JPH06212018A - Polymer-based material having composite functions - Google Patents

Polymer-based material having composite functions

Info

Publication number
JPH06212018A
JPH06212018A JP3725693A JP3725693A JPH06212018A JP H06212018 A JPH06212018 A JP H06212018A JP 3725693 A JP3725693 A JP 3725693A JP 3725693 A JP3725693 A JP 3725693A JP H06212018 A JPH06212018 A JP H06212018A
Authority
JP
Japan
Prior art keywords
polymer
shape memory
composite material
memory alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3725693A
Other languages
Japanese (ja)
Inventor
Yasubumi Furuya
泰文 古屋
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3725693A priority Critical patent/JPH06212018A/en
Publication of JPH06212018A publication Critical patent/JPH06212018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the polymer-based composite functional material imparted with material-reinforcing and vibration-insulating properties at high temperatures and with a self-repairing function for inner damages. CONSTITUTION:This multi-functional polymer-based composite material capable of responding to changes in outside environments is characterized by incorporating the shape-memorizing alloy material-fibrous elements 2 of low temperature side martensite phase with a polymeric matrix 1 at <= a reverse transformation temperature, thereby permitting to enhance the strength and vibration resistance of the matrix material and simultaneously enabling the self closure of the inner cracks, cavities, etc., of the composite material by the utilization of a shape memory contraction force which is produced by always measuring the electric resistances of the buried fibers and the changes of a pressure (strain) sensor adhered to the surface of the composite material and subsequently applying an electric current to the buried fibers to heat the fibers at the time of an abnormal trouble. Especially, the polymer-based composite functional material having the high performances is characterized by mixing and arranging the shape-memorizing alloy material-fibrous elements in the matrix, where the shape-memorizing alloy material-fibrous elements have metal crystalline substances produced by rapidly cooling and coagulating the melted alloy at a rate of 10<2> to 10<6> deg.C/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強度と防振性向上のみ
ならず、材料内部の応力や温度さらにはき裂や空洞など
の内部損傷・欠陥を自己修復出来る、外環境温度や応力
変化に応答可能で、材料自体が上記の複数機能をそなえ
た高次高分子基複合機能材料の開発に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention not only improves strength and anti-vibration property, but also enables self-repair of stress and temperature inside the material as well as internal damages and defects such as cracks and cavities. The present invention relates to the development of a high-order polymer-based composite functional material which is capable of responding to the above, and the material itself has the above multiple functions.

【0002】[0002]

【従来の技術】高分子(ポリマ)基複合材料には、ガラ
ス繊維や炭素繊維をプラスチックス母材内部に混合・配
列させ、そのポリマ特有の軽量化・高耐食性とともに強
度をさらに上げて構造材料として広範囲で使用されてい
る。例えば、建築資材、船艇・船舶、自動車・車両、航
空・宇宙関係などの機械構造物の構成材料、パイプ・タ
ンク類、耐食機器・装置類、電気・電子部品、雑貨類な
どである。
2. Description of the Related Art In a polymer (polymer) matrix composite material, glass fibers and carbon fibers are mixed and arranged inside a plastics base material, and the weight and high corrosion resistance peculiar to the polymer are further increased and the strength is further increased. Is widely used as. For example, building materials, ships / boats, automobiles / vehicles, constituent materials of mechanical structures such as aviation / space, pipes / tanks, corrosion-resistant equipment / devices, electric / electronic parts, and miscellaneous goods.

【0003】また、高分子(ポリマ)材料は、一般に高
い減衰能(ダンピング特性)を有している。この機能を
生かした形での吸音・遮音材料、制振材料、工業的利用
も最近では多くなって来ている。例えば、制振鋼板、防
振ゴム、発泡プラスチックス(発泡ポリウレタンなど)
はその代表的な例である。
Further, a polymer material generally has a high damping ability (damping characteristic). Recently, sound absorbing / sound insulating materials, vibration damping materials, and industrial applications that utilize this function have been increasing. For example, damping steel plates, anti-vibration rubber, foamed plastics (foamed polyurethane, etc.)
Is a typical example.

