JPH06212587A - Production of fine fibrous cellulose - Google Patents

Production of fine fibrous cellulose

Info

Publication number
JPH06212587A
JPH06212587A JP6943291A JP6943291A JPH06212587A JP H06212587 A JPH06212587 A JP H06212587A JP 6943291 A JP6943291 A JP 6943291A JP 6943291 A JP6943291 A JP 6943291A JP H06212587 A JPH06212587 A JP H06212587A
Authority
JP
Japan
Prior art keywords
fibrous cellulose
water
pulp
treatment
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6943291A
Other languages
Japanese (ja)
Inventor
Hisao Ishikawa
久夫 石川
Seiichi Ide
成一 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP6943291A priority Critical patent/JPH06212587A/en
Publication of JPH06212587A publication Critical patent/JPH06212587A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly obtain fine fibrous cellulose high in water-holding force by grinding fibrous cellulose with a medium stirring type wet grinding machine under a specific condition. CONSTITUTION:Fibrous cellulose is ground with a medium stirring type grinding machine into fine fibrous cellulose having a water-holding force of 210% substantially without causing a chemical change. As the fibrous cellulose is finely ground, the viscosity of the fine fibrous cellulose is increased and further its water-holding force is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セルロース繊維を繊維
状に微細化する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for making cellulose fibers into fine fibers.

【0002】[0002]

【従来の技術】セルロース繊維を粉砕して表面積の大き
い微小な粒子を有する繊維を作製することは、従来から
よく知られており、その粉砕法としては、回転型ミルや
ジェットミルのような高速衝撃粉砕法、ロールクラッシ
ャー法などが主に使用されている。しかしながら、セル
ロースは有機物で柔らかいため、機械的な粉砕処理のみ
では微小なセルロース粒子を得ることが困難であり、微
小セルロース繊維を得るためには、化学的処理と機械的
粉砕を組み合わせた方法が一般的に使用される。
2. Description of the Related Art It has been well known that a cellulose fiber is crushed to produce a fiber having fine particles having a large surface area. The crushing method is a high-speed method such as a rotary mill or a jet mill. The impact crushing method and the roll crusher method are mainly used. However, since cellulose is an organic substance and is soft, it is difficult to obtain fine cellulose particles only by mechanical pulverization treatment. In order to obtain fine cellulose fibers, a method combining chemical treatment and mechanical pulverization is generally used. Is used for.

【0003】化学的処理と機械的粉砕を組み合わせた方
法としては、セルロースが結晶領域と非結晶領域からな
っており、非結晶領域は薬品に対して易反応性であるこ
とから、例えば鉱酸と反応させることにより非結晶領域
を溶出し、結晶部主体のセルロース繊維を得る方法が知
られている。そして、更にこれを機械的に処理すること
により微細なセルロース粒子を得るものである。具体的
には、漂白パルプを軽度に酸加水分解し、濾過水洗後、
乾燥、粉砕して一部非結晶領域を含むセルロース微粒子
の製造方法、または精製パルプを塩酸または硫酸で加水
分解して結晶領域のみを残して微粉化したものが知られ
ている。(紙パルプ技術タイムス昭和60年8月号5〜
11ページ参照)。
As a method of combining chemical treatment and mechanical grinding, cellulose is composed of a crystalline region and an amorphous region, and since the amorphous region is easily reactive to chemicals, for example, mineral acid and A method is known in which a non-crystalline region is eluted by a reaction to obtain a cellulose fiber mainly containing a crystalline part. Then, this is further mechanically processed to obtain fine cellulose particles. Specifically, the bleached pulp is slightly acid hydrolyzed, filtered, washed with water,
It is known that a method for producing cellulose fine particles containing a partially non-crystalline region by drying and pulverizing, or a method in which refined pulp is hydrolyzed with hydrochloric acid or sulfuric acid and finely divided to leave only the crystalline region. (Paper Pulp Technology Times August 1985 Issue 5
(See page 11).

【0004】微小な繊維幅の繊維状セルロースの製造方
法としては、繊維状セルロースの懸濁液を小径オリフィ
スを通過させて、その懸濁液に少なくとも3000psi
の圧力差で高速度を与え、次にこれを衝突させて急速に
減速させることにより切断作用を行わせる工程と、前記
工程を繰り返して前記セルロースの懸濁液が実質的に安
定な懸濁液となるようにする工程とからなり、これらの
工程により前記セルロースの出発材料に実質的な化学変
化を起こさないで前記セルロースを微小繊維状セルロー
スに変換する方法、すなわち高圧均質化装置(高圧ホモ
ジナイザー)により繊維状セルロース懸濁液を処理する
方法が知られている(特公昭60−19921号、特公
昭63−44763号参照)。
A method for producing fibrous cellulose having a fine fiber width is to pass a suspension of fibrous cellulose through a small-diameter orifice, and add at least 3000 psi to the suspension.
A high speed by a pressure difference of, and then a step of causing a cutting action by colliding this and rapidly decelerating, and a suspension in which the suspension of the cellulose is substantially stable by repeating the above steps. And a step of converting the cellulose into microfibrous cellulose without causing a substantial chemical change in the starting material of the cellulose, that is, a high-pressure homogenizer (high-pressure homogenizer). Is known (see Japanese Patent Publication No. 60-19921 and Japanese Patent Publication No. 63-44763).

