JPH06214277A - Second harmonic wave generating element and its production - Google Patents

Second harmonic wave generating element and its production

Info

Publication number
JPH06214277A
JPH06214277A JP5085259A JP8525993A JPH06214277A JP H06214277 A JPH06214277 A JP H06214277A JP 5085259 A JP5085259 A JP 5085259A JP 8525993 A JP8525993 A JP 8525993A JP H06214277 A JPH06214277 A JP H06214277A
Authority
JP
Japan
Prior art keywords
polarization inversion
refractive index
substrate
domain
mask pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5085259A
Other languages
Japanese (ja)
Inventor
Yukihiro Yamamoto
幸弘 山本
Noriko Yamada
紀子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5085259A priority Critical patent/JPH06214277A/en
Publication of JPH06214277A publication Critical patent/JPH06214277A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Abstract

PURPOSE:To alternately produce non-polarization inversion regions and polarization inversion regions having no refractive index difference from a substrate in order to facilitate element design in the production of the pseudo phase matching type second harmonic wave generating element for which the minus (z) face of KTP is utilized. CONSTITUTION:This pseudo phase matching type second harmonic wave generating element is produced by forming parallel grating-like master patterns consisting of a Ti metal, etc., on the minus face of the KTP, then alternately producing the non-polarization inversion regions 4 and the polarization inversion regions 3 having no refractive index difference from the substrate and producing a channel waveguide 2 orthogonal therewith.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光を利用する
光情報処理分野、光応用計測制御分野、印刷・製版分
野、医用分野に使用する光波長変換素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion element used in the fields of optical information processing utilizing laser light, optical applied measurement control field, printing / plate making field, and medical field.

【0002】[0002]

【従来の技術】光の波長を第二高調波に効率よく変換し
てやるためには、波長変換素子内での位相整合条件が満
足される必要がある。この方法としては従来より角度位
相整合、温度位相整合、導波路を用いる方法等が提案さ
れ用いられてきた。最近、位相整合方法として注目され
ているものに周期構造を用いた擬似位相整合と呼ばれる
方法があり、例えば、Phys.Rev., Vol.127,p,1918,196
2., J.A.Armstrongらによって示されている。これは周
期的に結晶内の分極方向を反転して基本波と高調波の位
相不整合量を補償しようとするものである。
2. Description of the Related Art In order to efficiently convert the wavelength of light into a second harmonic, it is necessary to satisfy the phase matching condition in the wavelength conversion element. As this method, angle phase matching, temperature phase matching, a method using a waveguide, etc. have been proposed and used conventionally. Recently, a method called quasi-phase matching using a periodic structure has been attracting attention as a phase matching method. For example, Phys. Rev., Vol. 127, p, 1918, 196
2., as shown by JA Armstrong et al. In this method, the polarization direction in the crystal is periodically inverted to compensate for the phase mismatch between the fundamental wave and the harmonic.

【0003】ここで分極反転とは使用する一定方向に分
極した単結晶誘電体材料の分極の方向を反転させること
をいう。この手法をSHG素子に適用したものが分極反
転型SHG素子である。この分極反転を起こさせるに
は、これまでに種々の方法が行われている。例えば、ニ
オブ酸リチウム(LN)単結晶ではTi金属の熱拡散が
用いられている。タンタル酸リチウム(LT)単結晶で
はプロトン交換後、急速加熱という手法が用いられてい
る。LN、LT両結晶においては、格子状に分極反転領
域と非分極反転領域とを形成し、そのパターンに直交す
る方向にチャンネル導波路を作製し、素子としている。
図2に素子の構造を示す。
Here, the polarization reversal means reversing the direction of polarization of the single crystal dielectric material polarized in a fixed direction to be used. A polarization inversion type SHG element is obtained by applying this method to an SHG element. Various methods have been used to cause this polarization inversion. For example, thermal diffusion of Ti metal is used in lithium niobate (LN) single crystals. For lithium tantalate (LT) single crystal, a method of rapid heating after proton exchange is used. In both LN and LT crystals, polarization inversion regions and non-polarization inversion regions are formed in a lattice pattern, and channel waveguides are formed in a direction orthogonal to the pattern to form a device.
FIG. 2 shows the structure of the device.

