JPH06213640A - Curvature measurement method for rectangular body and its device - Google Patents

Curvature measurement method for rectangular body and its device

Info

Publication number
JPH06213640A
JPH06213640A JP401093A JP401093A JPH06213640A JP H06213640 A JPH06213640 A JP H06213640A JP 401093 A JP401093 A JP 401093A JP 401093 A JP401093 A JP 401093A JP H06213640 A JPH06213640 A JP H06213640A
Authority
JP
Japan
Prior art keywords
rectangular body
measurement
measuring
fixed point
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP401093A
Other languages
Japanese (ja)
Inventor
Nobuaki Takagi
伸明 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP401093A priority Critical patent/JPH06213640A/en
Publication of JPH06213640A publication Critical patent/JPH06213640A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a curvature quickly and efficiently in the middle step of product manufacture and to measure a curvature highly precisely even though a moving rectangular body inclines. CONSTITUTION:In a curvature measurement device which measure a curvature of a rectangular body 1 moving at a constant speed, a distance from the fixed point provided on a measurement line 5 crossing at right angles with the moving direction of the rectangular body 1 to the side face of the rectangular body 1 passing a measurement line 5 and a passing length of the rectangular body 1 on the measurement line 5 are measured respectively, an inclination of the rectangular body 1 in the moving direction deltaL=(L2-L1)/S is calculated, and a curvature of each points of the side face of the rectangular body 1 deltaIx= Lx-L1-xdeltaL is calculated. L1, L2, and Lx represent measurement distances from the fixed point to the side face point, side face end of the rectangular body 1, and from the point to the side face x, while S represents the passing length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建材などのパネルや柱等
の矩形体の曲がり度の測定方法および装置に関し、更に
詳しくは搬送手段により搬送されて移動中の矩形体が傾
いて移動する場合においても、高い精度で曲がり度を測
定する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the degree of bending of a rectangular body such as a panel or a pillar of a building material, and more particularly, to a case where a moving rectangular body is tilted and moved by a conveying means. Also relates to a method and an apparatus for measuring the degree of bending with high accuracy.

【0002】[0002]

【従来の技術】例えばセメント系の押出パネルのような
矩形体は、押出成形機から押し出されてローラコンベア
等の搬送手段により搬送移動され、所定長さに切断後養
生硬化される。しかし押出成形機または搬送手段の不調
により、矩形体が例えば左右に蛇行するような曲がりを
生じることがある。このような曲がりは製品不良の要因
の一つになるので、その曲がり度を測定しそれが一定値
以上の場合は不良品として処理する管理が行われてい
る。
2. Description of the Related Art A rectangular body such as a cement-based extruded panel is extruded from an extrusion molding machine, conveyed and conveyed by a conveying means such as a roller conveyor, cut into a predetermined length, and then cured and cured. However, due to a malfunction of the extruder or the conveying means, the rectangular body may bend, for example, meandering left and right. Since such bending is one of the causes of product defects, the degree of bending is measured, and if it is a certain value or more, it is treated as a defective product.