【0004】一版に、ポリマ材料には、き属材料に比べ
て2〜3オーダー(100〜100倍)の大きな減衰能
(損失係数=ダンピング)性を有しているが、その最大
領域は一般には100℃以上でのガラス転移温度付近に
あり、それよりも低温度側のガラス領域や高温側ゴム領
域での減衰能は余り高くなく、ガラス転移領域の広域化
が可塑化、共重合化などにより図られている。しかし、
建築材料などの使用温度である室温領域までの高減衰能
化はポリマの本質的な構造上の問題も絡みななかなか進
んでいないのが現状である。また、高減衰(ダンピン
グ)性を示すガラス転移領域では、ポリマは軟化して強
度が急激に低下してしまい、その温度領域でのポリマー
単体からなる強度と減衰性を兼ね備えた構造材料として
の可能性は依然小さいのが現状である。
In one version, the polymer material has a large damping ability (loss coefficient = damping) on the order of 2 to 3 (100 to 100 times) as compared with the metal material, but the maximum area is Generally, it is near the glass transition temperature at 100 ° C. or higher, and the damping ability in the glass region on the lower temperature side and the rubber region on the higher temperature side is not so high, and the broadening of the glass transition region is plasticized and copolymerized. And so on. But,
The current situation is that the high damping capacity up to room temperature, which is the operating temperature of building materials, has not progressed at all due to the inherent structural problems of polymers. In the glass transition region, which exhibits high damping (damping) properties, the polymer softens and its strength drops sharply, making it possible as a structural material consisting of a polymer alone in that temperature region to have both strength and damping properties. The reality is that sex is still small.

【0005】また、材料の透過損失(ダンピング・ロ
ス)は、一般的にその部材の剛性、質量、内部摩擦に影
響される。その例を図1に示すが、極低周波数(fo以
下)では、合剛性支配で、中振動域(fo〜fn)では
材料の固定条件などに起因する共振(fn)の影響を受
ける。さらに高周波数域(fn以上)になると透過損失
(ダンピング・ロス)は質量の支配となり質量増加とと
もに増加する。その際に、材料弾性率に起因する共振点
(fc)が生じ、その狭い周波数部分では透過損失の低
下が生じることにもなる。
The transmission loss (damping loss) of a material is generally affected by the rigidity, mass and internal friction of the member. An example thereof is shown in FIG. 1. At extremely low frequencies (fo and below), the total rigidity is governed, and in the middle vibration range (fo to fn), the resonance (fn) caused by the material fixing conditions is affected. In a higher frequency range (fn or more), the transmission loss (damping loss) is dominated by the mass and increases with the increase of the mass. At that time, a resonance point (fc) is generated due to the elastic modulus of the material, and the transmission loss is reduced in the narrow frequency portion.

【0006】そのために、実際、ポリマ母材よりも高い
剛性を示すガラス繊維や炭素繊維を混合して低周波域で
の剛性を高めたり、高周波数域えの質量増加のためにF
やZnO粉末を充填して密度を上げる処置が工
夫されている。しかし、図1からも分かるように、材料
自体の内部摩擦を大きくすれば、ほぼ全ての周波数領域
での透過損失(ダンピング・ロス)を向上できることが
わかるので、内部摩擦の増加対策はポリマ系材料でも制
振性向上への有効な手段といえる。
Therefore, in practice, glass fiber or carbon fiber, which has higher rigidity than that of the polymer base material, is mixed to increase the rigidity in the low frequency range or increase the mass in the high frequency range.
Measures for increasing the density by filling e 2 O 3 or ZnO powder have been devised. However, as can be seen from FIG. 1, increasing the internal friction of the material itself can improve the transmission loss (damping loss) in almost all frequency regions. However, it can be said that it is an effective means for improving the vibration damping property.