【0004】また、KTPにおいては、硝酸ルビジウム
の溶融塩に浸すことによるというイオン交換法によりセ
グメントタイプのチャンネル導波路を作製すると同時に
その溶融塩に硝酸バリウムを添加し、その部分を分極反
転させることにより、分極反転型SHG素子の作製が行
われている(Appl. Phys. Lett., Vol.57,No.20,p,207
4, 1990)。図3に素子の構造を示す。
Further, in KTP, a segment type channel waveguide is produced by an ion exchange method by immersing in a molten salt of rubidium nitrate, and at the same time barium nitrate is added to the molten salt to invert the polarization. Has produced a domain-inverted SHG device (Appl. Phys. Lett., Vol. 57, No. 20, p, 207).
4, 1990). FIG. 3 shows the structure of the device.

【0005】[0005]

【発明が解決しようとする課題】これまでには、上述し
たようにKTPの分極を反転させる方法として、Rb塩
にBa塩を添加しておくという方法が報告されているの
みである。この方法ではイオン交換した部分としない部
分とに屈折率差が生じる。SHG素子を設計作製する際
に、この僅かな屈折率差を考慮して分極反転の幅を計算
する必要が生じるという問題点があった。
As a method of reversing the polarization of KTP as described above, only the method of adding Ba salt to Rb salt has been reported so far. In this method, a difference in refractive index occurs between the ion-exchanged portion and the non-ion-exchanged portion. When designing and manufacturing the SHG element, there is a problem in that it is necessary to calculate the width of polarization inversion in consideration of this slight difference in refractive index.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めには、分極反転させた後に屈折率差が生じない様にす
る必要がある。そこで本発明においては、KTPにおい
て分極を反転させるのに、カリウムとバリウムの混合塩
の溶融塩を使用することによりイオン交換を行い、分極
反転のみ行われ、屈折率差が出ないようにすることがで
きることを発見した。また、はじめにルビジウム(また
は、タリウム)とバリウムの混合塩の溶融塩により、分
極反転を行い、さらに、カリウムの溶融塩でルビジウム
をカリウムに戻し、分極反転領域が非分極反転領域と屈
折率差のないようにできる事を発見した。このことによ
り、KTP単結晶において、非分極反転領域と基板と屈
折率差の無い分極反転領域を交互に作製する事を特徴と
する擬似位相整合型第二高調波発生素子を作製する事が
できる。
In order to solve the above problems, it is necessary to prevent a difference in refractive index after polarization inversion. Therefore, in the present invention, in order to invert the polarization in KTP, ion exchange is performed by using a molten salt of a mixed salt of potassium and barium so that only polarization inversion is performed and no difference in refractive index occurs. I discovered that I can do it. In addition, first, polarization inversion is performed with a molten salt of a mixed salt of rubidium (or thallium) and barium, and rubidium is returned to potassium with a molten salt of potassium. I found that I can prevent it. As a result, in the KTP single crystal, a quasi-phase matching type second harmonic generating element characterized by alternately manufacturing the non-polarization inversion region and the polarization inversion region having no refractive index difference with the substrate can be produced. .

【0007】使用する塩については、KTP結晶が分解
する温度以下であれば、どんな塩でも良い。また、カリ
ウム塩とバリウム塩のモル比については、バリウム塩の
比が大きくなれば、分極反転の時間が短くなる。また、
バリウム塩のかわりにマグネシウム塩、カルシウム塩、
ストロンチウム塩を用いてもよい。マスクとしては、T
iを用いたが、使用する塩の種類により適度にAl、T
a、Ni、Cr等または、それらの合金等のマスクパタ
ーン形成用金属を使用する事ができる。
The salt used may be any salt as long as it is below the temperature at which the KTP crystal decomposes. Regarding the molar ratio of the potassium salt to the barium salt, the larger the ratio of the barium salt, the shorter the time for polarization reversal. Also,
Instead of barium salt, magnesium salt, calcium salt,
Strontium salts may be used. As a mask, T
i was used, but depending on the type of salt used, Al, T
It is possible to use a mask pattern forming metal such as a, Ni, Cr or the like, or an alloy thereof.