【0003】このような曲がり度測定として従来行われ
ている方法は、図8に示すように出来上がった製品であ
る矩形体1の長さ方向に平行な側面に直線定規2をあて
がい、長さ方向x各点の曲がり度δxを測定し、その最
大値が許容された値を越えるか否か判断していた。
A conventional method for measuring the bending degree is to apply a straight line ruler 2 to the side surface parallel to the length direction of a rectangular body 1 which is a finished product as shown in FIG. x The bending degree δx at each point was measured, and it was determined whether or not the maximum value exceeded the allowable value.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記の方
法は、最終製品段階でしか不良品が発見できないこと、
手作業で測定するので多大の工数がかかる上に測定に長
時間を要すること、さらに測定精度が低くバラツキがあ
ること等の問題があった。そこで本発明は以上の問題点
に鑑み、製造工程等において矩形体の移動中にオンライ
ンで迅速且つ高い精度で矩形体の曲がり度の測定をする
方法およびそのための装置を提供することを課題とする
ものである。
However, in the above method, a defective product can be found only in the final product stage,
Since the measurement is performed manually, there are problems that it takes a lot of man-hours, that the measurement takes a long time, and that the measurement accuracy is low and there are variations. In view of the above problems, it is an object of the present invention to provide a method for measuring the degree of bending of a rectangular body online and quickly and highly accurately during the movement of the rectangular body in a manufacturing process or the like, and an apparatus therefor. It is a thing.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
の本発明の曲がり度測定方法は、先ず、一定速度で移動
する矩形体の移動方向と直交する測定ライン上に設けた
定点から測定ラインを通過する矩形体の側面までの距離
および測定ライン上の矩形体の通過長を測定する。次
に、前記定点から矩形体の側面先端および側面末端まで
のそれぞれの測定距離L1 、L2 の差と前記通過長Sか
ら矩形体の移動方向の傾きδL=(L2 −L1 )/Sを
算出し、さらに前記定点から矩形体の側面各点までの測
定距離Lxと前記δLから矩形体の側面各点の曲がり度
δIx =Lx −L1−xδLを算出することを特徴とす
るものである。
According to the bending degree measuring method of the present invention for solving the above-mentioned problems, first, a measuring line from a fixed point provided on a measuring line orthogonal to the moving direction of a rectangular body moving at a constant speed is measured. The distance to the side surface of the rectangular body passing through and the passing length of the rectangular body on the measurement line are measured. Next, the difference between the measured distances L 1 and L 2 from the fixed point to the side end and side end of the rectangular body and the inclination δL = (L 2 −L 1 ) / of the moving direction of the rectangular body from the passage length S. S is calculated, and further, a measurement distance L x from the fixed point to each side surface point of the rectangular body and a bending degree δI x = L x −L 1 −x δL of each side surface point of the rectangular body are calculated from δL. It is what

【0006】また、前記課題を解決するための本発明の
曲がり度測定装置は、一定速度で移動する矩形体の移動
方向と直交する測定ライン上に設けた定点から測定ライ
ンを通過する矩形体の側面までの距離を測定する側面距
離測定手段と、測定ライン上の矩形体の通過長を測定す
る通過長測定手段と、前記定点から矩形体の側面先端お
よび側面末端までのそれぞれの測定距離L1 、L2 の差
と前記通過長Sから矩形体の移動方向の傾きδL=(L
2 −L1 )/Sを算出し、さらに前記定点から矩形体の
側面各点までの測定距離Lx と前記δLから矩形体の側
面各点の曲がり度δIx =Lx −L1 −xδLを算出す
る演算手段とを備えたことを特徴とするものである。
Further, the bending degree measuring device of the present invention for solving the above-mentioned problem is a rectangular body which passes through the measurement line from a fixed point provided on a measurement line orthogonal to the moving direction of the rectangular body which moves at a constant speed. A side distance measuring means for measuring a distance to a side surface, a passage length measuring means for measuring a passage length of a rectangular body on a measurement line, and respective measurement distances L 1 from the fixed point to a side surface tip and a side surface end of the rectangular body. , L 2 and the passage length S, the inclination δL = (L
2− L 1 ) / S is calculated, and the measured distance L x from the fixed point to each side surface point of the rectangular body and the degree of curvature δI x = L x −L 1 −x δL from δL to each side surface of the rectangular body. And a calculating means for calculating

【0007】[0007]

