JPH06212478A - Production of electroforming mold - Google Patents

Production of electroforming mold

Info

Publication number
JPH06212478A
JPH06212478A JP2170993A JP2170993A JPH06212478A JP H06212478 A JPH06212478 A JP H06212478A JP 2170993 A JP2170993 A JP 2170993A JP 2170993 A JP2170993 A JP 2170993A JP H06212478 A JPH06212478 A JP H06212478A
Authority
JP
Japan
Prior art keywords
electroforming
master
diagram showing
see
electroformings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2170993A
Other languages
Japanese (ja)
Inventor
Kazunari Tokuda
一成 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2170993A priority Critical patent/JPH06212478A/en
Publication of JPH06212478A publication Critical patent/JPH06212478A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the position accuracy at the front side and the rear side by forming a master having right relative positions of shapes of front and rear surfaces, simultaneously electroforming at front and rear surfaces of the master and then simultaneously processing outer peripherys of front and rear electroforming parts. CONSTITUTION:Electroformings are simultaneously executed at the front and rear surfaces of the master 1. Formed electroformings 2, 3 are formed in a condition holding the position relations between front and rear surfaces of the master 1. Outer peripherys 2a, 3a of respective electroformings 2, 3 are simultaneously processed by an end mill 4, etc., in a condition in which electroformings 2, 3 are attached to the master 1. Thus the outer periphery 2a of the front electroforming 2 accords with the outer periphery 3a of the rear electroforming 3 with accuracy. Thus a pair of molds having accurate position relations between the front and rear surfaces are obtained. Consequently, processing of hole for positioning, etc., is unnecessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電鋳型の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electroforming mold.

【0002】[0002]

【従来の技術】従来、光学素子の成形型を電鋳により製
作する方法が知られている。通常、光学素子には入射面
と出射面との2面が有り、それぞれ特定の形状を有して
いる。光学素子の性能を確保するには光軸あるいは入射
面と出射面との相対的位置が合致していなければならな
い。従って、光学素子を成形型で成形する場合、入射面
と出射面とを成形する各成形型どうしの位置(光軸)が
合致する必要がある。
2. Description of the Related Art Conventionally, a method of manufacturing a mold for an optical element by electroforming has been known. Usually, an optical element has two surfaces, an entrance surface and an exit surface, each of which has a specific shape. In order to ensure the performance of the optical element, the optical axis or the relative position of the entrance surface and the exit surface must match. Therefore, when the optical element is molded by the molding die, the positions (optical axes) of the respective molding dies for molding the entrance surface and the exit surface must match.

【0003】電鋳型の位置精度を確保する従来技術とし
ては、例えば特公昭62−30905号公報にて開示さ
れた発明がある。上記発明は、原盤にフレネル部とは別
に位置決め用の穴を穿設し、該穴にガイドを通す等によ
り位置決めに用いようとするものである。
As a conventional technique for ensuring the positional accuracy of the electroforming mold, for example, there is the invention disclosed in Japanese Patent Publication No. 62-30905. In the above invention, a positioning hole is formed in the master separately from the Fresnel portion, and a guide is passed through the hole to be used for positioning.

【0004】[0004]

【発明が解決しようとする課題】しかるに、前記特公昭
62−30905号公報においては、原盤の両面にそれ
ぞれ位置決め用の穴を穿設しなければならない。ところ
が、フレネルの加工と穴の加工とは別の加工機で加工す
る必要があり、ワ−クのセッティング等により比較的大
きな位置ずれを生じることが避けられない。この位置ず
れの誤差が表裏面の加工においてそれぞれ生じるため、
成形型として組み合わせた時の相対的な位置ずれはそれ
ぞれ2つの加工誤差が乗る事になり、時には10ミクロ
ンオ−ダ−の大きな位置ずれが生じてしまう。この位置
ずれは光学素子としての性能を低下させるに充分大きな
ずれ量である。
However, in Japanese Patent Publication No. 62-30905, it is necessary to form positioning holes on both sides of the master. However, the Fresnel processing and the hole processing need to be performed by different processing machines, and a relatively large positional deviation is inevitable due to work setting or the like. Since this positional deviation error occurs in the processing of the front and back sides,
Relative displacement when combined as a molding die results in the addition of two processing errors, and sometimes a large displacement of 10 micron order occurs. This positional deviation is a large enough amount to reduce the performance as an optical element.