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、前記高圧均質化装置による方法では繊維状
セルロース懸濁液に高圧をかけて細いオリフィスを通す
必要があるため処理効率が低いという問題が有ったが、
本発明は処理効率の改良された生産性の高い微細繊維状
セルロースの製造方法を提供することにある。
The problem to be solved by the present invention is that the method using the above-mentioned high-pressure homogenizing apparatus has a low treatment efficiency because it is necessary to apply a high pressure to the fibrous cellulose suspension and pass it through a narrow orifice. There was a problem,
The present invention is to provide a method for producing fine fibrous cellulose having improved treatment efficiency and high productivity.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決する本
発明の手段は、メディア攪拌式湿式粉砕装置により繊維
状セルロースの懸濁液を処理し、水保持力210%以上
の微細繊維状セルロース製造することを特徴とするもの
である。
Means for Solving the Problems The means of the present invention for solving the above problems is to treat a suspension of fibrous cellulose with a media agitation type wet pulverizing device to obtain a fine fibrous cellulose having a water retention capacity of 210% or more. It is characterized by being manufactured.

【0007】本発明者らは、高圧均質化装置による繊維
状セルロースの微小化の作用機構(解繊作用)について
特に剪断作用、切断作用、摩擦作用に注目して検討して
いたところ、メディア間の速度差によって生じる剪断力
により効率的に微小化できる方法としてメディア攪拌式
の湿式粉砕機により粉砕処理すればよいことを見い出し
た。
The present inventors have studied the action mechanism (defibration action) of micronization of fibrous cellulose by a high-pressure homogenizer, paying particular attention to shear action, cutting action, and friction action. It has been found that as a method of efficiently miniaturizing by a shearing force generated by the difference in speed, pulverization treatment with a media agitation type wet pulverizer may be performed.

【0008】メディア攪拌式湿式粉砕装置は、固定した
粉砕容器に挿入した攪拌機を高速で回転させて、粉砕容
器内に充填したメディアと繊維状セルロースを攪拌して
剪断応力を発生させて粉砕する装置であり、塔式、槽
式、流通管式、マニュラー式等あるが、メディア攪拌方
式であればどの装置でも使用可能である。なかでも、サ
ンドグラインダー、ウルトラビスコミル、ダイノミル、
ダイヤモンドファインミルが良好である。
The media agitation type wet pulverization device is a device for agitating the media and fibrous cellulose filled in the pulverization container by rotating the agitator inserted in a fixed pulverization container at a high speed to generate shear stress and pulverize the media. There are a tower type, a tank type, a flow pipe type, a manual type and the like, but any device can be used as long as it is a media stirring type. Among them, sand grinder, ultra visco mill, dyno mill,
Diamond fine mill is good.

【0009】メディアの種類としては、ガラスビーズ、
アルミナビーズ、ジルコニアビーズ、ジルコンビーズ、
スチールビーズ、チタニアビーズなどが使用可能であ
り、粒径は平均粒径が0.1mmの微小のものから、平均
粒径6mmの大粒径のものまで使用可能である。これらメ
ディアの種類、平均径、粉砕機の回転数および処理濃度
等の処理条件は、要求される微細繊維状セルロースの物
性により適宜選択することが可能である。また、処理方
法としては、バッチ式あるいは連続式の何れの方法でも
良いし、数台の装置を直列に接続して、第一段で粗く処
理し、後段で微細に処理することも可能である。
The types of media include glass beads,
Alumina beads, zirconia beads, zircon beads,
Steel beads, titania beads, etc. can be used, and the particle size can be used from fine particles having an average particle size of 0.1 mm to large particles having an average particle size of 6 mm. The processing conditions such as the type of the media, the average diameter, the rotation speed of the crusher, and the processing concentration can be appropriately selected depending on the required physical properties of the fine fibrous cellulose. Further, as a treatment method, either a batch method or a continuous method may be used, and it is also possible to connect several devices in series to perform rough treatment in the first stage and fine treatment in the latter stage. .

