JPH06213978A - Test circuit for switch - Google Patents

Test circuit for switch

Info

Publication number
JPH06213978A
JPH06213978A JP629393A JP629393A JPH06213978A JP H06213978 A JPH06213978 A JP H06213978A JP 629393 A JP629393 A JP 629393A JP 629393 A JP629393 A JP 629393A JP H06213978 A JPH06213978 A JP H06213978A
Authority
JP
Japan
Prior art keywords
test
transformer
switch
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP629393A
Other languages
Japanese (ja)
Inventor
Hiromi Iwai
弘美 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP629393A priority Critical patent/JPH06213978A/en
Publication of JPH06213978A publication Critical patent/JPH06213978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To provide a circuit constitution in a test circuit for switches which has a capacitor as a power source charged with direct current, makes the capacitor discharge through the primary coil of a transformer and generates a test current with a specified frequency, and current value so that the statinary part in recovery voltage appearing between both terminals of the switch after the cutoff of the test current by the test switch in the secondary side of the transformer becomes alternating current with equal frequency to the test current frequency. CONSTITUTION:A possibility of the circuit is that a quick closing switch 92 having a short closing time, or a trigger cap or a trigger cap having in series a short circuit where closing operation is mechanically performed and a reactor 41 having nearly equal inductance to the leak inductance appearing in the primary side of transformer 5 are connected in series. Another possible constitution is a series circuit of a capacitor and a reactor having larger inductance than leak inductance of the primary side of the transformer are connected in parallel to the primary coil of the transformer 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、直流で充電されるコ
ンデンサと、保護用遮断器と、投入器と、変圧器の1次
巻線とが直列に接続されて構成され、変圧器の2次側に
遮断試験用開閉器を接続し前記投入器を投入して直流で
充電された前記コンデンサを放電させて変圧器の2次側
に所定周波数, 所定電流値の試験電流を発生させる開閉
器の試験回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a capacitor charged with direct current, a protective circuit breaker, a closing device, and a primary winding of a transformer connected in series. A switch for connecting a disconnection test switch to the secondary side and turning on the switch to discharge the capacitor charged with direct current to generate a test current of a predetermined frequency and a predetermined current value on the secondary side of the transformer. Test circuit.

【0002】[0002]

【従来の技術】近年、開閉器の電流遮断性能を検証する
ため、直流で充電されたコンデンサを電源とするととも
にコンデンサの静電容量を利用したLC共振回路で交流
電流を得る試験回路が発電機を使用する大がかりな試験
回路に代わり多用されだしている。図6に基本回路を示
す。電源コンデンサ1に直列に保護用遮断器2、投入器
3、電流の周波数および電流値12を試験値に調整する
リアクトル4と、変圧器5の1次巻線とを接続して閉回
路を形成し、前記変圧器5の2次側に試験用開閉器6を
接続し、所定の試験電流13と試験電流遮断後の回復電
圧とが得られるように設計されている。
2. Description of the Related Art In recent years, in order to verify the current interruption performance of a switch, a test circuit using a capacitor charged with direct current as a power source and obtaining an alternating current with an LC resonance circuit utilizing the electrostatic capacitance of the capacitor is a generator. It has started to be widely used instead of a large-scale test circuit using. The basic circuit is shown in FIG. A closed circuit is formed by connecting a protective circuit breaker 2, a make-up device 3, a reactor 4 for adjusting a current frequency and a current value 12 to a test value, and a primary winding of a transformer 5 in series with a power supply capacitor 1. The test switch 6 is connected to the secondary side of the transformer 5 so that a predetermined test current 13 and a recovery voltage after the test current is cut off can be obtained.

【0003】図7に図6の回路の各機器のシーケンスと
遮断試験時の波形との説明図を示す。試験開始に先立
ち、保護遮断器2を閉極し、試験用開閉器6も閉極す
る。次に充電装置10で電源コンデンサ1を所定の直流
電圧に充電して試験準備完了となる。試験シーケンスを
開始し、投入器3を閉極すると変圧器の1次回路に電流
I21 (図7) が流れる。この電流が変圧器5の巻数比
により大きさが変わり2次側の試験用開閉器6に試験電
流13として流れる。試験用開閉器6を図7の61のよ
うに開極するとt1のアーク時間で電流の零値を迎え遮
断することになる。また、この時点では、図7に示すコ
ンデンサ1の端子電圧波形11からも分かるように、変
圧器2次巻線の端子電圧も所定の回復電圧を有するの
で、交流開閉器の遮断性能がコンデンサによる直流電源
を用いて検証されることになる。
FIG. 7 shows an explanatory diagram of the sequence of each device of the circuit of FIG. 6 and the waveforms during the interruption test. Prior to the start of the test, the protective circuit breaker 2 is closed and the test switch 6 is also closed. Next, the charging device 10 charges the power supply capacitor 1 to a predetermined DC voltage to complete the test preparation. When the test sequence is started and the injector 3 is closed, a current I21 (Fig. 7) flows through the primary circuit of the transformer. This current changes in size depending on the turns ratio of the transformer 5, and flows as a test current 13 into the test switch 6 on the secondary side. When the test switch 6 is opened as indicated by 61 in FIG. 7, the current reaches a zero value and is cut off in the arc time t1. Further, at this time point, as can be seen from the terminal voltage waveform 11 of the capacitor 1 shown in FIG. 7, the terminal voltage of the transformer secondary winding also has a predetermined recovery voltage, so that the breaking performance of the AC switch depends on the capacitor. It will be verified using a DC power supply.