【0005】また、位置決め用の穴は、本来光学素子と
しては不要な物であり、金型の精度を確保するためにわ
ざわざ位置決め用の穴を加工することは余分な工程の増
加となる。
Further, the positioning hole is originally unnecessary as an optical element, and it is an extra step to process the positioning hole to ensure the accuracy of the mold.

【0006】さらに、上記公報に記載された成形型を入
子とし、射出成形機に備えて射出成形に用いた場合を考
える。この時、図23に示すような射出用の金型を用い
る。一般的に、金型は互いに対向配置された型板41,
42より構成され、この型板41,42には互いに対向
するように挿入穴41a,42aが設けられている。そ
して、上記挿入穴41a,42aに一対の入子(成形
型)43,44を挿入して射出成形を行っている。
Further, let us consider a case where the molding die described in the above publication is used as a nest and is provided for an injection molding machine and used for injection molding. At this time, a die for injection as shown in FIG. 23 is used. Generally, the molds include mold plates 41, which are arranged to face each other.
The template plates 41, 42 are provided with insertion holes 41a, 42a facing each other. Then, a pair of inserts (molding dies) 43, 44 are inserted into the insertion holes 41a, 42a for injection molding.

【0007】上記挿入穴41a,42aは、互いに予め
位置決めされているので、双方の入子43,44はこの
挿入穴41a,42aに挿入されることによって互いに
位置決めされる。しかしながら、双方の入子43,44
それぞれが有している成形面と外径との間の相関関係
(位置関係)が双方の入子43,44の間で一致してい
ないと、所望する成形品形状に比較して成形品の表裏面
どうしがずれてしまい正確に成形が行われない。
Since the insertion holes 41a and 42a are preliminarily positioned with respect to each other, both the inserts 43 and 44 are positioned with respect to each other by being inserted into the insertion holes 41a and 42a. However, both nests 43,44
If the correlation (positional relationship) between the molding surface and the outer diameter of each of them does not match between the inserts 43 and 44, the molded product is compared with the desired molded product shape. Accurate molding cannot be performed because the front and back surfaces are misaligned.

【0008】すなわち、一方の入子43(または44)
の成形面と外径との位置関係が、もう一方の入子44
(または43)の成形面と外径との位置関係と一致して
いない限り、たとえ互いの挿入穴41a,42aどうし
の位置関係が正確に一致していても、双方の入子43,
44の成形面は互いに一致しない。従って、上記公報に
記載された方法で型を作成した後に、双方の型の成形面
と外径との位置関係が互いに一致する様に双方の型の外
径を加工する必要がある。
That is, one of the nests 43 (or 44)
The relationship between the molding surface and the outer diameter of the other insert 44
(Or 43) As long as the positional relationship between the molding surface and the outer diameter does not match, even if the positional relationships between the insertion holes 41a, 42a are exactly the same, both the nests 43,
The molding surfaces of 44 do not coincide with each other. Therefore, after forming the molds by the method described in the above publication, it is necessary to machine the outer diameters of both molds so that the positional relationship between the molding surface and the outer diameters of both molds coincides with each other.

【0009】しかしながら、この外径加工における加工
精度上、双方の型の成形面と外径との位置関係に誤差を
生じてしまう。この誤差により、それらの型を射出成形
機に備えたとしても、所望する成形品の表裏を正確に一
致させることは大変に困難である。
However, due to the processing precision in the outer diameter processing, an error occurs in the positional relationship between the molding surfaces of both molds and the outer diameter. Due to this error, even if those molds are provided in the injection molding machine, it is very difficult to exactly match the front and back of the desired molded product.

【0010】因って、本発明は前記従来技術の欠点に鑑
みて開発されたもので、所望する成形品における表裏面
の位置精度が良い電鋳型の製造方法の提供を目的とす
る。
Therefore, the present invention was developed in view of the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide a method for producing an electroforming mold in which the front and back surfaces of a desired molded product have good positional accuracy.