【作用】本発明の曲がり度測定方法によれば、移動中の
矩形体に対してオンラインで迅速に測定できるので、不
良品を初期の段階で取り除くことができる。また前記定
点から矩形体の側面先端および側面末端までのそれぞれ
の測定距離L1 、L2 の差と前記通過長Sから矩形体の
移動方向の傾きδL=(L2 −L1)/Sを算出し、さ
らに前記定点から矩形体の側面各点までの測定距離Lx
と前記δLから矩形体の側面各点の曲がり度δIx =L
x −L1 −xδLを算出するようにしているので、矩形
体が例えば移動方向に対して傾斜した姿勢で搬送された
としても、その傾斜を自動的に補正した正確な曲がり度
の測定をすることができる。
According to the bending degree measuring method of the present invention, since a moving rectangular body can be quickly measured online, defective products can be removed at an initial stage. Further, the difference between the measured distances L 1 and L 2 from the fixed point to the side end and side end of the rectangular body and the inclination δL = (L 2 −L 1 ) / S in the moving direction of the rectangular body from the passage length S The calculated distance L x from the fixed point to each point on the side surface of the rectangular body is calculated.
And the degree of curvature δI x = L at each point on the side surface of the rectangular body from the above δL
Since x− L 1 −xδL is calculated, even if the rectangular body is conveyed in a posture inclined with respect to the moving direction, the inclination is automatically corrected to accurately measure the bending degree. be able to.

【0008】[0008]

【実施例】次に本発明の実施例を図面により説明する。
図1は本発明の曲がり度測定装置を矩形体としてセメン
ト系押出パネルに適用した例を模式的に示す平面図、図
2はその正面図である。矩形体1はパレット3に乗せら
れてローラコンベア式の搬送手段4により矢印方向に一
定速度で移動される。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 is a plan view schematically showing an example in which the bending degree measuring device of the present invention is applied to a cement-based extrusion panel as a rectangular body, and FIG. 2 is a front view thereof. The rectangular body 1 is placed on a pallet 3 and moved at a constant speed in the arrow direction by a roller conveyor type conveying means 4.

【0009】矩形体1の移動方向と直交する測定ライン
5上に非接触式の側面距離測定手段6が設置されてお
り、この側面距離測定手段6は例えば三角測量の原理を
用いたレーザ測長器を使用することができる。図3に示
すように、この側面距離測定手段6は測定ライン5とそ
れに直交する定線7の交点を定点Pとし、その定点Pか
ら測定ライン4を通過する矩形体1の側面1aまでの距
離を非接触で測定するものである。なお側面距離測定手
段6の両側には、移動する矩形体1の先端および末端の
通過を検出するために、一対の反射式の光学センサー
8、9が設けられている。これら光学センサーは例えば
矩形体1の不存在のときにオフ、存在するときにオンに
なる信号を出力する。
A non-contact type side distance measuring means 6 is installed on a measuring line 5 orthogonal to the moving direction of the rectangular body 1, and the side distance measuring means 6 is, for example, a laser length measuring method using a principle of triangulation. Can be used. As shown in FIG. 3, the side surface distance measuring means 6 defines an intersection of the measurement line 5 and a fixed line 7 orthogonal thereto as a fixed point P, and the distance from the fixed point P to the side surface 1a of the rectangular body 1 passing through the measurement line 4. Is measured in a non-contact manner. A pair of reflective optical sensors 8 and 9 are provided on both sides of the side surface distance measuring means 6 in order to detect passage of the tip and the end of the moving rectangular body 1. For example, these optical sensors output signals that are turned off when the rectangular body 1 is absent and turned on when the rectangular body 1 is present.

【0010】図4は本発明の方法の原理を説明する図で
あり、搬送体1は矢印の移動方向に対して傾斜角θで傾
いて移動している場合を示している。測定ライン5と定
線7の交点である定点Pの位置は、前記側面距離測定手
段6における測定基準点である。そしてこの定点Pから
一定速度で移動中の矩形体の側面1aまでの距離を一定
時間間隔で次々と測定する。そのときの矩形体の側面1
aの測定位置は投影面として移動軸上に展開しP1 〜P
n で示してある。
FIG. 4 is a view for explaining the principle of the method of the present invention, and shows a case where the carrier 1 is tilted at an angle of inclination θ with respect to the moving direction of the arrow. The position of the fixed point P, which is the intersection of the measurement line 5 and the fixed line 7, is the measurement reference point in the side surface distance measuring means 6. Then, the distance from the fixed point P to the side surface 1a of the rectangular body moving at a constant speed is successively measured at a constant time interval. Side 1 of the rectangular body at that time
The measurement position of a is expanded on the moving axis as a projection plane, and P 1 to P
It is indicated by n .