【0004】[0004]

【発明が解決しようとする課題】しかし、変圧器の2次
回路に流れる試験電流の遮断により、変圧器の2次回路
が開放され、変圧器の2次側巻線の対地浮遊容量51と
変圧器の2次側巻線のインダクタンスとによる過渡振動
を伴った回復電圧が試験用開閉器の両端子間に印加され
る。しかし、変圧器の2次回路が開放されると、変圧器
1次巻線のインピーダンスが洩れインピーダンス (以下
短絡インピーダンスともいう) から値の極めて大きな励
磁インピーダンスに変化する。このため、図7の記号1
4に示すように、電源コンデンサの静電容量と変圧器の
励磁インピーダンスとで決まる極めてゆるやかな振動回
復電圧 (擬似直流電圧) になり、交流開閉器としての商
用周波数の回復電圧が得られない。
However, due to the interruption of the test current flowing through the secondary circuit of the transformer, the secondary circuit of the transformer is opened, and the stray capacitance 51 to the ground of the transformer secondary winding and the transformer. A recovery voltage accompanied by transient vibration due to the inductance of the secondary winding of the switch is applied between both terminals of the test switch. However, when the secondary circuit of the transformer is opened, the impedance of the primary winding of the transformer changes from leakage impedance (hereinafter also referred to as short-circuit impedance) to exciting impedance having an extremely large value. Therefore, the symbol 1 in FIG.
As shown in Fig. 4, the vibration recovery voltage (pseudo DC voltage) becomes extremely gentle, which is determined by the electrostatic capacity of the power supply capacitor and the excitation impedance of the transformer, and the recovery voltage at the commercial frequency as an AC switch cannot be obtained.

【0005】一方、開閉器の電流遮断直後の主接触子開
離間隙の耐圧は、電流遮断が余裕をもって行われた場合
と辛じて行われた場合とで時間経過が異なり、辛うじて
行われた場合は、回復電圧の過渡振動部につづく定常部
領域で時間が経っても耐圧が上昇せず、横這いから徐々
に低下して、商用周波数の数サイクル後の時点で再発弧
に到る場合がある。このため、開閉器の遮断試験では、
開閉器による電流遮断後、回復電圧は少なくとも商用周
波数の数サイクル保持することが必要とされている。
On the other hand, the withstand voltage of the main contact opening gap immediately after the breaking of the current of the switch is barely carried out because the time lapse differs depending on whether the breaking of the current is performed with margin or when it is barely carried out. In this case, the withstand voltage does not rise even after a lapse of time in the steady-state region following the transient oscillating portion of the recovery voltage, but it may level off from leveling off and then re-arc after a few cycles of the commercial frequency. is there. Therefore, in the breaking test of the switch,
After the current is cut off by the switch, the recovery voltage is required to hold at least several cycles of the commercial frequency.

【0006】一方、主接触子開離間隙の耐圧には極性が
あり、直流回復電圧のように一方の極性のみを印加した
のでは不必要に過酷な試験となるか、緩和された試験と
なり、両極性で試験をしたとしても遮断の成否の判定は
過酷側の試験の結果から行うことになり、交流回復電圧
のように、両極性が交互に現れ、かつ両極性波高値の間
で電圧が小さくなって絶縁回復の期間が与えられる場合
との等価性を判断することは困難であるという問題点が
あった。
On the other hand, the withstand voltage of the main contact opening gap has a polarity, and if only one polarity is applied as in the DC recovery voltage, the test becomes unnecessarily harsh or a relaxed test. Even if the test is performed with both polarities, the success or failure of the interruption will be judged from the result of the test on the severe side.As with the AC recovery voltage, the two polarities will appear alternately and the voltage between the two peak values will change. There is a problem that it is difficult to judge the equivalence with the case where the period is reduced and the period for insulation recovery is given.

【0007】この発明の目的は、冒頭記載の基本回路構
成による、直流で充電されたコンデンサを電源とする交
流開閉器の試験回路を、変圧器2次側での電流遮断後に
試験用開閉器にかかる回復電圧の定常部が直流電圧とな
ることを防止し、試験電流と同一周波数の交流回復電圧
となる回路とすることである。
An object of the present invention is to provide a test circuit of an AC switch, which has a basic circuit configuration described at the beginning and uses a capacitor charged with DC as a power source, as a test switch after the current is cut off on the secondary side of the transformer. It is to prevent the steady-state portion of the recovery voltage from becoming a DC voltage, and to provide a circuit that becomes an AC recovery voltage having the same frequency as the test current.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、直流で充電されるコンデンサ
と、保護用遮断器と、投入器と、変圧器の1次巻線とが
直列に接続されて構成され、変圧器の2次側に遮断試験
用開閉器を接続し前記投入器を投入して直流で充電され
た前記コンデンサを放電させて変圧器の2次側に所定周
波数, 所定電流値の試験電流を発生させる開閉器の試験
回路を、変圧器の2次側に接続されている遮断試験用開
閉器で試験電流を遮断した直後に遮断試験用開閉器の両
端子間に現れる回復電圧の定常部が所定周波数と所定波
高値とを持つ交流回復電圧となるように前記変圧器の1
次側巻線に並列に、投入信号受信から閉極までの時間が
短い機械的な高速投入器と, 変圧器の1次側からみた洩
れインダクタンスにほぼ等しいインダクタンスを有する
リアクトルとの直列回路を備えた回路とする。
In order to solve the above problems, in the present invention, a capacitor charged with direct current, a protective circuit breaker, an injector, and a primary winding of a transformer are connected in series. Is connected to the secondary side of the transformer, the switching test switch is connected to the secondary side of the transformer, the charging device is turned on to discharge the capacitor charged with direct current, and a predetermined frequency is applied to the secondary side of the transformer. Immediately after breaking the test current with the breaking test switch connected to the secondary side of the transformer between the two terminals of the breaking test switch, generate a test current of a specified current value. 1 of the transformer so that the steady-state part of the recovered recovery voltage becomes an alternating recovery voltage having a predetermined frequency and a predetermined peak value.
Equipped with a series circuit in parallel with the secondary winding, a mechanical high-speed injector with a short time from receiving the closing signal to closing the pole, and a reactor having an inductance almost equal to the leakage inductance seen from the primary side of the transformer. Circuit.

