermined organic binder and water to the calcinated powder, and then freeze the pulverized product. A method for producing a microwave dielectric ceramic composition, which comprises granulating by drying, then shaping the granulated powder into a predetermined shape, and firing at 1350 to 1425 ° C. in an air atmosphere.
JP02371593A 1993-01-18 1993-01-18 Method for producing microwave dielectric porcelain composition Expired - Fee Related JP3436770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02371593A JP3436770B2 (en) 1993-01-18 1993-01-18 Method for producing microwave dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02371593A JP3436770B2 (en) 1993-01-18 1993-01-18 Method for producing microwave dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH06215626A true JPH06215626A (en) 1994-08-05
JP3436770B2 JP3436770B2 (en) 2003-08-18

Family

ID=12118036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02371593A Expired - Fee Related JP3436770B2 (en) 1993-01-18 1993-01-18 Method for producing microwave dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3436770B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162419A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
JP2011162418A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
WO2012086740A1 (en) 2010-12-22 2012-06-28 京セラ株式会社 Dielectric ceramic and dielectric filter provided with same
CN105859280A (en) * 2016-04-13 2016-08-17 苏州子波电子科技有限公司 Microwave dielectric ceramic and preparation method thereof
CN113354411A (en) * 2021-06-01 2021-09-07 摩比天线技术(深圳)有限公司 Medium high thermal shock resistance microwave dielectric ceramic material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690651A (en) * 2012-06-05 2012-09-26 东华大学 Method for preparing Zn2TiO4:Eu3+ fluorescent powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162419A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
JP2011162418A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
WO2012086740A1 (en) 2010-12-22 2012-06-28 京セラ株式会社 Dielectric ceramic and dielectric filter provided with same
US9006122B2 (en) 2010-12-22 2015-04-14 Kyocera Corporation Dielectric ceramic and dielectric filter having the same
JP5726209B2 (en) * 2010-12-22 2015-05-27 京セラ株式会社 Dielectric ceramics and dielectric filter provided with the same
CN105859280A (en) * 2016-04-13 2016-08-17 苏州子波电子科技有限公司 Microwave dielectric ceramic and preparation method thereof
CN113354411A (en) * 2021-06-01 2021-09-07 摩比天线技术(深圳)有限公司 Medium high thermal shock resistance microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP3436770B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
US5561090A (en) Dielectric ceramic composition for high frequencies and method for preparation of the same
JPH06215626A (en) Microwave dielectric porcelain composition and manufacture thereof
JP2974829B2 (en) Microwave dielectric porcelain composition
JPH06239663A (en) Microwave dielectric material porcelain composition and its production
JPH0255884B2 (en)
JPH07201223A (en) Microwave dielectric porcelain composite, and its manufacture
JP3550414B2 (en) Method for producing microwave dielectric porcelain composition
JP2974823B2 (en) Microwave dielectric porcelain composition
JP3100173B2 (en) Microwave dielectric porcelain composition
JPH06333426A (en) Dielectric ceramic composition for high frequency
JP3365873B2 (en) Microwave dielectric porcelain composition and method for producing the same
JPH06309926A (en) Dielectric ceramic composition
JPH06275126A (en) Dielectric ceramic composition
JP3257147B2 (en) Dielectric porcelain composition
JP2645589B2 (en) Dielectric porcelain composition
JP3243890B2 (en) Dielectric porcelain composition
JPH06325620A (en) Dielectric ceramic composition
JPH06333422A (en) Dielectric ceramic composition
JPH0676628A (en) Dielectric ceramic composition
JP3357479B2 (en) Microwave dielectric porcelain composition and method for producing the same
JPH0737429A (en) Dielectric ceramic composition
JPH04243966A (en) Dielectric ceramic composition
JPH07114823A (en) Dielectric ceramic composition
JPH06333421A (en) Dielectric ceramic composition
JPH06325621A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees