JPH0621485A - Semiconductor optical detection module - Google Patents

Semiconductor optical detection module

Info

Publication number
JPH0621485A
JPH0621485A JP4173452A JP17345292A JPH0621485A JP H0621485 A JPH0621485 A JP H0621485A JP 4173452 A JP4173452 A JP 4173452A JP 17345292 A JP17345292 A JP 17345292A JP H0621485 A JPH0621485 A JP H0621485A
Authority
JP
Japan
Prior art keywords
optical
optical detection
light receiving
detection part
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4173452A
Other languages
Japanese (ja)
Inventor
Kotaro Sugita
耕太郎 椙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4173452A priority Critical patent/JPH0621485A/en
Publication of JPH0621485A publication Critical patent/JPH0621485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher multiplication rate and reduce a dark current upon multiplication by providing an APD chip and optical fibers, and irradiating an optical detection part on the ADP chip with light emitted from the optical fibers in a spot size of a predetermined ratio or more of an optical detection diameter. CONSTITUTION:A positional relation among single mode optical fibers 1, a rod lens 3, and an APD chip 5 is adjusted such that a spot size of an optical beam 21 is 50% or more of an optical detection diameter on an optical detection part 5a of the ADP chip 5. Such irradiation with the optical beam 21 on the optical detection part 5a of the ADP chip as becoming 50% or more of an optical detection part diameter is because of a reason that optical intensity per unit area at the optical detection part 5a is reduced and a space charge effect is restricted. When the optical beam 21 is out of the optical detection part 5a, a quantum efficiency is reduced and response is deteriorated owing to absorption outside an depletion layer of photons. Accordingly, taking into consideration the reliability of an optical coupling, the upper limit of the spot size of the optical beam 21 is taken to be 90% of the optical detection part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体受光モジュールに
関し、特にアバランシェフォトダイオード(APD)チ
ップを用いた半導体受光モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving module, and more particularly to a semiconductor light receiving module using an avalanche photodiode (APD) chip.

【0002】[0002]

【従来の技術】半導体受光素子は、光ファイバ通信や光
ファイバ計測に用いられる場合、通常光ファイバと光学
的に結合して使用されるが、こうした光学結合の簡便さ
をはかるために、半導体受光素子チップと光ファイバと
を光学的結合効率が最大となる位置に固定した半導体受
光モジュールとして用いられるのが通例である。
2. Description of the Related Art A semiconductor light receiving element is usually used by being optically coupled with an optical fiber when used for optical fiber communication or optical fiber measurement. To make such optical coupling easy, a semiconductor light receiving element is used. It is customarily used as a semiconductor light receiving module in which an element chip and an optical fiber are fixed at a position where the optical coupling efficiency is maximized.

【0003】このような半導体受光モジュールとして、
光ファイバ通信や光ファイバ計測に用いられる半導体受
光素子には、PIN PDとAPDの2つの種類があ
る。このうちAPDは素子自体が内部に光電流の増幅機
能を有するため、特に光ファイバ通信において高い受信
感度が要求される場合や、光ファイバの破断点を探知す
る光ファイバパルス試験器(OTDR)といった光計測
器に用いられる。
As such a semiconductor light receiving module,
There are two types of semiconductor light receiving elements used for optical fiber communication and optical fiber measurement: PIN PD and APD. Among them, the APD has a function of amplifying photocurrent inside the element itself, so that a high receiving sensitivity is required especially in optical fiber communication, or an optical fiber pulse tester (OTDR) for detecting a breaking point of an optical fiber. Used in optical measuring instruments.

【0004】こうした応用分野において、優れた性能を
達成するために、APD素子には増倍時の暗電流が低
く、高い光電流増倍率が実現できることが要求される。
特にOTDRに用いられる場合には30程度という高い
増倍率において動作させることになり、このときの暗電
流を100ナノアンペア以下と低く抑えることが必要と
なる。
In such application fields, in order to achieve excellent performance, the APD element is required to have a low dark current at the time of multiplication and be capable of realizing a high photocurrent multiplication factor.
In particular, when it is used for OTDR, it operates at a high multiplication factor of about 30, and it is necessary to suppress the dark current at this time to a low value of 100 nanoamperes or less.

【0005】図4(a)は従来の半導体受光モジュール
の一例であり、ホルダ4と、ロッドレンズ3と、フェル
ール2に取り付けられたシングルモード光ファイバ1
と、スライドリング8と、APDチップ5を搭載したス
テム6と、キャップ7とから構成されていた。ロッドレ
ンズ3はシングルモード光ファイバ1から出射される光
ビーム21をAPDチップ5上の数十ミクロン径(通常
30ないし100ミクロン)の受光部5aに絞り込むた
めのものである。
FIG. 4A shows an example of a conventional semiconductor light receiving module, which is a single mode optical fiber 1 attached to a holder 4, a rod lens 3 and a ferrule 2.
The slide ring 8, the stem 6 having the APD chip 5 mounted thereon, and the cap 7. The rod lens 3 is for narrowing the light beam 21 emitted from the single mode optical fiber 1 to the light receiving portion 5a on the APD chip 5 having a diameter of several tens of microns (usually 30 to 100 microns).

【0006】光ビームは、光学結合の安定性において高
い信頼度を得るために、受光部上にできるだけ小さなビ
ーム径に絞り込むのが通例であり、光ファイバ1とロッ
ドレンズ3とAPDチップ5の位置は、コア径が10ミ
クロンのシングルモード光ファイバを用いた場合には、
図4(b)のように光ビーム21がAPDチップ5の受
光部5a上で7ミクロン径程度に絞られるような位置関
係となるよう調整され固定される。スライドリング8は
フェルール2とホルダ4を任意の位置関係において固定
するためのものである。
In order to obtain a high degree of reliability in the stability of optical coupling, the light beam is usually narrowed down to the smallest possible beam diameter on the light receiving portion, and the positions of the optical fiber 1, rod lens 3 and APD chip 5 are positioned. When using a single mode optical fiber with a core diameter of 10 microns,
As shown in FIG. 4B, the light beam 21 is adjusted and fixed so as to have a positional relationship such that the light beam 21 is narrowed down to a diameter of about 7 microns on the light receiving portion 5a of the APD chip 5. The slide ring 8 is for fixing the ferrule 2 and the holder 4 in an arbitrary positional relationship.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
半導体受光モジュールでは、APD素子の光電流増倍率
は、入射光強度が数百マイクロワット程度と強い場合に
は、APD素子内部の増倍領域中央付近で電界強度が空
間電荷効果により下がるため光電流の増加が抑えられる
ことにより、下がることが知られている。
However, in the conventional semiconductor light receiving module, the photocurrent multiplication factor of the APD element is such that when the incident light intensity is as high as several hundreds of microwatts, the center of the multiplication area inside the APD element. It is known that the electric field strength is lowered in the vicinity due to the space charge effect, so that the increase of the photocurrent is suppressed and thus the electric field strength is lowered.

【0008】光ファイバ通信や光ファイバ計測において
は、入射光強度は通常数マイクロワット程度と弱いが、
受光部上に光ビームを絞って照射した場合、すなわち単
位面積当りの光強度が強くなるような場合には、空間電
荷効果の影響を受け増倍率が抑制される。
In optical fiber communication and optical fiber measurement, the incident light intensity is usually as low as several microwatts,
When the light beam is squeezed and irradiated onto the light receiving portion, that is, when the light intensity per unit area becomes strong, the multiplication factor is suppressed due to the influence of the space charge effect.

【0009】すなわち、上述した従来の半導体受光モジ
ュールでは、APDチップの受光部5a上で光ビーム2
1が7ミクロン径に絞られており、前述の空間電荷効果
を受けることによって光電流の増加が抑えられ、高い増
倍率を得るのが困難となる欠点がある。APDチップの
受光部上で光ビームが7ミクロン径に絞られた場合、例
えばInGaAs APDでは増倍率30における暗電
流は入射光強度が1マイクロワット程度ならば、数百ナ
ノアンペア程度となる。この値は、OTDRのような応
用分野においては増倍率30での暗電流として100ナ
ノアンペア以下という低い値が要求されるため問題とな
る。
That is, in the above-described conventional semiconductor light receiving module, the light beam 2 is received on the light receiving portion 5a of the APD chip.
1 has been narrowed down to a diameter of 7 μm, and there is a drawback that it is difficult to obtain a high multiplication factor because an increase in photocurrent is suppressed by receiving the above-mentioned space charge effect. When the light beam is narrowed to a diameter of 7 microns on the light receiving portion of the APD chip, for example, in InGaAs APD, the dark current at the multiplication factor 30 is about several hundred nanoamperes if the incident light intensity is about 1 microwatt. This value poses a problem in applications such as OTDR, where a low dark current of 100 nanoamperes or less is required as a dark current at a multiplication factor of 30.

【0010】そこで、本発明の技術的課題は、上記欠点
に鑑み、高い増倍率を達成し、増倍時の暗電流の低減を
はかる半導体受光モジュールを提供することである。
In view of the above-mentioned drawbacks, a technical object of the present invention is to provide a semiconductor light receiving module which achieves a high multiplication factor and reduces the dark current at the time of multiplication.

【0011】[0011]

【課題を解決するための手段】本発明の半導体受光モジ
ュールは、APDチップと光ファイバとを有し、前記光
ファイバから出射される光が前記APDチップ上の受光
部に受光径の50%以上のスポット径で照射されること
を特徴とする。
A semiconductor light receiving module of the present invention has an APD chip and an optical fiber, and the light emitted from the optical fiber is 50% or more of the light receiving diameter in a light receiving portion on the APD chip. It is characterized by being irradiated with a spot diameter of.

【0012】[0012]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0013】実施例1 図1(a)は本発明の一実施例である半導体受光モジュ
ールである。本実施例によれば半導体受光モジュール1
0は、ホルダ4と、ロッドレンズ3と、フェルール2に
取り付けられたシングルモード光ファイバ1と、スライ
ドリング8と、APDチップ5を搭載したステム6と、
キャップ7とから構成されている。各部の機能は従来と
同様であるが、シングルモード光ファイバ1とロッドレ
ンズ3とAPDチップ5の位置関係は、図1(b)のよ
うに光ビーム21のスポット径がAPDチップ5の受光
部5a上で受光径の50%以上となるように調整され
る。例えば、受光部5aが直径50ミクロンの場合、ビ
ーム径が25ミクロン以上となるように調整される。光
ビーム21をAPDチップ5の受光部5a上に受光部径
の50%以上となるように照射するのは、受光部5aに
おける単位面積当りの光強度を低くし、空間電荷効果を
抑制するためである。光ビーム21はできるだけ拡大し
てAPDチップ5の受光部に照射したほうが空間電荷効
果の抑制効果が著しくなるが、光ビーム21が受光部5
aからはみ出した場合、量子効率の低下及び光子の空乏
層外吸収による応答劣化を招くため、光学結合の信頼度
も考慮に入れて光ビーム21のスポット径の上限は受光
部径の90%としている。
Embodiment 1 FIG. 1A shows a semiconductor light receiving module which is an embodiment of the present invention. According to this embodiment, the semiconductor light receiving module 1
0 is a holder 4, a rod lens 3, a single mode optical fiber 1 attached to a ferrule 2, a slide ring 8, a stem 6 having an APD chip 5 mounted thereon,
It is composed of a cap 7. The function of each part is the same as the conventional one, but the positional relationship between the single mode optical fiber 1, the rod lens 3 and the APD chip 5 is such that the spot diameter of the light beam 21 is the light receiving part of the APD chip 5 as shown in FIG. It is adjusted to be 50% or more of the light receiving diameter on 5a. For example, when the light receiving portion 5a has a diameter of 50 μm, the beam diameter is adjusted to be 25 μm or more. The light beam 21 is irradiated onto the light receiving portion 5a of the APD chip 5 so as to have a diameter of 50% or more of the light receiving portion in order to reduce the light intensity per unit area in the light receiving portion 5a and suppress the space charge effect. Is. When the light beam 21 is expanded as much as possible and applied to the light receiving portion of the APD chip 5, the effect of suppressing the space charge effect becomes more remarkable.
If it is out of the range of a, the quantum efficiency is lowered and the response is deteriorated due to absorption of photons out of the depletion layer. There is.

【0014】光学結合の安定性に関しては、ロッドレン
ズ3−ホルダ4間の固定を半田で、フェルール2−スラ
イドリング8間、スライドリング8−ホルダ4間、キャ
ップ7(またはステム6)−ホルダ4間の固定をYAG
レーザ溶接により行うことにより高い信頼度を得ること
ができる。
Regarding the stability of the optical coupling, the rod lens 3 and the holder 4 are fixed by soldering, the ferrule 2 and the slide ring 8, the slide ring 8 and the holder 4, and the cap 7 (or stem 6) and the holder 4. YAG fixed between
High reliability can be obtained by performing laser welding.

【0015】このように本実施例の半導体受光モジュー
ルは、光ファイバから出射される光がAPDチップ上の
受光部の50ないし90%のスポット径で照射されるこ
とにより、図2に示すように、より低いバイアス電圧で
所要の増倍率を得ることが可能となるため、ある一定の
増倍率における暗電流値は低減されることになる。例え
ば、増倍率30での暗電流値は従来の数百ナノアンペア
に対して、受光部上での光ビームのスポット径を受光径
の50%とした場合、100ナノアンペア程度であり、
光ビームを更に拡大して受光径の80%とした場合に
は、数十ナノアンペアとなり、従来と比較して約1桁低
減される(図2参照)。
As described above, in the semiconductor light receiving module of this embodiment, the light emitted from the optical fiber is irradiated with the spot diameter of 50 to 90% of the light receiving portion on the APD chip, as shown in FIG. Since the required multiplication factor can be obtained with a lower bias voltage, the dark current value at a certain multiplication factor is reduced. For example, the dark current value at a multiplication factor of 30 is about 100 nanoamps when the spot diameter of the light beam on the light receiving portion is 50% of the light receiving diameter, as compared to the conventional several hundred nanoamps.
When the light beam is further expanded to 80% of the light receiving diameter, it becomes several tens nanoamperes, which is reduced by about one digit compared with the conventional case (see FIG. 2).

【0016】なお、本実施例では光ファイバとして、コ
ア径が小さいために通常出射光が小さいビーム径に絞ら
れるシングルモード光ファイバを用いたが、マルチモー
ド光ファイバを用いても構成できる。
In this embodiment, as the optical fiber, a single-mode optical fiber is used, which has a small core diameter so that the emitted light is usually narrowed to a small beam diameter. However, a multi-mode optical fiber can also be used.

【0017】実施例2 次に本発明の第2の実施例について図3を参照して説明
する。本実施例は、図3に示すように、第1の実施例と
異なりロッドレンズを有さず、キャップ7には比較的収
差の大きい曲面レンズ9が固着されており、かつ曲面レ
ンズ9−APDチップ5間の距離は光ビーム21がAP
Dの受光部の50%未満には絞れないような増倍率を与
えるように決定されている。キャップと一体化されたこ
の種の曲面レンズは、元来収差の比較的大きなレンズで
あるが、本発明のように光ビームを拡大するような光学
系では問題なく使用できるため、ロッドレンズのような
高価な光学部品を省くことができる。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, as shown in FIG. 3, unlike the first embodiment, there is no rod lens, the curved lens 9 having a relatively large aberration is fixed to the cap 7, and the curved lens 9-APD. As for the distance between the chips 5, the light beam 21 is AP
It is determined to give a multiplication factor that cannot be reduced to less than 50% of the light receiving portion of D. This type of curved lens integrated with the cap is originally a lens with relatively large aberration, but since it can be used without problems in an optical system that expands a light beam like the present invention, it can be used like a rod lens. It is possible to omit expensive optical components.

【0018】また、第1の実施例ではモジュール製造工
程中の光学結合作業において、たとえ光学結合効率が最
大となるように位置が調整されても光ビームが受光部上
でどの程度のビーム径になっているかを確認するのが困
難であり、このために製造工程が多少複雑となる。これ
に対し第2の実施例では光ファイバとAPDの光学結合
効率が最大となるように位置の調整を行うだけで良い。
Further, in the first embodiment, in the optical coupling work in the module manufacturing process, even if the position is adjusted so that the optical coupling efficiency is maximized, the beam diameter of the light beam on the light receiving portion becomes to what extent. It is difficult to confirm whether or not the manufacturing process is complicated. On the other hand, in the second embodiment, it is only necessary to adjust the position so as to maximize the optical coupling efficiency between the optical fiber and the APD.

【0019】このように第2の実施例は、第1の実施例
と比べ部品点数および工数が削減できるためコストの低
減がはかれる。
As described above, in the second embodiment, the number of parts and man-hours can be reduced as compared with the first embodiment, so that the cost can be reduced.

【0020】[0020]

【発明の効果】以上説明したように本発明の半導体受光
モジュールは、光ファイバから出射される光がAPDチ
ップ上の受光部に受光径の50%以上のスポット径で照
射されることにより、高い光電流増倍率が得られ、増倍
時の暗電流を低減できるという効果がある。
As described above, in the semiconductor light receiving module of the present invention, the light emitted from the optical fiber is irradiated to the light receiving portion on the APD chip with a spot diameter of 50% or more of the light receiving diameter, so that it is high. The photocurrent multiplication factor can be obtained, and the dark current at the time of multiplication can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の半導体受光モジュールの一実
施例。(b)は(a)の光学結合系を示す図。
FIG. 1A is an embodiment of a semiconductor light receiving module of the present invention. (B) is a figure which shows the optical coupling system of (a).

【図2】本発明と従来の半導体受光モジュールの特性の
差異を説明するグラフ。
FIG. 2 is a graph illustrating a difference in characteristics between the present invention and a conventional semiconductor light receiving module.

【図3】本発明の半導体受光モジュールの第2の実施
例。
FIG. 3 shows a second embodiment of the semiconductor light receiving module of the present invention.

【図4】(a)は従来の半導体受光モジュールの一例を
示す図。(b)は(a)の光学結合系を示す図。
FIG. 4A is a diagram showing an example of a conventional semiconductor light receiving module. (B) is a figure which shows the optical coupling system of (a).

【符号の説明】[Explanation of symbols]

1 シングルモード光ファイバ 2 フェルール 3 ロッドレンズ 4 ホルダ 5 APDチップ 5a 受光部 6 ステム 7 キャップ 8 スライドリング 9 曲面レンズ 10 半導体受光モジュール 21 光ビーム 1 single mode optical fiber 2 ferrule 3 rod lens 4 holder 5 APD chip 5a light receiving part 6 stem 7 cap 8 slide ring 9 curved lens 10 semiconductor light receiving module 21 light beam