【0009】ここで、上記高速投入器に代えてトリガキ
ャップを用いてもよい。また、上記高速投入器に代え、
トリガキャップと,このトリガキャップ閉極動作により
短絡する機械的短絡器とを並列に接続してなる短絡器付
きトリガキャップを用いるようにしてもよい。あるい
は、本発明が対象とした上記基本回路構成による試験回
路を、前記変圧器の2次側に接続されている遮断試験用
開閉器で試験電流を遮断した直後に遮断試験用開閉器の
両端子間に現れる回復電圧の定常部が所定周波数と所定
波高値とを持つ交流回復電圧となるように前記変圧器の
1次側巻線に、並列にコンデンサと,変圧器の1次側か
らみた洩れインダクタンスより大きいインダクタンスを
有するリアクトルとの直列回路を備えた回路とするのも
よい。
Here, a trigger cap may be used in place of the above-mentioned high speed injector. Also, instead of the high-speed thrower,
It is also possible to use a trigger cap with a short circuit, which is formed by connecting a trigger cap and a mechanical short circuit that is short-circuited by this trigger cap closing operation in parallel. Alternatively, in the test circuit having the above-mentioned basic circuit configuration which is the object of the present invention, immediately after the test current is cut off by the breaking test switch connected to the secondary side of the transformer, both terminals of the breaking test switch are connected. Leakage seen from the primary side of the transformer in parallel with the primary winding of the transformer so that the steady part of the recovery voltage appearing between them becomes an AC recovery voltage having a predetermined frequency and a predetermined peak value. It may be a circuit including a series circuit with a reactor having an inductance larger than the inductance.

【0010】[0010]

【作用】本発明は、さきに述べたように、回復電圧定常
部の電圧を直流電圧とした場合の商用周波数レベルの周
波数を有する交流電圧との等価性を理論的に証明するこ
とが困難な点に着目したものである。しかし、上述のよ
うに、変圧器1次巻線に並列に、高速投入器と,変圧器
の1次側からみた洩れインダクタンスにほぼ等しいイン
ダクタンスを有するリアクトルとの直列回路を接続した
試験回路とすることにより、変圧器2次側での電流遮断
直後の回復電圧過渡振動部につづく定常部を試験電流の
周波数に等しい周波数の交流回復電圧とすることができ
る。このために、詳細は実施例の項で説明するが、変圧
器1次側の回路に電流検出センサを設けるとともに、こ
の電流検出センサが検出した電流から電流零値前の所定
時点を検出して出力する駆動パルス発生手段を試験回路
の制御系に設け、この駆動パルス発生手段が出力した変
圧器2次側での試験電流最終零値前所定時点の信号で高
速投入器を始動させ、回復電圧過渡振動部での振動の減
衰終了時点近傍で閉極させる。これにより、変圧器1次
巻線に並列に、変圧器1次側からみた洩れインダクタン
スに等しいインダクタンスを有したリアクトルが接続さ
れるが、洩れインダクタンスは励磁インダクタンスと比
べて極めて小さいから、変圧器1次側回路の電流周波数
は電流遮断前と同じ試験電流の周波数を維持する。従っ
て、電源コンデンサの電圧を調整することにより、変圧
器2次側での電流遮断後に試験用開閉器にかかる回復電
圧定常部を、試験電流の周波数と所定の波高値とを有す
る交流回復電圧とすることができる。
As described above, according to the present invention, it is difficult to theoretically prove the equivalence with the AC voltage having the frequency of the commercial frequency level when the DC voltage is the voltage of the recovery voltage steady portion. It focuses on the points. However, as described above, a test circuit is used in which a series circuit of a high-speed injector and a reactor having an inductance substantially equal to the leakage inductance seen from the primary side of the transformer is connected in parallel with the transformer primary winding. As a result, the steady-state part following the recovery voltage transient oscillating part immediately after the current is cut off on the secondary side of the transformer can be set to an AC recovery voltage having a frequency equal to the frequency of the test current. For this reason, as will be described in detail in the section of the embodiment, a current detection sensor is provided in the circuit on the primary side of the transformer, and a predetermined time point before the current zero value is detected from the current detected by the current detection sensor. The drive pulse generating means for outputting is provided in the control system of the test circuit, and the high speed injector is started by the signal at the predetermined time point before the final zero value of the test current on the secondary side of the transformer output by the drive pulse generating means to start the recovery voltage. The pole is closed in the vicinity of the end of vibration damping in the transient vibration part. As a result, a reactor having an inductance equal to the leakage inductance seen from the transformer primary side is connected in parallel with the transformer primary winding. However, since the leakage inductance is extremely smaller than the exciting inductance, the transformer 1 The current frequency of the secondary circuit maintains the same test current frequency as before the current interruption. Therefore, by adjusting the voltage of the power supply capacitor, the recovery voltage steady-state part applied to the test switch after the current is cut off on the secondary side of the transformer is changed to the AC recovery voltage having the frequency of the test current and the predetermined peak value. can do.

【0011】ここで、高速動作をする機械的な高速投入
器に代えて、通常広く用いられているトリガキャップ
(始動キャップ) を使用するようにすれば、機械的な高
速投入器が高精度の動作時間と、その使用頻度に基づい
て要求される長寿命とから機械的にも電気的にも頑丈に
作られ、かなり高価なものになるのに対し、より安価に
目的を達成することができる。
Here, in place of a mechanical high-speed injector that operates at high speed, a trigger cap that is generally widely used is used.
By using the (starting cap), the mechanical high-speed injector can be made mechanically and electrically robust because of its highly accurate operation time and the long life required based on its frequency of use. Therefore, the purpose can be achieved at a lower cost, while it is considerably expensive.