【0010】繊維状セルロースとして広葉樹漂白クラフ
トパルプを使用した例で、繊維形態の変化を示すと、未
処理パルプと本発明による繊維状セルロース生成物を光
学顕微鏡あるいは電子顕微鏡観察したところ、未処理パ
ルプの繊維幅は20〜30μ、重さ荷重平均繊維長は約
0.8mm、形は平滑で偏平な円筒形をなし、さらによじ
れたり屈曲したりしている。
An example of using a hardwood bleached kraft pulp as the fibrous cellulose shows changes in the fiber morphology. When the untreated pulp and the fibrous cellulose product according to the present invention are observed with an optical microscope or an electron microscope, the untreated pulp is shown. Has a fiber width of 20 to 30 μm, a weight-loading average fiber length of about 0.8 mm, a smooth and flat cylindrical shape, and is further twisted and bent.

【0011】本発明によるメディア攪拌式湿式粉砕装置
にて処理したパルプは、処理初期ではおおよその部分が
3〜5μの繊維幅、数平均繊維長0.55mm以下にな
り、いわゆるルーメンを持った木材繊維の構造が破壊さ
れてくる。更にメディア攪拌式湿式粉砕処理を行うと繊
維幅は0.15μ以下で、且つ数平均繊維長0.25mm
以下の非常に微細な繊維成分のものになる。
The pulp treated by the media agitation type wet pulverizing apparatus according to the present invention has a fiber width of 3 to 5 μ and a number average fiber length of 0.55 mm or less in the initial stage of the treatment, and has a so-called lumen. The fiber structure is being destroyed. Furthermore, when the media agitation type wet pulverization process is performed, the fiber width is 0.15μ or less and the number average fiber length is 0.25 mm.
The following are very fine fiber components.

【0012】本発明による微細繊維状セルロース生成物
は、通常のパルプ繊維とは全く異なる特性を持ってい
る。メディア攪拌式湿式粉砕で処理すると、繊維状セル
ロースが微細化されるにつれ、粘性が高くなり、水との
親和性が増して水を保持する能力(水保持力)が高くな
る。
The fine fibrous cellulosic product according to the invention has properties which are quite different from the usual pulp fibers. When the treatment is carried out by the wet agitation method using media agitation, as the fibrous cellulose becomes finer, the viscosity increases, the affinity with water increases, and the ability to retain water (water retaining power) increases.

【0013】水保持力の測定は、低部に穴の開いた円筒
状の遠心管にG3のガラスフィルターを取付け、300
0Gで15分間の遠心処理により脱水処理し、その後処
理試料を取り出しセルロース試料の重量の測定を行う。
その後この試料を105℃で少なくとも5時間にわたっ
て乾燥させた試料の乾燥重量を測定した。水保持力は、
遠心処理後の湿った状態の試料重量から乾燥試料重量を
減算し、これを乾燥試料重量で除算し、これに100を
乗算して得た値である。
The water retention capacity was measured by attaching a G3 glass filter to a cylindrical centrifuge tube having a hole in the lower part, and measuring 300
After dehydration treatment by centrifugation at 0 G for 15 minutes, the treated sample is taken out and the weight of the cellulose sample is measured.
The sample was then dried at 105 ° C. for at least 5 hours and the dry weight of the sample was measured. Water retention is
It is a value obtained by subtracting the dry sample weight from the wet sample weight after centrifugation, dividing this by the dry sample weight, and multiplying this by 100.

【0014】但し、遠心処理する供試試料については、
粉砕処理生成物の水の保持力が高いので、そのまま水保
持力測定をすると脱水が困難になり水相が試料上部に残
るため、前処理として濾過等により予め予備脱水して水
保持力を700〜800%にして、水保持力測定に供し
た。
However, for the sample to be centrifuged,
Since the water retention of the pulverized product is high, if the water retention is measured as it is, dehydration becomes difficult and the water phase remains on the upper part of the sample. It was made to be 800% and subjected to water retention measurement.

【0015】得られた微細繊維状セルロースは、相当多
くの水を保持する能力をもっており、水保持力210%
以上、条件によっては300%以上にも達する。
The obtained fine fibrous cellulose has the ability to retain a considerable amount of water, and has a water retention capacity of 210%.
As mentioned above, depending on the conditions, it reaches 300% or more.

【0016】通常のパルプの叩解における水保持力を比
較すると、針葉樹漂白クラフトパルプ(未処理フリーネ
ス710ml、水保持力51%)を処理濃度2%でリファ
イナーにて叩解し、フリーネス(TAPPIスタンダー
ド T227m−58に準じて測定)375ml、254
ml、61ml、30mlのものの水保持力はそれぞれ138
%、151%、181%、195%であった。
Comparing the water-holding powers in the beating of ordinary pulp, softwood bleached kraft pulp (710 ml of untreated freeness, 51% of water-holding power) was beaten with a refiner at a treated concentration of 2% to obtain freeness (TAPPI Standard T227m- Measured according to 58) 375 ml, 254
Water retention capacity of 138 ml, 61 ml and 30 ml is 138 each
%, 151%, 181% and 195%.

【0017】針葉樹サルファイトクラフトパルプの場
合、未処理でフリーネス705ml、水保持力72%のも
のを処理濃度2%でナイアガラビーターにて処理しフリ
ーネス380ml、210ml、45mlの水保持力は、それ
ぞれ161%、182%、208%であった。また、機
械パルプの場合、加圧型グランドウッドパルプでフリー
ネス60ml、水保持力145%であった。
In the case of softwood sulfite kraft pulp, untreated 705 ml freeness and 72% water retention capacity were treated with a Niagara beater at a treatment concentration of 2% to obtain freeness of 380 ml, 210 ml and 45 ml, respectively. %, 182% and 208%. In the case of mechanical pulp, the press type groundwood pulp had a freeness of 60 ml and a water holding power of 145%.

【0018】このように微粉砕パルプの製造法では極端
なレベルまで粉砕したとしても本発明による微細繊維状
セルロースと似たような生成物が得られないことが分か
る。また、本発明による微細繊維状セルロースの別の性
質として水を含んだ状態でも形状を保つ保形性を持って
いる。
Thus, it can be seen that the method for producing finely ground pulp does not produce a product similar to the fine fibrous cellulose of the present invention even if it is ground to an extreme level. Another property of the fine fibrous cellulose of the present invention is that it retains its shape even when it contains water.

【0019】メディア攪拌式湿式粉砕装置に供する繊維
状セルロースとしては、針葉樹、広葉樹の漂白または未
漂白化学パルプ、溶解パルプ、古紙パルプ、更にはコッ
トン等繊維状セルロースであれば水保持力の高い微細繊
維状セルロースを得ることができる。
Examples of the fibrous cellulose to be used in the media agitation type wet pulverizer include bleached or unbleached softwood and hardwood chemical pulp, dissolved pulp, waste paper pulp, and even fibrous cellulose such as cotton, which has a high water retention ability. Fibrous cellulose can be obtained.

【0020】処理する懸濁液の媒体としては、水が基本
であるが、処理工程で化学的に不活性で、且つセルロー
スの担体となり得るような流動性を有する低級アルコー
ル、エチレングリコールあるいはグリセリンの如き有機
溶媒または水との混合溶媒が使用できる。
Water is basically used as a medium for the suspension to be treated, but it is chemically inert in the treatment process and is a fluid such as a lower alcohol, ethylene glycol or glycerin having a fluidity which can serve as a carrier for cellulose. Such an organic solvent or a mixed solvent with water can be used.

【0021】[0021]

【実施例】以下に本発明の具体的な実施例について説明
する。 実施例1 針葉樹漂白クラフトパルプを試料として、水にて濃度
0.8%、1.5%、4%、8%、10%の5水準に調
節して、それぞれの濃度の懸濁液120gを、また、メ
ディアとして平均粒径0.7mmのガラスビーズ125ml
をアイメックス(株)製六筒式サンドグライダー(処理
容量300ml)に入れ、攪拌機の回転数2000rpm
で、冷却用循環水の温度を調節することにより処理温度
を約20℃に調節し、バッチ式にて湿式粉砕を行った。
EXAMPLES Specific examples of the present invention will be described below. Example 1 Using softwood bleached kraft pulp as a sample, the concentration was adjusted to 5 levels of 0.8%, 1.5%, 4%, 8% and 10% with water, and 120 g of a suspension of each concentration was prepared. , 125ml glass beads with an average particle size of 0.7mm
Was placed in a six-cylinder sand glider (processing capacity 300 ml) manufactured by IMEX Co., Ltd., and the rotation speed of the agitator was 2000 rpm.
Then, the treatment temperature was adjusted to about 20 ° C. by adjusting the temperature of the circulating water for cooling, and wet pulverization was performed in a batch system.

【0022】表1に処理濃度1.5%における処理時間
と数平均繊維長及び走査型電子顕微鏡写真視察による繊
維幅と水保持力との関係を示す。また図1には、数平均
繊維長と水保持力との関係を示した。図1の○印は濃度
0.8%、●印は濃度1.5%、△印は濃度3.5%、
X印は濃度8%、▲印は濃度10%で得られたものを夫
々示している。
Table 1 shows the relationship between the treatment time at a treatment concentration of 1.5%, the number average fiber length, the fiber width and the water retention force as observed by scanning electron micrograph. Further, FIG. 1 shows the relationship between the number average fiber length and the water holding power. In Figure 1, ◯ indicates a density of 0.8%, ● indicates a density of 1.5%, and △ indicates a density of 3.5%.
The X mark shows that obtained at a concentration of 8%, and the ▲ mark shows that obtained at a concentration of 10%.

【0023】なお、数平均繊維長は、フィンランドKA
JAANI社製FS−200型繊維長測定装置で測定し
た。図1から分かるように処理時間が長くなり数平均繊
維長が短くなるに従い水保持力は上昇することが分か
る。また、処理濃度の影響は、同一数平均繊維長で比較
すると処理濃度の低い方が高い水保持力のものが得られ
た。
The number average fiber length is Finland KA.
It was measured with an FS-200 type fiber length measuring device manufactured by JAANI. As can be seen from FIG. 1, the water retention power increases as the treatment time increases and the number average fiber length decreases. As for the effect of the treatment concentration, when the same number average fiber length was compared, the lower the treatment concentration was, the higher the water retention capacity was.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例2 針葉樹漂白クラフトパルプを試料として水にて濃度3%
に調製し、その懸濁液120gを、また、メディアとし
て平均粒径1mmのガラスビーズ125mlをアイメックス
(株)製六筒式サンドグラインダーに入れ、攪拌機の回
転数1500rpm で、冷却用循環水の温度調整により処
理温度約60℃に保ちながら、バッチ式にて湿式粉砕を
行った。
Example 2 Softwood bleached kraft pulp was used as a sample and the concentration was 3% in water.
120 g of the suspension and 125 ml of glass beads having an average particle diameter of 1 mm as a medium were put into a six-cylinder sand grinder manufactured by IMEX Co., Ltd., and the temperature of the circulating water for cooling was 1500 rpm of the stirrer. While maintaining the treatment temperature at about 60 ° C. by adjustment, wet pulverization was performed in a batch system.

【0026】表2に、処理時間と水保持力との関係を示
す。表2から分かるように処理時間が長くなるに従い水
保持力は上昇し、処理時間が3時間で水保持力325%
のものが得られた。
Table 2 shows the relationship between treatment time and water retention. As can be seen from Table 2, the water retention power increases as the treatment time becomes longer, and the water retention force is 325% when the treatment time is 3 hours.
I got that.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例3 針葉樹のサルファイトパルプを試料として水にて濃度3
%に調製し、その懸濁液120gを、また、メディアと
して平均粒径1mmのガラスビーズ125mlをアイメック
ス(株)製六筒式サンドグラインダーに入れ、攪拌機の
回転数1500rpm で、冷却用循環水の温度調整により
処理温度約60℃に保ちながら、バッチ式にて湿式粉砕
を行った。
Example 3 Concentration 3 with water using a softwood sulfite pulp as a sample
%, And 120 g of the suspension and 125 ml of glass beads having an average particle size of 1 mm as a medium were placed in a six-cylinder sand grinder manufactured by IMEX Co., Ltd., and the circulating water for cooling was rotated at 1500 rpm of a stirrer. While maintaining the treatment temperature at about 60 ° C. by adjusting the temperature, wet pulverization was performed in a batch system.

【0029】表3に、処理時間と水保持力との関係を示
す。表3から分かるように処理時間が長くなるに従い水
保持力は上昇し、処理時間が3時間で水保持力332%
のものが得られた。
Table 3 shows the relationship between treatment time and water retention. As can be seen from Table 3, as the treatment time becomes longer, the water retention power increases, and the water retention force is 332% after 3 hours.
I got that.

【0030】[0030]

【表3】 [Table 3]

【0031】実施例4 機械パルプ(加圧式グランドウッドパルプ)及び古紙パ
ルプを試料として、夫々水にて濃度2%に調製し、その
懸濁液120gを、またメディアとして平均粒径0.5
mmのアルミナビーズ125mlをアイメックス(株)製六
筒式サンドグラインダーに入れ、冷却用循環水の温度調
整により処理温度約20℃でバッチ式にて湿式粉砕を行
った。
Example 4 Mechanical pulp (pressurized groundwood pulp) and waste paper pulp were used as samples, and each was prepared with water to a concentration of 2%.
125 ml of alumina beads having a diameter of 125 mm were placed in a six-cylinder sand grinder manufactured by IMEX Co., Ltd., and wet pulverization was carried out batchwise at a treatment temperature of about 20 ° C. by adjusting the temperature of circulating water for cooling.

【0032】表4,表5にそれぞれ機械パルプ、古紙パ
ルプの処理時間と水保持力との関係を示す。表4,表5
から分かるように処理時間が長くなるに従い水保持力は
高くなった。
Tables 4 and 5 show the relationship between the processing time and the water holding power of mechanical pulp and waste paper pulp, respectively. Table 4, Table 5
As can be seen from the above, the water retention capacity increased as the treatment time increased.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】実施例5 コットンリンターを試料として水にて濃度2%に調製し
た懸濁液120gを、メディアとしての平均粒径0.5
mmのジルコニアビーズ125mlと共にアイメックス
(株)製六筒式サンドグラインダーの容器に入れ、攪拌
機の回転数2000rpm で、冷却用循環水の温度調整に
より処理温度約20℃で、バッチ式にて湿式粉砕を行っ
た。
Example 5 Using a cotton linter as a sample, 120 g of a suspension prepared with water to a concentration of 2% was used to prepare an average particle size of 0.5 as a medium.
We put 125 mm zirconia beads in a container of a six-cylinder sand grinder made by Imex Co., Ltd., and perform wet milling in batch mode at a processing temperature of about 20 ° C. by adjusting the temperature of the circulating water for cooling at 2000 rpm of the stirrer. went.

【0036】表6に処理時間と水保持力との関係を示
す。
Table 6 shows the relationship between treatment time and water retention.

【表6】 [Table 6]

【0037】実施例6 針葉樹漂白クラフトパルプを試料として水にて濃度1.
5%に調製し、平均粒径0.7mmのガラスビーズ120
0mlをアイメックス(株)製ウルトラビスコミルUVM
−2型(容量2L)の容器に入れ、試料懸濁液1600
mlをポンプにて流量500ml/分で連続的に通して湿式
粉砕を行った。また処理温度は処理装置に冷却水を循環
させることにより約15℃に保った。実験では、装置か
ら出て来た試料をポリ容器にとり再度粉砕装置で処理し
た。
Example 6 Softwood bleached kraft pulp was used as a sample and its concentration in water was 1.
Glass beads 120 with an average particle size of 0.7 mm prepared to 5%
0 ml of Ultra Viscomil UVM manufactured by IMEX Co., Ltd.
-2600 (capacity 2L) in a container, sample suspension 1600
Wet grinding was carried out by continuously passing ml with a pump at a flow rate of 500 ml / min. The processing temperature was maintained at about 15 ° C. by circulating cooling water in the processing device. In the experiment, the sample coming out of the apparatus was put in a poly container and processed again by the crushing apparatus.

【0038】表7に処理回数と水保持力との関係を示
す。表7から分かるように、処理回数を増加するにつれ
水保持力も上昇した。また、連続的に装置に通しても装
置内で目詰まりすることなく処理できた。
Table 7 shows the relationship between the number of treatments and the water holding power. As can be seen from Table 7, the water retention capacity also increased as the number of treatments was increased. Further, even if it was continuously passed through the apparatus, it could be processed without clogging in the apparatus.

【0039】[0039]

【表7】 [Table 7]

【0040】実施例7 予めビータにて繊維長を短くした針葉樹漂白クラフトパ
ルプを試料として、水にて濃度3%に調製し、平均粒径
1mmのガラスビーズ1200mlを(株)シンマル・エン
タープライゼス社ダイノミル Typ KDL−PIL
OT型容器に入れ、パルプ懸濁液2000mlを流量40
0ml/分で連続的に処理を行った。即ち、処理装置から
出て来た試料をポリ容器にとり再度該粉砕装置で処理し
た。処理温度は処理装置に冷却水を循環させて約15℃
に保った。
Example 7 Using a softwood bleached kraft pulp whose fiber length was shortened in advance with a beater as a sample, the concentration was adjusted to 3% with water, and 1200 ml of glass beads having an average particle diameter of 1 mm were used and manufactured by Shinmaru Enterprises Co., Ltd. Dyno Mill Type KDL-PIL
Put in an OT type container, 2000ml of pulp suspension flow rate 40
Processing was carried out continuously at 0 ml / min. That is, the sample coming out of the processing device was put in a poly container and processed again by the crushing device. The processing temperature is about 15 ℃ by circulating cooling water through the processing equipment.
Kept at.

【0041】表8に処理回数と水保持力との関係を示
す。表8から分かるように、処理回数を増加するにつれ
水保持力も上昇した。また、連続的に処理しても装置内
で目詰まりすることなく処理できた。
Table 8 shows the relationship between the number of treatments and the water holding power. As can be seen from Table 8, the water retention power increased as the number of treatments increased. Further, even if the treatment was continuously performed, the treatment could be performed without clogging in the apparatus.

【0042】[0042]

【表8】 [Table 8]

【0043】実施例8 広葉樹漂白クラフトパルプを試料として、パルプ濃度
1.5%懸濁液500mlを、メディアとしての平均粒径
1mmのガラスビーズ975mlと共に三菱重工業(株)製
ダイヤモンドファインミルMD−13型の処理容器に入
れて、攪拌機の回転数1400rpm でバッチ式にて湿式
粉砕を行った。
Example 8 Using a hardwood bleached kraft pulp as a sample, 500 ml of a 1.5% pulp concentration suspension together with 975 ml of glass beads having an average particle diameter of 1 mm as a medium, Diamond Fine Mill MD-13 manufactured by Mitsubishi Heavy Industries, Ltd. The mixture was placed in a mold-type processing container, and wet-milled in batch mode with the agitator rotating at 1400 rpm.