【0011】[0011]

【課題を解決するための手段および作用】本発明は、そ
れぞれ特定形状の表裏面を有する光学素子成形用の電鋳
型を製造するにあたり、各表裏面における形状の相対位
置が正しいマスタ−を形成し、該マスタ−の表裏面へ同
時に電鋳した後、形成された表裏電鋳部の外周を同時加
工する製造方法である。
According to the present invention, when manufacturing an electroforming mold for molding an optical element having a front surface and a back surface each having a specific shape, a master in which the relative positions of the shapes on each surface are formed correctly. The method is a method of simultaneously electroforming the front and back surfaces of the master, and then simultaneously processing the outer peripheries of the formed front and back electroformed portions.

【0012】図1〜図4は本発明の製造工程を示す概念
図である。まず、各表裏面における形状の相対位置が正
しいマスタ−1を形成し(図1参照)、このマスタ−1
の表裏面へ同時に電鋳すると、形成された電鋳2,3は
マスタ−1の表裏面の位置関係を保持した状態で形成さ
れる(図2参照)。次に、マスタ−1に電鋳2,3が着
いたままの状態で各電鋳2,3の外周2a,3aをエン
ドミル4等で同時に加工する(図3参照)。これによ
り、表の電鋳2と裏の電鋳3との外周2a,3aは正確
に一致する。従って、形成された表の電鋳型5と裏の電
鋳型6との位置関係はマスタ−1の表裏面の位置関係と
同様になる(図4参照)。
1 to 4 are conceptual views showing the manufacturing process of the present invention. First, a master-1 is formed in which the relative positions of the shapes on the front and back surfaces are correct (see FIG. 1).
When the electroforming is simultaneously performed on the front and back surfaces of the above, the formed electroformed materials 2 and 3 are formed in a state where the positional relationship between the front and back surfaces of the master-1 is maintained (see FIG. 2). Next, the outer circumferences 2a and 3a of the electroformed pieces 2 and 3 are simultaneously processed by the end mill 4 etc. with the electroformed pieces 2 and 3 attached to the master-1 (see FIG. 3). Thereby, the outer peripheries 2a and 3a of the front electroformed 2 and the back electroformed 3 exactly match. Therefore, the positional relationship between the front electroforming mold 5 and the back electroforming mold 6 thus formed is the same as that of the front and back surfaces of the master-1 (see FIG. 4).

【0013】ところで、マスタ−1の表裏面の位置ずれ
はマスタ−1の形状加工の誤差により生ずるが、一つの
工程で生じる誤差のみなので、誤差量をミクロンオ−ダ
−の小さい値に抑えることができる。従って、表裏面の
位置が精度良く合った一対の電鋳型5,6が得られる。
また、位置決め用の穴等を加工する必要がなく、工程は
必要最小限で済む。
By the way, although the displacement of the front and back surfaces of the master-1 is caused by an error in the shape processing of the master-1, since it is only an error that occurs in one step, the error amount can be suppressed to a small value of the micron order. it can. Therefore, a pair of electroforming molds 5 and 6 in which the positions of the front and back surfaces are accurately aligned can be obtained.
Further, it is not necessary to process a positioning hole or the like, and the number of steps can be minimized.

【0014】[0014]

【実施例1】図5〜図12は本実施例を示す工程図であ
る。まず、ガラス平板11の一方の面(表面)11aに
フォトリソグラフィ−によって位相型回折格子パタ−ン
12aを形成する(図5参照)。
Embodiment 1 FIGS. 5 to 12 are process diagrams showing this embodiment. First, the phase type diffraction grating pattern 12a is formed on one surface (front surface) 11a of the glass flat plate 11 by photolithography (see FIG. 5).

【0015】続いて、ガラス平板11の他方の面(裏
面)11bにポジ型フォトレジスト13を塗布してプレ
ベ−クした後、別の回折格子パタ−ンのフォトマスク1
4を先に形成した位相型回折格子パタ−ン12aの位置
に対して所望の位置となる様にアライメントする。アラ
イメントは光学顕微鏡によって既に加工した位相型回折
格子パタ−ン12aの位置を見ながら行うので2μm以
下の精度でアライメントできる(図6参照)。
Subsequently, a positive photoresist 13 is applied to the other surface (back surface) 11b of the glass flat plate 11 and prebaked, and then a photomask 1 of another diffraction grating pattern is formed.
4 is aligned with the position of the phase type diffraction grating pattern 12a previously formed so as to be a desired position. Since the alignment is performed by observing the position of the phase type diffraction grating pattern 12a already processed by the optical microscope, the alignment can be performed with an accuracy of 2 μm or less (see FIG. 6).