【0012】さらに、機械的な高速投入器に代えて、ト
リガキャップと,このトリガキャップを閉極動作で短絡
する機械的な短絡器とを並列に接続してなる短絡器付き
トリガキャップを用いるようにすることにより、短絡器
は上記高速投入器のように高速かつ高精度の動作時間を
必要としないので、トリガキャップの動作に先行して閉
極することのないように動作時間のばらつきを見込んで
閉極時点を設定するのみにて、トリガキャップのアーク
による消耗を安価に抑制することができ、長寿命で経済
的な、かつ回復電圧の過渡振動部から定常部への移行時
点の制御を精度高く行いうる高速投入手段とすることが
できる。
Further, instead of the mechanical high-speed injector, a trigger cap with a short circuit, which is formed by connecting in parallel a trigger cap and a mechanical short circuit which short-circuits the trigger cap by closing operation, is used. By doing so, the short-circuit device does not require a high-speed and highly accurate operation time unlike the above-mentioned high-speed injector, so the variation in the operation time is expected so that it will not be closed before the operation of the trigger cap. It is possible to suppress the consumption of the trigger cap due to the arc at low cost simply by setting the closing time with, and to control the transition time of the recovery voltage from the transient vibration part to the steady part at a long life and economically. It can be a high-speed charging means that can perform with high accuracy.

【0013】また、変圧器1次巻線に並列に、コンデン
サと,変圧器1次側からみた洩れインダクタンスより大
きいインダクタンスを有するリアクトルとの直列回路を
接続した試験回路では、試験電流周波数に等しい周波数
の交流回復電圧を得るのに、実施例の項で詳述するよう
に、試験用開閉器開放後にこの直列回路に流れる電流
を、従来の試験回路で試験用開閉器閉極中に変圧器1次
巻線に流れる電流よりも大幅に小さくすることができ、
これにより、電源コンデンサ等の回路要素を大型化する
ことなく、かつ時間制御を必要とすることなく、回復電
圧定常部のみならず、過渡振動部の振動中心を含めて試
験電流周波数の交流回復電圧とすることができる。
Further, in a test circuit in which a series circuit of a capacitor and a reactor having an inductance larger than the leakage inductance seen from the transformer primary side is connected in parallel with the transformer primary winding, a frequency equal to the test current frequency is obtained. In order to obtain the AC recovery voltage of, the current flowing in this series circuit after the test switch is opened is changed by the transformer 1 during the closing of the test switch in the conventional test circuit, as will be described in detail in the embodiment section. It can be made much smaller than the current flowing in the next winding,
As a result, the AC recovery voltage of the test current frequency including not only the recovery voltage steady-state part but also the vibration center of the transient vibration part can be obtained without increasing the size of circuit elements such as the power supply capacitor and without requiring time control. Can be

【0014】[0014]

【実施例】図1に本発明による試験回路の第1の実施例
を、図2に、この試験回路による遮断試験時の回路構成
機器の動作シーケンスと各部の電圧、電流とを示す。試
験回路は、電源コンデンサ1、保護用遮断器2、投入器
3、試験電流を所定の周波数、電流値に合致させるため
の微調整可能なリアクトル4および変圧器5の1次巻線
を直列に接続して構成され、変圧器5の2次巻線端子間
に試験用開閉器6が接続される。さらに、変圧器5の1
次側回路には電流検出センサ8と、その出力信号で駆動
パルスを出力する駆動パルス発生回路7が配置され、投
入器3の閉極時点を時間の起点とし、図2のシーケンス
に従って試験用開閉器6が、図示されていない時間制御
装置により開極するように駆動信号が試験用開閉器6に
与えられる。なお、図2において、記号11はコンデン
サ1の端子電圧、12は変圧器5の1次側回路の電流波
形、31は投入器3の閉極動作、61は試験用開閉器の
開極動作、71は変圧器5の1次側巻線に並列に配置さ
れる, 高速投入器92を駆動する駆動パルスである。9
20は高速投入器92の閉極動作、13は変圧器5の2
次側回路の電流波形、14は試験用開閉器6の端子間に
現れる電圧波形をそれぞれ示す。
FIG. 1 shows a first embodiment of the test circuit according to the present invention, and FIG. 2 shows the operation sequence of the circuit-constituting equipment and the voltage and current of each part during the interruption test by this test circuit. The test circuit consists of a power supply capacitor 1, a protective circuit breaker 2, a make-up device 3, a finely adjustable reactor 4 for matching a test current with a predetermined frequency and current value, and a primary winding of a transformer 5 in series. The test switch 6 is connected between the secondary winding terminals of the transformer 5. In addition, transformer 1
A current detection sensor 8 and a drive pulse generation circuit 7 that outputs a drive pulse by its output signal are arranged in the secondary side circuit, and the closing point of the injector 3 is used as the starting point of time, and the test opening / closing is performed according to the sequence of FIG. A drive signal is applied to the test switch 6 so that the device 6 is opened by a time control device (not shown). In FIG. 2, symbol 11 is the terminal voltage of the capacitor 1, 12 is the current waveform of the primary side circuit of the transformer 5, 31 is the closing operation of the injector 3, 61 is the opening operation of the test switch, Reference numeral 71 is a drive pulse for driving the high speed injector 92, which is arranged in parallel with the primary winding of the transformer 5. 9
20 is the closing operation of the high-speed injector 92, 13 is 2 of the transformer 5
The current waveform of the secondary circuit, and 14 are the voltage waveforms appearing between the terminals of the test switch 6.