【0008】[0008]

【作用】本発明は前記の構成により屈折率差の無い分極
反転領域が作製でき、素子作製の際のマスクパターンの
転写誤差も含めた素子設計が簡単になり、より正確な素
子が作製できる。さらに、グレーティング型の分極反転
領域に直角にチャンネル導波路を作製すれば、散乱損失
の無い、変換効率の高いSHG素子が作製できる。図1
に素子の構造を示す。
According to the present invention, the domain inversion region having no difference in refractive index can be produced by the above-mentioned constitution, the device design including the mask pattern transfer error at the time of device production can be simplified, and a more accurate device can be produced. Furthermore, if a channel waveguide is formed at right angles to the grating-type domain-inverted region, an SHG element having no scattering loss and high conversion efficiency can be manufactured. Figure 1
Shows the structure of the device.

【0009】[0009]

【実施例】本発明による実施例を以下に説明する。 1.本発明の第1実施例である光波長変換素子の斜視図
を図1に示す。基板はKTPを用いている。この基板5
のマイナスz面上にレジストをスピンコートし、フォト
リソによりレジストのグレーティング状のパターニング
を行った。グレーティングの周期は、4ミクロンであ
る。Tiスパッタの後、レジストを除去し、Tiのパタ
ーンを作製した。硝酸カリウムと硝酸バリウムの80対
20の混合物(他の塩でもよい。)の溶融塩(300〜
450℃)に10分ないし4時間浸し、非分極反転領域
4と基板と屈折率差の無い分極反転領域3を交互に作製
した。Tiを除去し、このストライプパターンに直交す
る方向に、チャンネル導波路2を上記と同じ手法でTi
マスクを使用し、ルビジウム、セシウム、タリウム等の
塩の溶融塩に浸す事により作製して、光波長変換素子が
できる。
EXAMPLES Examples according to the present invention will be described below. 1. FIG. 1 shows a perspective view of an optical wavelength conversion device which is a first embodiment of the present invention. The substrate uses KTP. This board 5
A resist was spin-coated on the minus z surface of the above, and the resist was patterned into a grating shape by photolithography. The grating period is 4 microns. After Ti sputtering, the resist was removed and a Ti pattern was formed. Molten salt of 300 to 80 mixture of potassium nitrate and barium nitrate (other salts may be used) (300-).
By immersing it in 450 ° C.) for 10 minutes to 4 hours, non-polarization inversion regions 4 and polarization inversion regions 3 having no difference in refractive index from the substrate were alternately produced. After removing Ti, the channel waveguide 2 is formed in the direction orthogonal to this stripe pattern by the same method as described above.
An optical wavelength conversion element can be prepared by immersing in a molten salt of a salt such as rubidium, cesium, and thallium using a mask.

【0010】本発明による素子と、従来行われているセ
グメント型の素子の変換効率の比較を表1に示す。ほぼ
同等の特性を示す。素子長はともに5mmである。ま
た、硝酸カリウムと硝酸バリウムの80対20の混合物
の溶融塩(350℃)に10分間浸したときの等価屈折
率を表2に示す。
Table 1 shows a comparison of conversion efficiency between the device according to the present invention and the conventional segment type device. It shows almost the same characteristics. Both element lengths are 5 mm. Table 2 shows the equivalent refractive index when immersed in a molten salt (350 ° C.) of a mixture of 80:20 potassium nitrate and barium nitrate for 10 minutes.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】2.本発明の第2実施例である光波長変換
素子の斜視図を図1に示す。基板はKTPを用いてい
る。この基板5のマイナスz面上にレジストをスピンコ
ートし、フォトリソによりレジストのグレーティング状
のパターニングを行った。格子の周期は、4ミクロンで
ある。Tiスパッタの後、レジストを除去し、Tiのパ
ターンを作製した。硝酸ルビジウムと硝酸バリウムの8
0対20の混合物(他の塩でもよい。)の溶融塩(30
0〜450℃)に10分ないし4時間浸し、非分極反転
領域4と基板と屈折率差の無い分極反転領域3を交互に
作製した。その後、硝酸カリウムの溶融塩(300〜4
50℃)に10分ないし4時間浸し、ルビジウムをカリ
ウムにイオン交換する。Tiを除去し、このストライプ
パターンに直交する方向に、チャンネル導波路を上記と
同じ手法でTiマスクを使用し、ルビジウム、セシウ
ム、タリウム等の塩の溶融塩に浸す事により作製して、
光波長変換素子ができる。
2. FIG. 1 is a perspective view of a light wavelength conversion device which is a second embodiment of the present invention. The substrate uses KTP. A resist was spin-coated on the minus z surface of the substrate 5, and the resist was patterned into a grating by photolithography. The grating period is 4 microns. After Ti sputtering, the resist was removed and a Ti pattern was formed. 8 of rubidium nitrate and barium nitrate
Molten salt (30) of a mixture of 0 to 20 (other salts may be used)
By immersing it in 0 to 450 ° C. for 10 minutes to 4 hours, non-polarization inversion regions 4 and polarization inversion regions 3 having no difference in refractive index from the substrate were produced alternately. Then, a molten salt of potassium nitrate (300-4
It is immersed in 50 ° C.) for 10 minutes to 4 hours to ion-exchange rubidium with potassium. By removing Ti, in a direction orthogonal to this stripe pattern, a channel waveguide is prepared by immersing it in a molten salt of rubidium, cesium, thallium, etc. using a Ti mask in the same manner as above,
An optical wavelength conversion element can be made.