【0016】露光,現像,ポストベ−ク,エッチングお
よびフォトレジスト剥離の工程を経て表裏面11a,1
1bにそれぞれ位相型回折格子パタ−ン12a,12b
を有するガラス平板11を得る。このガラス平板11に
おける表裏面パタ−ン12a,12bの位置精度はフォ
トマスク14のアライメントの精度により決まるもので
あり、2μm以下のレベルである(図7参照)。
After the steps of exposure, development, post baking, etching, and photoresist stripping, the front and back surfaces 11a, 1a, 1
1b includes phase type diffraction grating patterns 12a and 12b, respectively.
A glass flat plate 11 having The positional accuracy of the front and back patterns 12a and 12b on the glass flat plate 11 is determined by the alignment accuracy of the photomask 14, and is 2 μm or less (see FIG. 7).

【0017】得られたガラス平板11を治具15に接着
固定し、真空蒸着によりガラス平板11の表裏面11
a,11bへニッケル16を1000Å成膜する(図8
参照)。成膜後、上記ニッケル16を電極としてガラス
平板11の表裏面11a,11bにニッケル電鋳17を
行う(図9参照)。
The obtained glass flat plate 11 is adhered and fixed to the jig 15, and the front and back surfaces 11 of the glass flat plate 11 are vacuum-deposited.
Nickel 16 is formed on the a and 11b by 1000Å (Fig. 8)
reference). After film formation, nickel electroforming 17 is performed on the front and back surfaces 11a and 11b of the glass plate 11 using the nickel 16 as an electrode (see FIG. 9).

【0018】電鋳17を行った後、その外側面(上下
面)をフライス盤により平滑化加工を行う(図10参
照)。続いて、電鋳17の外周加工を表裏同時に行う。
加工中は、電鋳17がガラス平板11から外れない様に
両側から押さえながら行う(図11参照)。この後、電
鋳17をガラス平板11から分離することによって、表
裏の位置が高精度に合った一対の電鋳型18,19を得
る(図12参照)。
After electroforming 17, the outer surface (upper and lower surfaces) is smoothed by a milling machine (see FIG. 10). Then, the outer periphery of the electroformed 17 is simultaneously processed on the front and back sides.
During processing, the electroforming 17 is performed while pressing from both sides so as not to come off from the glass flat plate 11 (see FIG. 11). After that, the electrocasting 17 is separated from the glass flat plate 11 to obtain a pair of electroforming molds 18 and 19 whose front and back positions are matched with each other with high accuracy (see FIG. 12).

【0019】本実施例によれば、位置精度の良い位相型
回折格子の成形型を電鋳により得られる。また、本実施
例で得られた成形型を入子として図23にて示した射出
成形機に取り付け、所望形状の成形品を射出成形によっ
て成形する。ここで、射出成形機の挿入穴は正確に一致
しているものとする。本実施例によると、射出成形機の
挿入穴が正確に一致しており、また双方の成形型(入
子)の外周と成形面との位置関係が互いに一致している
ので、上記成形方法にて成形した成形品の成形表裏面は
互いに正確に一致する。
According to this embodiment, a molding die for a phase type diffraction grating with good positional accuracy can be obtained by electroforming. Further, the molding die obtained in this example is inserted into the injection molding machine shown in FIG. 23, and a molded product having a desired shape is molded by injection molding. Here, it is assumed that the insertion holes of the injection molding machine are exactly aligned. According to this embodiment, the insertion holes of the injection molding machine are exactly aligned with each other, and the outer circumferences of both molding dies (nests) and the molding surface are aligned with each other. The front and back surfaces of the molded product formed by the above-mentioned molding are exactly the same.

【0020】[0020]

【実施例2】図13〜図18は本実施例を示す工程図で
ある。本実施例では、PMMAの円板21を治具に取り
付けて精密旋盤にチャックし、一方の面にフレネル22
aを切削する。続いて、同軸で基準外周23aを切削す
る(図13参照)。次に、チャクを外して基準外周23
aを再びチャクしなおし、他方の面に非球面22bを切
削する(図14参照)。この時、フレネル22aと基準
外周23aは正確に同軸であり、非球面22bも同じ加
工機で形成されることにより、フレネル22aと非球面
22bとの同軸度の誤差は3μm以下に抑えられる。
Embodiment 2 FIGS. 13 to 18 are process drawings showing this embodiment. In this embodiment, a PMMA disc 21 is attached to a jig and chucked on a precision lathe, and Fresnel 22 is attached to one surface.
Cut a. Then, the reference outer periphery 23a is coaxially cut (see FIG. 13). Next, remove the chaku and remove the reference circumference 23.
A is re-chucked again, and the aspherical surface 22b is cut on the other surface (see FIG. 14). At this time, the Fresnel 22a and the reference outer circumference 23a are exactly coaxial, and the aspherical surface 22b is also formed by the same processing machine, so that the error in the concentricity between the Fresnel 22a and the aspherical surface 22b is suppressed to 3 μm or less.

【0021】この後、円板21のフレネル22aと非球
面22bとへ真空蒸着により金24を1000Å成膜す
る(図15参照)。続いて、上記金24を陰極として円
板21に対してニッケル電鋳25を行う(図16参
照)。
After that, 1000 L of gold 24 is deposited on the Fresnel 22a and the aspherical surface 22b of the disk 21 by vacuum vapor deposition (see FIG. 15). Subsequently, nickel electroforming 25 is performed on the disk 21 using the gold 24 as a cathode (see FIG. 16).

【0022】次に、電鋳25の外側面をフライス盤によ
り平滑化加工を行う(図17参照)。続いて、外周加工
を両面同時に行う(図18参照)。この後、電鋳25を
円板21から分離することにより、表裏の位置が高精度
に合っている一対の電鋳型を得る。
Next, the outer surface of the electroformed 25 is smoothed by a milling machine (see FIG. 17). Subsequently, outer peripheral processing is performed on both sides simultaneously (see FIG. 18). After that, the electroformed mold 25 is separated from the circular plate 21 to obtain a pair of electroformed molds whose front and back positions are matched with each other with high accuracy.

【0023】本実施例によれば、マスタ−がPMMAな
ので外周加工の際にマスタ−も一緒に切削でき、マスタ
−より小さな金型でも少ない工程で得ることができる。
According to this embodiment, since the master is the PMMA, the master can be cut together with the outer peripheral processing, and a die smaller than the master can be obtained in a small number of steps.

【0024】[0024]

【実施例3】図19〜図22は本実施例を示す工程図で
ある。本実施例では、真鍮の板31を治具32に取り付
けて精密旋盤にチャクし、前記実施例2と同様な方法を
用い、板31の表裏面にフレネルレンズ31a,31b
を切削加工により形成する(図19参照)。次に、真鍮
の板31を陰極としてその表裏面にニッケル電鋳33を
行う(図20参照)。
Third Embodiment FIGS. 19 to 22 are process drawings showing the present embodiment. In this embodiment, a brass plate 31 is attached to a jig 32 and chucked on a precision lathe, and the Fresnel lenses 31a and 31b are formed on the front and back surfaces of the plate 31 using the same method as in the second embodiment.
Are formed by cutting (see FIG. 19). Next, nickel electroforming 33 is performed on the front and back surfaces of the brass plate 31 as a cathode (see FIG. 20).

【0025】電鋳33を行った後、電鋳33の外側面を
フライス盤により平滑化加工を行う(図21参照)。続
いて、外周加工を両面同時に行う(図22参照)。この
後、電鋳33を真鍮の板31から分離することにより、
表裏の位置が高精度に合っている一対の電鋳型を得る。
After performing the electroforming 33, the outer surface of the electroforming 33 is smoothed by a milling machine (see FIG. 21). Subsequently, outer peripheral processing is performed on both sides simultaneously (see FIG. 22). After this, by separating the electroformed 33 from the brass plate 31,
A pair of electroforming molds whose front and back positions are accurately matched are obtained.

【0026】本実施例によれば、マスタ−が真鍮である
ため、切削による精密加工が行え、かつ電鋳が直接行
え、さらには外周加工時も電鋳と一緒に切削できること
により工程を少なくできる。
According to the present embodiment, since the master is brass, precision machining by cutting can be performed, electroforming can be directly performed, and further, it is possible to perform machining together with electroforming at the time of outer peripheral machining, thereby reducing the number of steps. .

【0027】[0027]

【発明の効果】以上説明した様に、本発明に係る電鋳型
の製造方法によれば、簡単な方法で表裏の位置精度が良
い電鋳型を得ることができる。
As described above, according to the method for manufacturing an electroforming mold according to the present invention, it is possible to obtain an electroforming mold having good front and back positional accuracy by a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示す概念図である。FIG. 1 is a conceptual diagram showing the present invention.

【図2】本発明を示す概念図である。FIG. 2 is a conceptual diagram showing the present invention.

【図3】本発明を示す概念図である。FIG. 3 is a conceptual diagram showing the present invention.

【図4】本発明を示す概念図である。FIG. 4 is a conceptual diagram showing the present invention.

【図5】実施例1を示す工程図である。FIG. 5 is a process diagram showing Example 1.

【図6】実施例1を示す工程図である。FIG. 6 is a process diagram showing Example 1.

【図7】実施例1を示す工程図である。FIG. 7 is a process drawing showing the first embodiment.

【図8】実施例1を示す工程図である。FIG. 8 is a process drawing showing the first embodiment.

【図9】実施例1を示す工程図である。FIG. 9 is a process drawing showing Example 1.

【図10】実施例1を示す工程図である。FIG. 10 is a process chart showing Example 1.

【図12】実施例1を示す工程図である。FIG. 12 is a process diagram showing Example 1.

【図13】実施例2を示す工程図である。FIG. 13 is a process diagram showing a second embodiment.

【図14】実施例2を示す工程図である。FIG. 14 is a process diagram showing a second embodiment.

【図15】実施例2を示す工程図である。FIG. 15 is a process diagram showing a second embodiment.

【図16】実施例2を示す工程図である。FIG. 16 is a process drawing showing Example 2.

【図17】実施例2を示す工程図である。FIG. 17 is a process diagram showing a second embodiment.

【図18】実施例2を示す工程図である。FIG. 18 is a process diagram showing a second embodiment.

【図19】実施例3を示す工程図である。FIG. 19 is a process drawing showing Example 3;

【図20】実施例3を示す工程図である。FIG. 20 is a process diagram showing a third embodiment.

【図21】実施例3を示す工程図である。FIG. 21 is a process drawing showing Example 3;

【図22】実施例3を示す工程図である。FIG. 22 is a process drawing showing Example 3;

【図23】従来例を示す断面図である。FIG. 23 is a cross-sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 マスタ− 2,3 電鋳 4 エンドミル 5,6 電鋳型 1 Master 2,3 Electroforming 4 End mill 5,6 Electroforming

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月22日[Submission date] July 22, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示す概念図である。FIG. 1 is a conceptual diagram showing the present invention.

【図2】本発明を示す概念図である。FIG. 2 is a conceptual diagram showing the present invention.

【図3】本発明を示す概念図である。FIG. 3 is a conceptual diagram showing the present invention.

【図4】本発明を示す概念図である。FIG. 4 is a conceptual diagram showing the present invention.

【図5】実施例1を示す工程図である。FIG. 5 is a process diagram showing Example 1.

【図6】実施例1を示す工程図である。FIG. 6 is a process diagram showing Example 1.

【図7】実施例1を示す工程図である。FIG. 7 is a process drawing showing the first embodiment.

【図8】実施例1を示す工程図である。FIG. 8 is a process drawing showing the first embodiment.

【図9】実施例1を示す工程図である。FIG. 9 is a process drawing showing Example 1.

【図10】実施例1を示す工程図である。 FIG. 10 is a process chart showing Example 1.

【図11】実施例1を示す工程図である。FIG. 11 is a process chart showing Example 1.

【図12】実施例1を示す工程図である。FIG. 12 is a process diagram showing Example 1.

【図13】実施例2を示す工程図である。FIG. 13 is a process diagram showing a second embodiment.

【図14】実施例2を示す工程図である。FIG. 14 is a process diagram showing a second embodiment.

【図15】実施例2を示す工程図である。FIG. 15 is a process diagram showing a second embodiment.

【図16】実施例2を示す工程図である。FIG. 16 is a process drawing showing Example 2.