【0015】この回路の試験はつぎの手順で実施され
る。試験用開閉器6が図2のシーケンスにおける記号6
1のように動作して、所定のアーク時間t1 で試験電流
の零値を迎え遮断する。試験電流13が零になるのと同
時に変圧器5の2次側巻線端子間に図1の浮遊容量51
と変圧器2次側巻線のインダクタンスとで決まる過渡振
動電圧が重畳された回復電圧14が発生する。この電圧
波形の定常部を試験電流周波数で振動させるため、変圧
器5の1次巻線に流れる電流12の零値前Δt1で駆動
パルス発生回路7により駆動パルスを発生させ、試験電
流13が零になり変圧器5の2次側巻線端子間の発生す
る回復電圧14の過渡振動部が無くなる時間Δt2 後に
高速投入器92を閉極させる。駆動パルス発生から高速
投入器92閉極までの時間 (Δt1 +Δt2 ) に高速投
入器92の閉極動作時間が含まれる。なお、変圧器5の
1次側回路の電流波形12の内、121は変圧器5の1
次巻線に流れる電流であり、122は高速投入器92と
リアクトル41との直列回路に流れる電流を示す。
The test of this circuit is carried out in the following procedure. The test switch 6 is the symbol 6 in the sequence of FIG.
It operates like 1 and reaches the zero value of the test current at a predetermined arc time t 1 and shuts off. At the same time that the test current 13 becomes zero, the stray capacitance 51 of FIG.
The recovery voltage 14 is generated by superimposing the transient vibration voltage determined by the inductance of the secondary winding of the transformer. In order to oscillate the steady part of this voltage waveform at the test current frequency, the drive pulse generation circuit 7 generates a drive pulse at Δt 1 before the zero value of the current 12 flowing in the primary winding of the transformer 5, and the test current 13 becomes The high speed injector 92 is closed after a time Δt 2 at which the transient oscillation part of the recovery voltage 14 generated between the secondary winding terminals of the transformer 5 becomes zero and disappears. The time (Δt 1 + Δt 2 ) from the generation of the driving pulse to the closing of the high speed closing device 92 includes the closing operation time of the high speed closing device 92. In the current waveform 12 of the primary side circuit of the transformer 5, 121 is the transformer 1
122 is a current flowing through the next winding, and 122 is a current flowing through a series circuit of the high speed injector 92 and the reactor 41.

【0016】図3は図1の高速投入器92の代わりにト
リガキャップ91を使用した, 図1と別の実施例を示
す。変圧器5の1次側回路の電流波形12の零値前Δt
1 で駆動パルスを発生させ回復電圧14 (図2) の過渡
振動部が無くなる時間Δt2 までのトリガキャップ91
の動作時間調整は駆動パルス発生回路7に遅延時間回路
(図示されていない) を設けることで達成される。さら
に、図3(b) は図3(a)と別の実施例として、前記トリ
ガキャップ91に機械的に閉極動作をする短絡器94を
並列に配置し、トリガキャップ91の損傷を防ぐためト
リガキャップ91の動作後できるだけ速く閉極させトリ
ガキャップ91のアークを消滅させるようにしたものを
示す。
FIG. 3 shows an embodiment different from that of FIG. 1 in which a trigger cap 91 is used instead of the high speed injector 92 of FIG. Before the zero value Δt of the current waveform 12 of the primary side circuit of the transformer 5
Trigger cap 91 up to time Δt 2 when the drive pulse is generated at 1 and the transient vibration part of recovery voltage 14 (FIG. 2) disappears.
To adjust the operating time of the drive pulse generator circuit 7
This is accomplished by providing (not shown). Further, FIG. 3 (b) shows another embodiment of FIG. 3 (a), in which a short-circuiting device 94 for mechanically closing the pole is arranged in parallel with the trigger cap 91 to prevent the trigger cap 91 from being damaged. It shows that the trigger cap 91 is closed as soon as possible after its operation so that the arc of the trigger cap 91 is extinguished.

【0017】図4は本発明の第2の実施例を示す。図1
の高速投入器92とリアクトル42との直列回路の代り
にコンデンサ93( C1 ) とリアクトル42( L2 ) と
の直列回路を配置したもので、図5に動作シーケンスを
示す。試験用開閉器が所定のアーク時間t1 で試験電流
13の零値を迎え遮断されると、変圧器5の2次側が開
放されるために変圧器5の1次側からの短絡インピーダ
ンスが励磁インピーダンスになり、コンデンサ1の直流
電圧が全て変圧器5の1次巻線に印加されるから、並列
に接続されているコンデンサ93とリアクトル42との
直列回路に、図5の1次側電流12の内、123の電流
が流れ出し、変圧器の変圧比に応じ2次側に回復電圧1
4が発生する。
FIG. 4 shows a second embodiment of the present invention. Figure 1
In place of the series circuit of the high speed injector 92 and the reactor 42, a series circuit of a capacitor 93 (C 1 ) and a reactor 42 (L 2 ) is arranged, and the operation sequence is shown in FIG. When the test switch reaches the zero value of the test current 13 at a predetermined arc time t 1 and is cut off, the secondary side of the transformer 5 is opened and the short-circuit impedance from the primary side of the transformer 5 is excited. Since it becomes impedance and all the DC voltage of the capacitor 1 is applied to the primary winding of the transformer 5, the primary side current 12 of FIG. 5 is added to the series circuit of the capacitor 93 and the reactor 42 which are connected in parallel. Of this, 123 current flows out, and the recovery voltage 1 is applied to the secondary side according to the transformation ratio of the transformer.
4 occurs.

【0018】ここで、コンデンサ93とリアクトル42
との直列回路が変圧器1次巻線に並列に接続されていな
いと仮定したときに試験用開閉器6が閉じている期間で
の変圧器5の1次巻線電流と、変圧器5の2次側電流が
試験用開閉器で遮断された後のコンデンサ93とリアク
トル41との直列回路に流れる電流との関係は次のよう
になり、実用的に問題なく変圧器5の2次側発生電圧を
試験電流周波数の交流回復電圧とすることができる。
Here, the condenser 93 and the reactor 42
And the primary winding current of the transformer 5 during the period when the test switch 6 is closed, assuming that the series circuit of is not connected in parallel to the transformer primary winding, The relationship between the current flowing in the series circuit of the capacitor 93 and the reactor 41 after the secondary side current is cut off by the test switch is as follows, and the secondary side of the transformer 5 is generated without any practical problem. The voltage can be an AC recovery voltage at the test current frequency.

【0019】即ち、開閉器6が閉極中であれば次の式が
成立する。
That is, if the switch 6 is closed, the following equation holds.