【0044】表9に処理時間と水保持力との関係を示
す。表9から分かるように、処理時間が長くなるに従い
水保持力も上昇することが分かる。
Table 9 shows the relationship between treatment time and water retention. As can be seen from Table 9, the water retention power increases as the treatment time increases.

【0045】[0045]

【表9】 [Table 9]

【0046】実施例9 広葉樹漂白クラフトパルプを試料とし、アイメックス
(株)製六筒式サンドグラインダーにて、攪拌機の回転
数2000rpm で、メディアとして平均粒径0.7mmの
ガラスビーズを使用して、試料を処理する懸濁媒体とし
てメタノール、グリセリンを使用して処理した。メタノ
ール処理では、パルプ乾燥重量1.8g、メタノール1
20ml、ガラスビーズ120mlの条件で、またグリセリ
ン処理では、パルプ乾燥重量1.8g、グリセリン12
0ml、ガラスビーズ120mlの条件で実験を行った。
Example 9 Using hardwood bleached kraft pulp as a sample, a six-cylinder sand grinder manufactured by IMEX Co., Ltd. was used, the number of revolutions of the stirrer was 2000 rpm, and glass beads having an average particle size of 0.7 mm were used as media. The sample was processed using methanol and glycerin as suspension media. In methanol treatment, pulp dry weight 1.8 g, methanol 1
20 ml of glass beads, 120 ml of glass beads, and with glycerin treatment, 1.8 g of pulp dry weight, 12 glycerin
The experiment was conducted under the conditions of 0 ml and 120 ml of glass beads.

【0047】表10,表11にそれぞれ懸濁液としてメ
タノール、グリセリンを用いた場合の処理時間と水保持
力との関係を示す。水保持力の測定は処理試料を水洗し
て測定した。表10,表11から懸濁媒体としてメタノ
ール、グリセリンを使用しても処理時間の経過に従い水
保持力も上昇することが分かった。
Tables 10 and 11 show the relationship between the treatment time and the water retention capacity when methanol and glycerin were used as suspensions, respectively. The water retention was measured by washing the treated sample with water. From Tables 10 and 11, it was found that even when methanol or glycerin was used as the suspension medium, the water retention power increased with the lapse of treatment time.

【0048】[0048]

【表10】 [Table 10]

【0049】[0049]

【表11】 [Table 11]

【0050】[0050]

【発明の効果】繊維状セルロースをメディア攪拌式湿式
粉砕機にて処理することにより、水保持力の高い微細繊
維状セルロースを効率的に得ることができる。
EFFECTS OF THE INVENTION By treating fibrous cellulose with a media agitation type wet pulverizer, it is possible to efficiently obtain fine fibrous cellulose having high water retention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月25日[Submission date] February 25, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、数平均繊維長と水保持力との関係を
示す図である。
FIG. 1 is a diagram showing the relationship between the number average fiber length and the water retention capacity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繊維状セルロースをメディア攪拌式湿式
粉砕機にて、実質的な化学変化を起こさせることなく、
水保持力210%以上の微細繊維状セルロースに粉砕処
理することを特徴とする微細繊維状セルロースの製造方
法。
1. A fibrous cellulose is subjected to a media agitation type wet pulverizer without causing substantial chemical change.
A method for producing fine fibrous cellulose, which comprises pulverizing the fine fibrous cellulose having a water retention capacity of 210% or more.
JP6943291A 1991-03-11 1991-03-11 Production of fine fibrous cellulose Pending JPH06212587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6943291A JPH06212587A (en) 1991-03-11 1991-03-11 Production of fine fibrous cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6943291A JPH06212587A (en) 1991-03-11 1991-03-11 Production of fine fibrous cellulose

Publications (1)

Publication Number Publication Date
JPH06212587A true JPH06212587A (en) 1994-08-02

Family

ID=13402469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6943291A Pending JPH06212587A (en) 1991-03-11 1991-03-11 Production of fine fibrous cellulose

Country Status (1)