【0011】すなわちこの例では矩形体の側面1aをn
等分して測定している。矩形体1は一定速度で移動する
ので、測定時間間隔(サンプリング間隔)をtとすると
矩形体の測定ライン5上を通過する矩形体の移動軸上の
長さ、すなわち矩形体の測定ライン5上の通過長Sはt
×nにより算出することができる。従ってこの例におい
ては、測定ライン上の矩形体の通過長は時間tの設定値
に測定回数nを乗算する演算手段により構成されてい
る。しかし矩形体の測定ライン上の通過長測定手段とし
ては、この他に例えば前記光学センサー8を利用するか
またはそれと同様なセンサーを設け、通過する矩形体の
先端と末端を検出し、その検出の時間差を計測するカウ
ンター等を設けて測定する方式でもよい。
That is, in this example, the side surface 1a of the rectangular body is n
It is measured in equal parts. Since the rectangular body 1 moves at a constant speed, assuming that the measurement time interval (sampling interval) is t, the length on the moving axis of the rectangular body passing on the measuring line 5 of the rectangular body, that is, on the measuring line 5 of the rectangular body. Passage length S is t
It can be calculated by × n. Therefore, in this example, the passage length of the rectangular body on the measurement line is constituted by the calculation means for multiplying the set value of the time t by the number of times of measurement n. However, as the passage length measuring means on the measurement line of the rectangular body, other than this, for example, the optical sensor 8 or a sensor similar thereto is provided to detect the leading end and the end of the passing rectangular body, and to detect the detection. A method of providing a counter or the like for measuring the time difference may be used.

【0012】上記のようにして定点Pから移動中の矩形
体の側面1aまでの距離を一定時間間隔で次々と測定
し、そのときの側面先端および側面末端までのそれぞれ
の測定距離L1 、L2 の差と前記通過長Sから矩形体の
移動方向の傾きδL=(L2 −L1 )/Sを算出する。
さらに前記定点Pから矩形体の側面1a各点までの測定
距離Lx と前記δLから矩形体の側面各点の曲がり度δ
x =Lx −L1 −xδLを算出する。そしてこの値が
許容値を越えたとき、その矩形体1を不良品として排除
する。
As described above, the distance from the fixed point P to the side surface 1a of the moving rectangular body is measured one after another at fixed time intervals, and the respective measurement distances L 1 and L to the side surface tip and the side surface end at that time are measured. The inclination δL = (L 2 −L 1 ) / S of the moving direction of the rectangular body is calculated from the difference of 2 and the passage length S.
Further, the measured distance L x from the fixed point P to each point on the side surface 1a of the rectangular body and the bending degree δ from δL to each point on the side surface of the rectangular body.
Calculating the I x = L x -L 1 -xδL . When this value exceeds the allowable value, the rectangular body 1 is rejected as a defective product.

【0013】図5は本発明の装置のブロック図であり、
この例では演算手段としてマイクロコンピュータシステ
ム10を使用している。側面距離測定手段6、光学セン
サー8および9の出力が処理装置11に入力される。さ
らに処理装置11には記憶装置12とキーボード13が
接続され、その出力はマーキング手段14と警報手段1
5に接続されている。
FIG. 5 is a block diagram of the apparatus of the present invention,
In this example, the microcomputer system 10 is used as the calculation means. The outputs of the side surface distance measuring means 6 and the optical sensors 8 and 9 are input to the processing device 11. Further, a storage device 12 and a keyboard 13 are connected to the processing device 11, and the output thereof is a marking means 14 and an alarm means 1.
Connected to 5.

【0014】記憶装置12はキーボード13から入力さ
れる測定時間間隔の設定値、演算式等を記憶するもので
あり、マーキング手段14は矩形体の曲がり度が許容値
を越えたときに矩形体にスプレー等によるマーキングを
し、警報手段15はその際にブサー等による警報を発す
る。それと共に図示しない排除手段により矩形体1は搬
送手段から系外に排除される。
The storage device 12 stores the set value of the measurement time interval inputted from the keyboard 13, the arithmetic expression, etc., and the marking means 14 is formed into a rectangular body when the bending degree of the rectangular body exceeds an allowable value. Marking is performed by spraying or the like, and the alarm means 15 issues an alarm by a buzzer or the like at that time. At the same time, the rectangular body 1 is excluded from the conveying means to the outside of the system by an excluding means (not shown).

【0015】次に図6および図7により図5の装置の作
用を説明すると、先ずスタート指令が出されると測定準
備に入る。その状態で測定ラインに矩形体の先端が到着
したことを光学センサ8、9の両者のオン信号により確
認(S1 )すると、設定されたサンプリング間隔、例え
ば1秒間隔で側面距離測定手段6は定点Pと矩形体の側
面距離の測定を開始する(S2 )。
Next, the operation of the apparatus shown in FIG. 5 will be described with reference to FIGS. 6 and 7. First, when a start command is issued, the measurement preparation is started. When the arrival of the tip of the rectangular body on the measurement line is confirmed by the ON signals of both the optical sensors 8 and 9 (S 1 ) in that state, the side surface distance measuring means 6 is set at the set sampling interval, for example, 1 second. The measurement of the side distance between the fixed point P and the rectangular body is started (S 2 ).

【0016】前記サンプリングと並行して矩形体の先端
位置を特定するため、先端基準用サンプリングを開始す
る(S3 )。この後者のサンプリングは例えば前者の1
/10(0.1秒)間隔で10回行う。次にこのサンプ
リング値を最大値から最小値まで順に並び変えるサンプ
ルデータソートを行い(S4 )、その中から最大より2
点、最小より2点をカットして残った6点で平均し、そ
れを先端基準値とする(S5 )。このようにして矩形体
の先端位置を特定するのは、矩形体にごみや凹凸が存在
する場合においても正確に特定するためである。
In parallel with the sampling, in order to specify the tip position of the rectangular body, the tip reference sampling is started (S 3 ). This latter sampling is, for example, the former 1
Perform 10 times at intervals of / 10 (0.1 seconds). Next, sample data sorting is performed in which the sampled values are rearranged in order from the maximum value to the minimum value (S 4 ), and 2 out of the maximum are sorted out.
Points, 2 points from the minimum are cut and the remaining 6 points are averaged, and the average is set as the tip reference value (S 5 ). The reason why the tip position of the rectangular body is specified in this way is to accurately specify the position even when dust or unevenness is present in the rectangular body.

【0017】一方、前記サンプリング(S2 )は矩形体
1の末端が光学センサー9の検出点を通過したことをそ
の出力がオフになることにより確認した時に終了する
(S6)。その際矩形体は側面距離測定手段6(測定ラ
イン)と光学センサ9の距離だけ測定ラインを通過して
いないので、矩形体の末端位置を特定するため、それを
利用して前記先端基準用サンプリングと同様な方法によ
り末端基準用サンプリングを行う(S7 )。次にこのサ
ンプリング値を最大値から最小値まで順に並び変えるサ
ンプルデータソートを行い(S8 )、その中から最大よ
り2点、最小より2点をカットして残った6点で平均
し、それを末端基準値とする(S9 )。
On the other hand, the sampling (S 2 ) ends when it is confirmed by turning off the output that the end of the rectangular body 1 has passed the detection point of the optical sensor 9 (S 6 ). At this time, since the rectangular body does not pass the measurement line by the distance between the side surface distance measuring means 6 (measurement line) and the optical sensor 9, the rectangular body is used to identify the end position of the rectangular body, and the sampling is used for the tip reference sampling. Sampling for end reference is performed by the same method as in (S 7 ). Next, sample data sort is performed in which the sampled values are sorted in order from the maximum value to the minimum value (S 8 ), and 2 points from the maximum and 2 points from the minimum are cut out and averaged with the remaining 6 points. Is the end reference value (S 9 ).

【0018】以上のステップにより曲がり度測定用の側
面距離測定サンプリング、先端基準用サンプリングおよ
び末端基準用サンプリングの各データが得られるので、
次にそれらを使用してデータ処理を行う(S10 )。こ
のデータ処理の内容をサブステップとして図7に示す。
図7において、先ず定点Pから矩形体の側面先端までの
測定距離L1 (先端基準値)、定点Pから矩形体の側面
末端までの測定距離L2 (末端基準値)、および側面距
離測定サンプリングの数nから矩形体の移動方向の傾き
δL=(L2 −L1 )/Sを演算し(S101 )、それを
使用して矩形体の側面のx点の曲がり度δIx =Lx
1 −xδLを演算する(S102 )。
By the above steps, each data of lateral distance measurement sampling for bending degree measurement, tip reference sampling and end reference sampling is obtained.
Next, data processing is performed using them (S 10 ). The contents of this data processing are shown in FIG. 7 as substeps.
In FIG. 7, first, a measurement distance L 1 (tip reference value) from the fixed point P to the side surface tip of the rectangular body, a measurement distance L 2 (end reference value) from the fixed point P to the side surface end of the rectangular body, and side surface distance measurement sampling. The gradient δL = (L 2 −L 1 ) / S in the moving direction of the rectangular body is calculated from the number n of (S 101 ), and the calculated gradient δI x = L x of the side x of the rectangular body is used. −
L 1 −xδL is calculated (S 102 ).

【0019】次にこのようにして演算されたδIx が許
容される設定値を超える曲がり度が否かを判定し(S
103 )、もし設定値を超えるものであれば記憶装置内に
カウントUPする(S104 )。次に演算数が側面距離測
定サンプリングの数nに達したか否かを判断し
(S105 )、達してしない場合はステップ(S101 )へ
戻り、達した場合は図6の次ステップへ移る。
Next, it is judged whether or not the degree of bending of the thus calculated δI x exceeds the allowable set value (S
103 ) If the value exceeds the set value, the count is increased in the storage device ( S104 ). Next, it is determined whether or not the number of calculations has reached the number of side surface distance measurement samplings (S 105 ), and if not reached, the process returns to step (S 101 ), and if reached, the process proceeds to the next step in FIG. 6. .

【0020】図6において、ステップ(S10)が終了し
た後、所望によりステップ(S10)の演算内容等をプリ
ントアウトすると共に、前記ステップ(S104 )におけ
るカウント数が予め定めた設定値を超えるか否かを判定
する(S11)。もし設定値を超えている場合はステップ
(S12)へ移り、警報手段15に信号を出すと共に、マ
ーキング手段14を駆動する。なおこのような判定を行
う理由はノイズによる誤判断を避けるためである。
In FIG. 6, after the step (S 10 ) is completed, the calculation contents of the step (S 10 ) are printed out if desired, and the count number in the step (S 104 ) is set to a preset value. It is determined whether or not it exceeds (S 11 ). If it exceeds the set value, the process proceeds to step (S 12 ), a signal is output to the alarm means 15 and the marking means 14 is driven. The reason for making such a determination is to avoid erroneous determination due to noise.

【0021】上記ステップ(S11)において設定値を超
えていない場合、またはステップ(S12)が終了した
後、測定停止指令が出ているか否かの判定を行い(S13
)、出ていれば終了(END)し、出ていなければス
テップ(S1 )に戻る。
If the set value is not exceeded in the above step (S 11 ), or after the step (S 12 ) is completed, it is judged whether or not a measurement stop command is issued (S 13
), If it is out, the process ends (END), and if it is not out, the process returns to step (S 1 ).

【0022】[0022]

【発明の効果】以上のような構成からなる本発明の矩形
体の曲がり度測定方法および装置は、製品製造の途中段
階で迅速に且つ効率良く曲がりによる不良品を発見する
ことができる。また、搬送手段により搬送されて移動中
の矩形体が傾いて移動する場合においても、高い精度で
曲がり度を測定することができる。
According to the method and apparatus for measuring the degree of bending of a rectangular body of the present invention having the above-described structure, a defective product due to bending can be found quickly and efficiently in the middle of product manufacturing. Further, even when the moving rectangular body is moved by being conveyed by the conveying means, the degree of bending can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の曲がり度測定装置を矩形体としてセメ
ント系押出パネルに適用した例を模式的に示す平面図で
ある。
FIG. 1 is a plan view schematically showing an example in which the bending degree measuring device of the present invention is applied to a cement-based extrusion panel as a rectangular body.

【図2】図1の正面図である。FIG. 2 is a front view of FIG.

【図3】図1の側面距離測定手段6部分の拡大図であ
る。
FIG. 3 is an enlarged view of a side surface distance measuring unit 6 portion of FIG.

【図4】本発明の測定原理を示す図である。FIG. 4 is a diagram showing a measurement principle of the present invention.

【図5】本発明の測定装置のブロック図である。FIG. 5 is a block diagram of the measuring apparatus of the present invention.

【図6】図5の装置の作用を説明するためのフローチャ
ートである。
6 is a flow chart for explaining the operation of the apparatus of FIG.

【図7】図6のフローチャートの一部のサブステップを
示すフローチャートである。
7 is a flowchart showing some sub-steps of the flowchart of FIG.

【図8】従来の曲がり測定方法を示す図である。FIG. 8 is a diagram showing a conventional bending measurement method.

【符号の説明】[Explanation of symbols]

1 矩形体 2 直線定規 3 パレット 4 搬送手段 5 測定ライン 6 側面距離測定手段 7 定線 8 光学センサー 9 光学センサー 10 コンピュータシステム 11 処理装置 12 記憶装置 13 キーボード 14 マーキング手段 15 警報手段 1 rectangular body 2 straight line ruler 3 pallet 4 conveying means 5 measuring line 6 lateral distance measuring means 7 constant line 8 optical sensor 9 optical sensor 10 computer system 11 processor 12 memory device 13 keyboard 14 marking means 15 alarm means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一定速度で移動する矩形体の曲がり度を測
定する方法において、矩形体の移動方向と直交する測定
ライン上に設けた定点から測定ラインを通過する矩形体
の側面までの距離、および測定ライン上の矩形体の通過
長をそれぞれ測定し、前記定点から矩形体の側面先端お
よび側面末端までのそれぞれの測定距離L1 、L2 の差
と前記通過長Sから矩形体の移動方向の傾きδL=(L
2 −L1)/Sを算出し、さらに前記定点から矩形体の
側面各点までの測定距離Lx と前記δLから矩形体の側
面各点の曲がり度δIx =Lx −L1 −xδLを算出す
ることを特徴とする矩形体の曲がり度測定方法。
1. A method for measuring the bending degree of a rectangular body moving at a constant speed, the distance from a fixed point provided on a measurement line orthogonal to the moving direction of the rectangular body to a side surface of the rectangular body passing through the measurement line, And the passage length of the rectangular body on the measurement line is respectively measured, and the difference between the measurement distances L 1 and L 2 from the fixed point to the side surface tip and side end of the rectangular body and the moving direction of the rectangular body from the passage length S. Slope of δL = (L
2− L 1 ) / S is calculated, and the measured distance L x from the fixed point to each point on the side surface of the rectangular body and the degree of curvature δI x = L x −L 1 −xδL from δL to each point on the side surface of the rectangular body. A method for measuring the degree of bending of a rectangular body, which comprises:
【請求項2】一定速度で移動する矩形体の曲がり度の測
定装置において、矩形体の移動方向と直交する測定ライ
ン上に設けた定点から測定ラインを通過する矩形体の側
面までの距離を測定する側面距離測定手段と、測定ライ
ン上の矩形体の通過長を測定する通過長測定手段と、前
記定点から矩形体の側面先端および側面末端までのそれ
ぞれの測定距離L1 、L2 の差と前記通過長Sから矩形
体の移動方向の傾きδL=(L2 −L1 )/Sを算出
し、さらに定点から矩形体の側面各点までの測定距離L
x と前記δLから矩形体の側面各点の曲がり度δIx
x−L1 −xδLを算出する演算手段とを備えた矩形
体の曲がり度測定装置。
2. A device for measuring the bending degree of a rectangular body that moves at a constant speed, wherein the distance from a fixed point provided on a measurement line orthogonal to the moving direction of the rectangular body to the side surface of the rectangular body that passes through the measurement line is measured. Side distance measuring means, a passage length measuring means for measuring a passage length of a rectangular body on the measurement line, and a difference between respective measurement distances L 1 and L 2 from the fixed point to the side surface tip and side surface end of the rectangular body. The inclination δL = (L 2 −L 1 ) / S of the moving direction of the rectangular body is calculated from the passing length S, and the measurement distance L from the fixed point to each side surface point of the rectangular body is calculated.
From x and δL, the degree of bending of each point on the side surface of the rectangular body δI x =
Rectangles of curvature measuring device and an arithmetic means for calculating L x -L 1 -xδL.
JP401093A 1993-01-13 1993-01-13 Curvature measurement method for rectangular body and its device Withdrawn JPH06213640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP401093A JPH06213640A (en) 1993-01-13 1993-01-13 Curvature measurement method for rectangular body and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP401093A JPH06213640A (en) 1993-01-13 1993-01-13 Curvature measurement method for rectangular body and its device