【0020】[0020]

【数1】 [Equation 1]

【0021】ここで、 I121 :変圧器1次巻線に流れる電流の波高値 V1 :コンデンサ1の充電電圧 L1 :リアクトルのインダクタンス LT :変圧器1次側からみた洩れインダクタンス C1 :コンデンサ1の静電容量[0021] Here, I 121: transformer primary winding flows crest value V 1 of the current: the charging voltage of the capacitor 1 L 1: Reactor inductance L T: inductance C 1 leakage viewed from the transformer primary side: Capacitance of capacitor 1

【0022】[0022]

【数2】 I13 =N・I121 (2) ここで、 I13 :変圧器2次巻線に流れる電流の波高値 N :変圧器の変圧比[Number 2] I 13 = N · I 121 ( 2) where, I 13: peak value N of the current flowing through the transformer secondary winding: transformation ratio of the transformer

【0023】[0023]

【数3】 (2πf0 ) 2 =C1 ( L1 +LT ) (3) ここで、 f0 :I121 , I13の周波数 また、開閉器6が開放され電流13が流れていない状態
では次の式が成立する。なお、この場合には、変圧器1
次側からみた励磁インダクタンスが極めて大きいので、
計算上無限大とみなす。
## EQU3 ## (2πf 0) 2 = C 1 (L 1 + L T) (3) where, f 0: frequency of I 121, I 13 In a state where the switchgear 6 is no current 13 is opened to flow The following equation holds. In this case, transformer 1
Since the excitation inductance seen from the secondary side is extremely large,
Considered as infinite in calculation.

【0024】[0024]

【数4】 [Equation 4]

【0025】ここで、 I123 :コンデンサ93とリアクトル42との直列回
路に流れる電流の波高値
Where I 123 is the peak value of the current flowing in the series circuit of the capacitor 93 and the reactor 42.

【0026】[0026]

【数5】 [Equation 5]

【0027】ここで、 C0 :コンデンサ1とコンデンサ93との直列静電容量 C2 :コンデンサ93の静電容量( <<C1 )Here, C 0 : series capacitance of the capacitor 1 and the capacitor 93 C 2 : capacitance of the capacitor 93 (<< C 1 )

【0028】[0028]

【数6】 [Equation 6]

【0029】(3) 式および上記(6) 式より、From equation (3) and equation (6) above,

【0030】[0030]

【数7】 C1 ( L1 +LT )=C2 ( L1 +L2 ) (7) ここで、C1 >>C2 であるから、LT <<L2よっ
て、
## EQU7 ## C 1 (L 1 + L T ) = C 2 (L 1 + L 2 ) (7) Here, C 1 >> C 2 , and therefore L T << L 2 .

【0031】[0031]

【数8】 [Equation 8]

【0032】[0032]

【発明の効果】以上に述べたように、本発明では、本発
明が対象とした開閉器の試験回路、すなわち、直流で充
電されるコンデンサと、保護用遮断器と、投入器と、変
圧器の1次巻線とが直列に接続されて構成され、変圧器
の2次側に遮断試験用開閉器を接続し前記投入器を投入
して直流で充電された前記コンデンサを放電させて変圧
器の2次側に所定周波数, 所定電流値の試験電流を発生
させる開閉器の試験回路において、試験用開閉器による
変圧器2次側の試験電流遮断直後に試験用開閉器の両端
子間に現れる回復電圧の過渡振動部の振動減衰終了近傍
の時点で変圧器1次巻線に並列に、投入信号受信から閉
極までの時間が短い機械的な高速投入器と変圧器1次側
からみた洩れインダクタンスにほぼ等しいインダクタン
スを有するリアクトルとの直列回路、この高速投入器を
トリガキャップとした,前記リアクトルとの直列回路、
あるいは高速投入器を閉極動作が機械的に行われる短絡
器を並列に有するトリガキャップとして前記リアクトル
と直列にした回路を接続するようにし、あるいは、コン
デンサと変圧器の1次側からみた洩れインピーダンスよ
り大きいインダクタンスを有するインピーダンスとの直
列回路を変圧器1次巻線に並列に接続しておくようにし
たので、回復電圧定常部を試験電流周波数に等しい周波
数の交流回復電圧とすることができ、開閉器の電流遮断
能力の正しい評価が可能となった。これにより、通常段
階的に設定される開閉器の定格遮断容量の適用に際し、
不必要に1段階上位の定格のものを選択したり、あるい
は回復電圧定常部を直流電圧とする場合に極性の過酷さ
のちがいを誤認し、1段階下位の定格のものを選択した
りするようなことがなくなり、開閉器の選択に当たり、
信頼性と経済性とを両立させることができるようになっ
た。
As described above, according to the present invention, the test circuit of the switch targeted by the present invention, that is, the capacitor charged with direct current, the protective breaker, the closing device, and the transformer. The primary winding of the transformer is connected in series, and a switch for breaking test is connected to the secondary side of the transformer, and the charger is turned on to discharge the capacitor charged with direct current to transform the transformer. In a test circuit of a switch that generates a test current of a specified frequency and a specified current value on the secondary side of the transformer, it appears between both terminals of the test switch immediately after the test current of the transformer secondary side is cut off by the test switch. Leakage seen from the primary side of the mechanical high speed injector and the transformer primary side in parallel with the primary winding of the transformer near the end of the vibration damping of the transient vibration part of the recovery voltage, with a short time from receiving the closing signal to closing the pole. A reactor with an inductance approximately equal to the inductance A series circuit of a Le was the high speed closing device triggers cap, a series circuit of said reactor,
Alternatively, a circuit in series with the reactor is connected as a trigger cap having a short-circuiting device in parallel with which a high-speed injector is mechanically operated to close a pole, or a leakage impedance seen from the primary side of a capacitor and a transformer. Since a series circuit with an impedance having a larger inductance is connected in parallel to the transformer primary winding, the recovery voltage steady-state part can be an AC recovery voltage having a frequency equal to the test current frequency. It has become possible to correctly evaluate the current interruption capability of the switch. As a result, when applying the rated breaking capacity of the switch that is normally set in stages,
Unnecessarily select a one-step higher rating, or mistake the difference in the severity of polarity when the recovery voltage steady-state part is a DC voltage and select a one-step lower rating. No longer happens, and when selecting a switch,
It has become possible to achieve both reliability and economy.