【図17】実施例2を示す工程図である。FIG. 17 is a process diagram showing a second embodiment.

【図18】実施例2を示す工程図である。FIG. 18 is a process diagram showing a second embodiment.

【図19】実施例3を示す工程図である。FIG. 19 is a process drawing showing Example 3;

【図20】実施例3を示す工程図である。FIG. 20 is a process diagram showing a third embodiment.

【図21】実施例3を示す工程図である。FIG. 21 is a process drawing showing Example 3;

【図22】実施例3を示す工程図である。FIG. 22 is a process drawing showing Example 3;

【図23】従来例を示す断面図である。FIG. 23 is a cross-sectional view showing a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ特定形状の表裏面を有する光学
素子成形用の電鋳型を製造するにあたり、各表裏面にお
ける形状の相対位置が正しいマスタ−を形成し、該マス
タ−の表裏面へ同時に電鋳した後、形成された表裏電鋳
部の外周を同時加工することを特徴とする電鋳型の製造
方法。
1. When manufacturing an electroforming mold for molding an optical element, each having a front surface and a back surface of a specific shape, a master is formed in which the relative positions of the shapes on the front and back surfaces are correct, and the front and back surfaces of the master are simultaneously charged. A method for producing an electroforming mold, which comprises simultaneously processing the outer circumferences of the formed front and back electroformed parts after casting.
JP2170993A 1993-01-14 1993-01-14 Production of electroforming mold Withdrawn JPH06212478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2170993A JPH06212478A (en) 1993-01-14 1993-01-14 Production of electroforming mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2170993A JPH06212478A (en) 1993-01-14 1993-01-14 Production of electroforming mold

Publications (1)

Publication Number Publication Date
JPH06212478A true JPH06212478A (en) 1994-08-02

Family

ID=12062593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170993A Withdrawn JPH06212478A (en) 1993-01-14 1993-01-14 Production of electroforming mold

Country Status (1)

Country Link
JP (1) JPH06212478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166425A (en) * 2000-11-30 2002-06-11 Dainippon Printing Co Ltd Mold duplicating method and property judging method
US7299186B2 (en) 2001-10-02 2007-11-20 Hitachi, Ltd. Speech input system, speech portal server, and speech input terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166425A (en) * 2000-11-30 2002-06-11 Dainippon Printing Co Ltd Mold duplicating method and property judging method
US7299186B2 (en) 2001-10-02 2007-11-20 Hitachi, Ltd. Speech input system, speech portal server, and speech input terminal

Similar Documents

Publication Publication Date Title
US5938989A (en) Diffractive optical elements
CN101094764A (en) Optical tool assembly for improved rcw and lens edge formation
CN103472682A (en) Method for preparing diffraction micro-optical elements based on mask lithography technique and injection molding
JPH1148258A (en) Tool for molding diffraction surface of optical lens and its manufacture
JPH06212478A (en) Production of electroforming mold
JP2005508269A (en) Method for manufacturing a micro-optical element from a gray scale etched master mold
JPS62144908A (en) Manufacturing method for fresnel lens molding tool
KR100830618B1 (en) Method for fabricating a plastic optic element injection mold
US3840977A (en) Method of making molds for molding or casting optical parts and the like
TWI233423B (en) Method of fabricating a stamper with microstructure patterns
WO1995011108A1 (en) Front curve blocking system
KR100294116B1 (en) Method of ferrule of multi-fiber optical connector
JP2717956B2 (en) Method for manufacturing high-precision microparts for lithography and mold apparatus used therefor
JP3925696B2 (en) Mold production method
JPH0465210A (en) Molding die
KR100256626B1 (en) Manufacturing method of ferrule for optical connector and the metal pattern
JP2003167163A (en) Ferrule and its manufacturing method
JPS60904A (en) Manufacture of duplicating matrix
JP2003145546A (en) Method for manufacturing mold
JPH02163395A (en) Production of metallic mold for forming optical element
JPH06273542A (en) Fine cubic dial and production thereof
JP2022068949A (en) Manufacturing method for roll mold
JPH1152114A (en) Production of element having fine rugged patterns
TWI406000B (en) Coated lens and method thereof
JPH10296742A (en) Manufacture of molding tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404