Country Link
JP (1) JPH06212587A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303386A (en) * 1999-04-19 2000-10-31 Oji Paper Co Ltd Moistureproof laminate with barrier properties
CN1075514C (en) * 1997-10-13 2001-11-28 徐旗开 Method for producing microcrystalline cellulose by sulfating waste cotton velvet
JP2003221729A (en) * 2002-01-30 2003-08-08 Oji Paper Co Ltd METHOD FOR PRODUCING FLAT POLY-p-PHENYLENEDIPHENYL ETHER TEREPHTHALAMIDE FIBER
JP2004292970A (en) * 2003-03-26 2004-10-21 Kimura Chem Plants Co Ltd Functional sheet and method for producing the same
WO2008078743A1 (en) 2006-12-26 2008-07-03 Nkk Co., Ltd. Absorbent for spray can, process for producing absorbent sheet for spray can, and spray can product
WO2009044506A1 (en) * 2007-10-05 2009-04-09 Panasonic Corporation Fine natural fiber and speaker diaphragm coated with fine natural fiber
JP2009091678A (en) * 2007-10-05 2009-04-30 Panasonic Corp Method and apparatus for producing fine natural fiber, fine natural fiber produced by this production method, and speaker component using this fine natural fiber
WO2009057333A1 (en) 2007-11-01 2009-05-07 Nkk Co., Ltd. Spray product

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1075514C (en) * 1997-10-13 2001-11-28 徐旗开 Method for producing microcrystalline cellulose by sulfating waste cotton velvet
JP2000303386A (en) * 1999-04-19 2000-10-31 Oji Paper Co Ltd Moistureproof laminate with barrier properties
JP2003221729A (en) * 2002-01-30 2003-08-08 Oji Paper Co Ltd METHOD FOR PRODUCING FLAT POLY-p-PHENYLENEDIPHENYL ETHER TEREPHTHALAMIDE FIBER
JP2004292970A (en) * 2003-03-26 2004-10-21 Kimura Chem Plants Co Ltd Functional sheet and method for producing the same
WO2008078743A1 (en) 2006-12-26 2008-07-03 Nkk Co., Ltd. Absorbent for spray can, process for producing absorbent sheet for spray can, and spray can product
JP2008180377A (en) * 2006-12-26 2008-08-07 Oji Paper Co Ltd Absorbent for spray can, and manufacturing method for absorbent sheet for spray can
US8857195B2 (en) 2006-12-26 2014-10-14 Nkk Co., Ltd. Absorbent for spray can, process for producing absorbent sheet for spray can, and spray can product
WO2009044506A1 (en) * 2007-10-05 2009-04-09 Panasonic Corporation Fine natural fiber and speaker diaphragm coated with fine natural fiber
JP2009091678A (en) * 2007-10-05 2009-04-30 Panasonic Corp Method and apparatus for producing fine natural fiber, fine natural fiber produced by this production method, and speaker component using this fine natural fiber
WO2009057333A1 (en) 2007-11-01 2009-05-07 Nkk Co., Ltd. Spray product
JP2009113813A (en) * 2007-11-01 2009-05-28 Oji Paper Co Ltd Spray product

Similar Documents

Publication Publication Date Title
US10975242B2 (en) Process for the production of nano-fibrillar cellulose gels
CN107531910B (en) Dry-blended redispersible cellulose filament/carrier product and method of making same
JP5848330B2 (en) Cellulose nanofilament and method for producing cellulose nanofilament
RU2549323C2 (en) Method of obtaining suspensions of nanofibrous cellulose
JP2008169497A (en) Method for producing nanofiber, and nanofiber
JP6783078B2 (en) Cellulose nanofiber manufacturing method and cellulose nanofiber manufacturing equipment
JP6839511B2 (en) Cellulose nanofiber manufacturing equipment and cellulose nanofiber manufacturing method
US11814794B2 (en) Cellulose fiber molded product and method for manufacturing the same
JPH0610288A (en) Production of fine fibrous cellulose
JP2011236398A (en) Method of manufacturing fine fibrous cellulose
JP2018100474A (en) Apparatus for producing cellulose nanofiber and method for producing cellulose nanofiber
JPH06212587A (en) Production of fine fibrous cellulose
JP2012046848A (en) Method for producing microfibrous cellulose
CN115559147B (en) Method for improving nano cellulose nano-fibrillation efficiency
JP2007100246A (en) Method for carrying out pretreating of cellulose microfibrillation
JP2018090738A (en) Apparatus and method for producing cellulose nanofiber
CN108474175B (en) Method for reducing total energy consumption in nanocellulose production
JP6280593B2 (en) Method for producing cellulose nanofiber
JPH0610286A (en) Production of fine fibrous cellulose
JP7194503B2 (en) Method for producing cellulose nanofiber
WO2023037161A1 (en) Mobile dispersion system and methods for the resuspension of partially-dried microfibrillated cellulose
JP2012057268A (en) Method for producing microfibrous cellulose
JP2012144651A (en) Method for producing microfibrous cellulose
CN113728138B (en) Method for producing chemically modified microfibrillar cellulose fiber
JP4268574B2 (en) Method for producing high concentration fine cellulose fiber suspension