【0033】そして、請求項1の回路では、機械的な高
速投入器が、投入信号のみにて閉極時点の精度高くリア
クトルを変圧器1次巻線に並列に接続することができ、
試験回路の制御が単純, 確実に行われうるメリットを有
する。また、請求項2の回路では、請求項1の場合と比
べ、高速投入手段としてのトリガキャップの寿命が短い
ものの、より経済的に本発明の目的を達成できるメリッ
トがある。
In the circuit of claim 1, the mechanical high-speed feeder can connect the reactor in parallel to the primary winding of the transformer with high accuracy at the closing time only by the closing signal.
It has the advantage that the control of the test circuit is simple and reliable. Further, in the circuit of claim 2, compared with the case of claim 1, although the life of the trigger cap as the high-speed closing means is short, there is an advantage that the object of the present invention can be achieved more economically.

【0034】さらに、請求項3の回路では、上記機械的
な高速投入器を使用する場合と比べ、試験回路の制御は
やや複雑となるものの、長寿命で経済的な,かつ時間制
御の精度の高い高速投入手段を得ることができる。そし
て、請求項4の回路では、従来の試験回路に新たな制御
手段を付加することなく試験を実施できるメリットがあ
る。
Further, in the circuit of claim 3, the control of the test circuit is slightly complicated as compared with the case where the mechanical high-speed feeder is used, but it has a long life and is economical, and the time control accuracy is high. A high speed charging means can be obtained. The circuit of claim 4 has an advantage that the test can be performed without adding new control means to the conventional test circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による試験回路構成の第1の実施例を示
す回路図
FIG. 1 is a circuit diagram showing a first embodiment of a test circuit configuration according to the present invention.

【図2】図1に示す試験回路による遮断試験時の試験回
路構成機器の動作シーケンスと回路各部の電圧, 電流波
形とを示す説明図
FIG. 2 is an explanatory diagram showing an operation sequence of test circuit constituent devices and a voltage and current waveform of each part of the circuit during a breaking test by the test circuit shown in FIG.

【図3】図1に示す試験回路構成の変形例を示す図であ
って、同図(a) はその第1の変形例を示す回路図、同図
(b) は第2の変形例を示す要部の回路図
3 is a diagram showing a modification of the test circuit configuration shown in FIG. 1, and FIG. 3 (a) is a circuit diagram showing the first modification thereof;
(b) is a circuit diagram of essential parts showing a second modification.

【図4】本発明による試験回路構成の第2の実施例を示
す回路図
FIG. 4 is a circuit diagram showing a second embodiment of the test circuit configuration according to the present invention.

【図5】図4に示す試験回路による遮断試験時の試験回
路構成機器の動作シーケンスと回路各部の電圧, 電流波
形とを示す説明図
5 is an explanatory diagram showing the operation sequence of the test circuit constituent equipment and the voltage and current waveforms of each part of the circuit at the time of the interruption test by the test circuit shown in FIG.

【図6】従来の試験回路構成の一例を示す回路図FIG. 6 is a circuit diagram showing an example of a conventional test circuit configuration.

【図7】図6に示す試験回路による遮断試験時の試験回
路構成機器の動作シーケンスと回路各部の電圧, 電流波
形とを示す説明図
7 is an explanatory diagram showing an operation sequence of test circuit constituent devices and a voltage and current waveform of each part of the circuit at the time of the interruption test by the test circuit shown in FIG.

【符号の説明】[Explanation of symbols]