Publications (1)

Publication Number Publication Date
JPH06213640A true JPH06213640A (en) 1994-08-05

Family

ID=11573007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP401093A Withdrawn JPH06213640A (en) 1993-01-13 1993-01-13 Curvature measurement method for rectangular body and its device

Country Status (1)

Country Link
JP (1) JPH06213640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145350A (en) * 2011-01-07 2012-08-02 Railway Technical Research Institute Apparatus and method for measuring attack angle of railway vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145350A (en) * 2011-01-07 2012-08-02 Railway Technical Research Institute Apparatus and method for measuring attack angle of railway vehicle

Similar Documents

Publication Publication Date Title
CN104848786B (en) A kind of glass geometric parameter measurement method
US4959553A (en) Method for measuring shape and apparatus therefor
CN104729423B (en) A kind of measuring method for being used to detect special-shaped glass geometric parameter
JPH0618224A (en) Method and apparatus for measuring accuracy in assemblage
JPH06213640A (en) Curvature measurement method for rectangular body and its device
JPS61182173A (en) Method and apparatus for detecting mark in shield area
JP2001201335A (en) Measuring method and measuring device for both end positions in width direction of sheet material
JPS58198710A (en) Automatic checking device
JPH0483101A (en) Apparatus for inspecting size of product
JP7044401B2 (en) Wood processing equipment, wood processing quality judgment method, and wood processing quality judgment program
JP3373880B2 (en) How to measure assembly accuracy
JP3448387B2 (en) Online thickness measurement method and device
JPH10221026A (en) Method and apparatus for inspecting distortion of tile
JP2001004362A (en) Method and device for measuring shape of metal plate
JPH05253736A (en) Press cutting of rod member
JPH06218683A (en) Work position deflection detecting device
JPH0458106A (en) Method and device for detecting angle of steel cord
JPH0914924A (en) Dimension measuring unit
JPH0933243A (en) Method and apparatus for shape measurement of long material
JP3039716B2 (en) Apparatus and method for measuring shape of moving object
JP2019158593A (en) Conveyance state determination device
JPH04155208A (en) Discrimination on acceptability of platelike work
JP2002148039A (en) Equipment for inspecting shape of long material
JP3241557B2 (en) Chip inspection device
JPH02256415A (en) Dimension measuring device for sheet to be cut on metal strip continuous cutting line

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404