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8422−4M H01L 31/10 B Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 8422-4M H01L 31/10 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定の受光径を有するアバランシェフォ
トダイオードチップと、該アバランシェフォトダイオー
ドチップに、所定のスポット径をもって、光を出射して
光学結合する光ファイバとを有する半導体受光モジュー
ルにおいて、 前記光ファイバは、前記アバランシェフォトダイオード
チップの受光径の50%以上のスポット径ですることを
特徴とする半導体受光モジュール。
1. A semiconductor light receiving module having an avalanche photodiode chip having a predetermined light receiving diameter and an optical fiber for emitting light and optically coupling the light to the avalanche photodiode chip with a predetermined spot diameter. The semiconductor light receiving module, wherein the fiber has a spot diameter of 50% or more of the light receiving diameter of the avalanche photodiode chip.
JP4173452A 1992-06-30 1992-06-30 Semiconductor optical detection module Pending JPH0621485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4173452A JPH0621485A (en) 1992-06-30 1992-06-30 Semiconductor optical detection module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173452A JPH0621485A (en) 1992-06-30 1992-06-30 Semiconductor optical detection module

Publications (1)

Publication Number Publication Date
JPH0621485A true JPH0621485A (en) 1994-01-28

Family

ID=15960734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173452A Pending JPH0621485A (en) 1992-06-30 1992-06-30 Semiconductor optical detection module

Country Status (1)

Country Link
JP (1) JPH0621485A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058278A (en) * 2007-08-30 2009-03-19 Anritsu Corp Optical transceiver module and optical pulse tester
US8019188B2 (en) 2008-11-21 2011-09-13 Fuji Xerox Co., Ltd. Optical transmission apparatus
JP2020086017A (en) * 2018-11-20 2020-06-04 三菱電機株式会社 Semiconductor optical reception device and optical module
US11137282B2 (en) 2019-09-30 2021-10-05 Asahi Kasei Microdevices Corporation Optical concentration measurement device comprising a light receiving unit with a rectangular light receiving surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058278A (en) * 2007-08-30 2009-03-19 Anritsu Corp Optical transceiver module and optical pulse tester
US8019188B2 (en) 2008-11-21 2011-09-13 Fuji Xerox Co., Ltd. Optical transmission apparatus
JP2020086017A (en) * 2018-11-20 2020-06-04 三菱電機株式会社 Semiconductor optical reception device and optical module
US11137282B2 (en) 2019-09-30 2021-10-05 Asahi Kasei Microdevices Corporation Optical concentration measurement device comprising a light receiving unit with a rectangular light receiving surface

Similar Documents

Publication Publication Date Title
US5127075A (en) Transmission and reception module for bi-directional optical message and signal transmission
US4733094A (en) Bidirectional optoelectronic component operating as an optical coupling device
JP3436009B2 (en) Optical semiconductor device
US20030010904A1 (en) High speed fiber to photodetector interface
US20100302543A1 (en) Method of manufacturing optical receiver module and apparatus for manufacturing the same
JPH0621485A (en) Semiconductor optical detection module
US20240094358A1 (en) SiPM with Cells of Different Sizes
JPS6315846Y2 (en)
US5164581A (en) Concentric photoelectric light-receiving element
US4754131A (en) Devices using avalanche photodiode and capable of detecting a small number of photons
KR100225186B1 (en) Photosensitive semiconductor device
US7782921B2 (en) Integrated optical detector in semiconductor reflector
US4164650A (en) Means for reducing nuclear radiation-induced fluorescence noise in fiber-optics communications systems
JPH0595123A (en) Light receiving module
CN113219603B (en) Optical path coupling method for multi-channel light receiving component
JP3191823B2 (en) Semiconductor light receiving device
KR970005215B1 (en) Semiconductor light detecting device
US20220221664A1 (en) Method of manufacturing light receiving module
JP3003324B2 (en) Optical receiving module
JP3191822B2 (en) Semiconductor light receiving device
JPH09229769A (en) Apparatus and method for measuring very weak light
US7157686B2 (en) Optical receiver
JPH0587973U (en) Optical semiconductor device module
JPH03104286A (en) Adp light receiving device
CN116667938A (en) Optical receiver and optical fiber module

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981111