1 コンデンサ 2 保護用遮断器 3 投入器 4 リアクトル 5 変圧器 6 開閉器(遮断試験用開閉器) 41 リアクトル 42 リアクトル 91 トリガキャップ 92 高速投入器 93 コンデンサ 94 短絡器 1 Capacitor 2 Protective Circuit Breaker 3 Charger 4 Reactor 5 Transformer 6 Switch (Switch for Breaking Test) 41 Reactor 42 Reactor 91 Trigger Cap 92 High-speed Charger 93 Capacitor 94 Short-circuiter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】直流で充電されるコンデンサと、保護用遮
断器と、投入器と、変圧器の1次巻線とが直列に接続さ
れて構成され、変圧器の2次側に遮断試験用開閉器を接
続し前記投入器を投入して直流で充電された前記コンデ
ンサを放電させて変圧器の2次側に所定周波数, 所定電
流値の試験電流を発生させる開閉器の試験回路におい
て、前記変圧器の2次側に接続されている遮断試験用開
閉器で試験電流を遮断した直後に遮断試験用開閉器の両
端子間に現れる回復電圧の定常部が所定周波数と所定波
高値とを持つ交流回復電圧となるように前記変圧器の1
次側巻線に並列に、投入信号受信から閉極までの時間が
短い機械的な高速投入器と, 変圧器の1次側からみた洩
れインダクタンスにほぼ等しいインダクタンスを有する
リアクトルとの直列回路を備えたことを特徴とする開閉
器の試験回路。
1. A DC charging capacitor, a protective circuit breaker, a closing device, and a primary winding of a transformer are connected in series, and the secondary side of the transformer is used for a breaking test. In a test circuit of a switch for connecting a switch and turning on the switch to discharge the capacitor charged with direct current to generate a test current having a predetermined frequency and a predetermined current value on the secondary side of the transformer, Immediately after breaking the test current with the breaking test switch connected to the secondary side of the transformer, the steady part of the recovery voltage that appears between both terminals of the breaking test switch has a predetermined frequency and a predetermined peak value. 1 of the transformer so that the AC recovery voltage is obtained.
Equipped with a series circuit in parallel with the secondary winding consisting of a mechanical high-speed injector with a short time from receiving the closing signal to closing the pole, and a reactor with an inductance that is approximately equal to the leakage inductance seen from the primary side of the transformer. A switch test circuit characterized by
【請求項2】請求項第1項に記載の試験回路において、
高速投入器に代えてトリガキャップを用いることを特徴
とする開閉器の試験回路。
2. The test circuit according to claim 1, wherein:
A switch test circuit characterized by using a trigger cap in place of a high-speed injector.
【請求項3】請求項第1項に記載の試験回路において、
高速投入器に代えてトリガキャップと,このトリガキャ
ップを閉極動作により短絡する機械的な短絡器とを並列
に接続してなる短絡器付きトリガキャップを用いること
を特徴とする開閉器の試験回路。
3. The test circuit according to claim 1, wherein:
A switch test circuit characterized by using a trigger cap with a short-circuit device, which is formed by connecting in parallel a trigger cap and a mechanical short-circuit device that short-circuits this trigger cap by a closing operation in place of the high-speed injector. .
【請求項4】直流で充電されるコンデンサと、保護用遮
断器と、投入器と、変圧器の1次巻線とが直列に接続さ
れて構成され、変圧器の2次側に遮断試験用開閉器を接
続し前記投入器を投入して直流で充電された前記コンデ
ンサを放電させて変圧器の2次側に所定周波数, 所定電
流値の試験電流を発生させる開閉器の試験回路におい
て、前記変圧器の2次側に接続されている遮断試験用開
閉器で試験電流を遮断した直後に遮断試験用開閉器の両
端子間に現れる回復電圧の定常部が所定周波数と所定波
高値とを持つ交流回復電圧となるように前記変圧器の1
次側巻線に並列に、コンデンサと,変圧器の1次側から
みた洩れインダクタンスより大きいインダクタンスを有
するリアクトルとの直列回路を備えたことを特徴とする
開閉器の試験回路。
4. A capacitor charged by direct current, a protective circuit breaker, a closing device, and a primary winding of a transformer are connected in series, and a secondary side of the transformer is used for a breaking test. In a test circuit of a switch for connecting a switch and turning on the switch to discharge the capacitor charged with direct current to generate a test current having a predetermined frequency and a predetermined current value on the secondary side of the transformer, Immediately after breaking the test current with the breaking test switch connected to the secondary side of the transformer, the steady part of the recovery voltage that appears between both terminals of the breaking test switch has a predetermined frequency and a predetermined peak value. 1 of the transformer so that the AC recovery voltage is obtained.
A test circuit for a switch, which is provided with a series circuit of a capacitor and a reactor having an inductance larger than a leakage inductance seen from the primary side of a transformer in parallel with a secondary winding.
JP629393A 1993-01-19 1993-01-19 Test circuit for switch Pending JPH06213978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP629393A JPH06213978A (en) 1993-01-19 1993-01-19 Test circuit for switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP629393A JPH06213978A (en) 1993-01-19 1993-01-19 Test circuit for switch

Publications (1)

Publication Number Publication Date
JPH06213978A true JPH06213978A (en) 1994-08-05

Family

ID=11634337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP629393A Pending JPH06213978A (en) 1993-01-19 1993-01-19 Test circuit for switch

Country Status (1)

Country Link
JP (1) JPH06213978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047784A (en) * 2009-08-27 2011-03-10 Toshiba Corp Reactor for power and testing method thereof
EP2765428A3 (en) * 2013-02-07 2018-01-03 Czech Technical University in Prague Device for automatic testing of power capacitors
CN112098887A (en) * 2020-08-17 2020-12-18 交控科技股份有限公司 Rail transit dry contact point state judgment system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047784A (en) * 2009-08-27 2011-03-10 Toshiba Corp Reactor for power and testing method thereof
EP2765428A3 (en) * 2013-02-07 2018-01-03 Czech Technical University in Prague Device for automatic testing of power capacitors
CN112098887A (en) * 2020-08-17 2020-12-18 交控科技股份有限公司 Rail transit dry contact point state judgment system and method
CN112098887B (en) * 2020-08-17 2024-01-26 交控科技股份有限公司 Rail transit dry contact state judging system and method

Similar Documents

Publication Publication Date Title
JPH06213978A (en) Test circuit for switch
US20060163879A1 (en) Engine driven power supply device
EP0925711A2 (en) Circuit arrangement for operating a discharge lamp
JPH09182296A (en) Reactive power compensation device
JP7325937B2 (en) Input test apparatus for vacuum circuit breaker and test method thereof
JPH063425A (en) Testing circuit for switch
JP2787050B2 (en) Insulation recovery test circuit for switchgear
JPH04363677A (en) Synthetic test circuit for breaker
JPH0651036A (en) Short line fault testing device
RU2478216C1 (en) Device for determining vacuum circuit breaker characteristics
RU2019849C1 (en) Device for testing high-voltage switches for switching off
SU420966A1 (en) METHOD FOR TESTING HIGH-VOLTAGE SWITCHES TO BREAKING ABILITY
JPH0349807Y2 (en)
SU789921A1 (en) Artificial circuit for testing switches
SU1465840A1 (en) Device for testing switches for switching-off of capacitive current
JPH0529087A (en) Discharge lamp lighting device
US2203467A (en) Arrangement for converting direct current into alternating current
US1997515A (en) Electric spark discharge system
JPH10224187A (en) Pulse power source device
SU1442944A2 (en) Apparatus for measuring interturn insulation of electric machine windings
SU938223A1 (en) Device for synthetic testing of switches for switching-off capability
JPH08126353A (en) Device for testing inversion of polarity of high dc voltage
JPS6030900B2 (en) Equivalent test method for breaker
SU567570A1 (en) Power supply source for hf contact microwelding with self-tuning
SU1653068A1 (en) Current protection for faults in ac networks