【0014】本発明による素子と、従来行われているセ
グメント型の素子の変換効率の比較を表1に示す。ほぼ
同等の特性を示す。素子長はともに5mmである。ま
た、硝酸カリウムと硝酸バリウムの80対20の混合物
の溶融塩(350℃)に10分間浸したとき、及びカリ
ウムに戻しイオン交換したときの等価屈折率を表2に示
す。
Table 1 shows a comparison of conversion efficiency between the device according to the present invention and the conventional segment type device. It shows almost the same characteristics. Both element lengths are 5 mm. Table 2 shows the equivalent refractive index when immersed in a molten salt (350 ° C.) of a mixture of 80:20 potassium nitrate and barium nitrate for 10 minutes and when ion exchange was carried out by returning to potassium.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、K
TPのマイナスz面においてTi金属等によるグレーテ
ィング状のマスクパターンの形成後、イオン交換し、非
分極反転領域と基板と屈折率差の無い分極反転領域を交
互に作製することができる。そして、素子作製の際の非
分極反転領域と分極反転領域との屈折率差の考慮や、マ
スクパターンの転写誤差も含めた素子設計が簡単にな
り、より正確な素子が作製できることになる。
As described above, according to the present invention, K
After forming a grating-shaped mask pattern of Ti metal or the like on the minus z plane of TP, ion exchange is performed to alternately form non-polarization inversion regions and polarization inversion regions having no refractive index difference with the substrate. Then, consideration of the refractive index difference between the non-polarization-inverted region and the polarization-inverted region at the time of manufacturing the device and the device design including the transfer error of the mask pattern are simplified, and a more accurate device can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の分極反転型波長変換素子の
概略図である。
FIG. 1 is a schematic diagram of a polarization inversion type wavelength conversion element according to an embodiment of the present invention.

【図2】ニオブ酸リチウム(LN)における分極反転型
波長変換素子の概略図である。
FIG. 2 is a schematic diagram of a polarization inversion type wavelength conversion element in lithium niobate (LN).

【図3】KTPにおける従来の分極反転型波長変換素子
の概略図である。
FIG. 3 is a schematic view of a conventional polarization inversion wavelength conversion element in KTP.

【符号の説明】[Explanation of symbols]

1 LN基板 2 光導波路 3 分極反転領域 4 非分極反転領域 5 KTP基板 1 LN substrate 2 Optical waveguide 3 Polarization inversion region 4 Non-polarization inversion region 5 KTP substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 KTP単結晶において、非分極反転領域
と基板の屈折率が同じである事を特徴とする擬似位相整
合型第二高調波発生素子。
1. A quasi-phase matching type second harmonic wave generating element, wherein in a KTP single crystal, the non-polarization inversion region and the substrate have the same refractive index.
【請求項2】 KTP単結晶のマイナスz面においてマ
スクパターン形成用金属による平行なグレーティング状
マスクパターンの形成後、カリウムとバリウムの混合塩
の溶融塩によりイオン交換する事により、非分極反転領
域と基板と屈折率差の無い分極反転領域を交互に作製
し、それに直交したチャンネル導波路とを作製する事を
特徴とする擬似位相整合型第二高調波発生素子の製造方
法。
2. A non-polarization inversion region is formed by ion exchange with a molten salt of a mixed salt of potassium and barium after forming a parallel mask pattern of a mask pattern forming metal on the minus z plane of a KTP single crystal. A method of manufacturing a quasi-phase-matching second harmonic generation element, characterized in that a substrate and a domain-inverted region having no difference in refractive index are alternately manufactured, and a channel waveguide perpendicular to the substrate is manufactured.
【請求項3】 KTP単結晶のマイナスz面においてマ
スクパターン形成用金属による平行なグレーティング状
マスクパターンの形成後、ルビジウムとバリウムの混合
塩の溶融塩によりイオン交換する事により、非分極反転
領域と分極反転領域を交互に作製し、同一部分をカリウ
ムを含む溶融塩によりルビジウムをカリウムに戻し、非
分極反転部分と分極反転部分との屈折率差をなくし、そ
れに直交したチャンネル導波路とを作製する事を特徴と
する擬似位相整合型第二高調波発生素子の製造方法。
3. A non-polarization inversion region is formed by ion-exchange with a molten salt of a mixed salt of rubidium and barium after forming a parallel grating-shaped mask pattern with a metal for forming a mask pattern on the minus z plane of a KTP single crystal. The domain-inverted regions are alternately produced, and rubidium is returned to potassium by a molten salt containing the same part to eliminate the difference in the refractive index between the non-domain-inverted part and the domain-inverted part, and a channel waveguide orthogonal to it is prepared. A method of manufacturing a quasi-phase-matching second harmonic generation device characterized by the above.
JP5085259A 1992-11-27 1993-03-19 Second harmonic wave generating element and its production Withdrawn JPH06214277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085259A JPH06214277A (en) 1992-11-27 1993-03-19 Second harmonic wave generating element and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34115192 1992-11-27
JP4-341151 1992-11-27
JP5085259A JPH06214277A (en) 1992-11-27 1993-03-19 Second harmonic wave generating element and its production

Publications (1)

Publication Number Publication Date
JPH06214277A true JPH06214277A (en) 1994-08-05

Family

ID=26426274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085259A Withdrawn JPH06214277A (en) 1992-11-27 1993-03-19 Second harmonic wave generating element and its production

Country Status (1)

Country Link
JP (1) JPH06214277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197429A1 (en) * 2018-04-11 2019-10-17 Universität Paderborn Production of waveguides made of materials from the ktp family

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197429A1 (en) * 2018-04-11 2019-10-17 Universität Paderborn Production of waveguides made of materials from the ktp family
US11181802B2 (en) 2018-04-11 2021-11-23 Universität Paderborn Production of waveguides made of materials from the KTP family

Similar Documents

Publication Publication Date Title
US5157754A (en) Wavelength conversion by quasi phase matching and the manufacture and use of optical articles therefor
JP2858479B2 (en) Optical articles for wavelength conversion and their manufacture and use
JPH103100A (en) Optical waveguide parts, optical parts, manufacture of optical waveguide parts, and manufacture of periodic polarization inversion structure
JPH06214277A (en) Second harmonic wave generating element and its production
EP0454071B1 (en) Wavelength conversion by quasi phase matching and the manufacture and use of optical articles therefor
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
US5339190A (en) Optical waveguide second harmonic generating element and method of making the same
JP3296500B2 (en) Wavelength conversion element and method of manufacturing the same
JP3565858B2 (en) Segmented lightwave reflectors with selected Bragg reflection properties and insensitive to linewidth
WO2002103450A1 (en) Device for wavelength conversion and optical computing
JPH06347849A (en) Second harmonic wave generating element
JPH0736070A (en) Wavelength converting element and its production
JPH07311395A (en) Second harmonic generating element
Roth Stoichiometry and domain structure of KTP-type nonlinear optical crystals
JPH07294971A (en) Production of second harmonic wave generating element
JPH0822041A (en) Second harmonic generating element
JP3552135B2 (en) Waveguide and wavelength conversion element using the same
JP2538161B2 (en) Method for manufacturing optical waveguide and lens
JPH09211512A (en) Second order nonlinear optical element
JPH07294970A (en) Second harmonic wave generating element and its production
JPH05216082A (en) Production of optical waveguide and production of optical wavelength conversion element
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JPH10301154A (en) Optical second harmonic generating element and optical device using the same
JPH0720515A (en) Wavelength conversion element and its production
Byer et al. Laser Physics and Laser Spectroscopy.

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530