【0007】また、最近では、航空機産業、原子力発
電、化学プラントなど、突発的な破壊により社会的・環
境問題的に大きな損害を被る恐れのある産業では、上記
の高強度化と防振性のみならず、材料内部の応力や温度
を材料側自体からの信号取得により常時モニター(=自
己診断性)出来て、さらにはき裂や空洞などの内部損傷
・欠陥を低減(=自己修復性)出来るような、外環境温
度や応力変化に応答可能で、材料自体が上記の複数機能
をそなえた高次高分子基複合機能材料が期待されてきて
いる。
Recently, in the industries such as the aircraft industry, nuclear power generation, chemical plants, etc., where there is a possibility of serious damage due to social and environmental problems due to sudden destruction, only the above-mentioned high strength and anti-vibration property are provided. Not only that, stress and temperature inside the material can be constantly monitored (= self-diagnosis) by acquiring signals from the material side itself, and further internal damage / defects such as cracks and cavities can be reduced (= self-repairability). It is expected that a higher-order polymer-based composite functional material that can respond to such changes in external environmental temperature and stress and that the material itself has the above-mentioned multiple functions.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0008】本発明では、上記の様々な高分子(ポリ
マ)系材料の材料改善やそれを用いた構成機器・部材の
破損や事故防止に向けて解決すべき材料学的課題になっ
て来ている、中温度域までの強度向上、低温から中
温度域レベルでの高減衰性の確保、使用中のポリマ材
料内部状態(温度・応力)の把握・自己診断機能、使
用中の内部での欠陥・損傷の自己修復機能 など、高次
元の材料機能付与をポリマ系材料に組み込もうとするも
のである。
In the present invention, there have been material problems to be solved in order to improve the materials of the above-mentioned various polymer materials and to prevent damage to component equipment and members using the materials and accidents. The strength up to the middle temperature range, ensuring high damping at low to medium temperature range, grasping the internal state (temperature / stress) of the polymer material in use, self-diagnosis function, internal defects during use -It aims to incorporate high-dimensional material function additions into polymer materials, such as the self-healing function of damage.

【発明を解決するための手段】Means for Solving the Invention

【0009】本発明では、上記の様々の高分子(ポリ
マ)系材料に要求されてきている高次元の材料機能付与
を、ポリマ表面もしくはその内部に形状記憶合金系素子
(繊維、微粒子、薄膜など)を混合・配列させた複合材
料を作製することで可能ならしめるものである。すなわ
ち、形状記憶合金系に一般的に起る変態現象による低温
から高温化に伴う材料強度と剛性向上、材料自体の電気
抵抗変化、さらにはポリマ母材内部での形状記憶素子収
縮強化作用、ポリマ母材と形状記憶素子との剛性の相違
と混合形状記憶素子自体の高減衰性を組み合わせた相乗
効果を利用する材料設計により、本発明の高分子基複合
機能性材料が可能になるわけである。
In the present invention, the high-dimensional material function imparted to the above-mentioned various polymer (polymer) -based materials is added to the shape memory alloy-based element (fiber, fine particles, thin film, etc.) on or inside the polymer surface. ) Is mixed and arranged to produce a composite material. That is, the material strength and rigidity are improved with the increase in temperature from low temperature due to the transformation phenomenon that generally occurs in shape memory alloy systems, the change in the electrical resistance of the material itself, and the effect of strengthening the shrinkage of the shape memory element inside the polymer matrix, the polymer, The polymer-based composite functional material of the present invention can be realized by material design utilizing a synergistic effect that combines the difference in rigidity between the base material and the shape memory element and the high damping property of the mixed shape memory element itself. .

【0010】[0010]

【作用】一般に、合金系の形状記憶現象は熱弾性型マル
テンサイト(M)変態に起因する。これは、転位形成に
よる結晶すべり(slir)によるものではなく、熱吸
収に付随して起こる相境界面や双晶界面の移動を伴うせ
ん断的ずれ(shear)運動に起因しており、結晶粒
径よりもはるかに小さな兄弟晶(バリアント)が形成さ
れる。それは、外的な熱や応力ひずみエネルギー吸収に
よって可逆的に元の結晶構造状態に戻ることが出来る。
これが、形状記憶効果発現の原因である。鋼などでの焼
き入れにより起こるマルテンサイト変態M相とは異な
り、形状記憶合金系での低温M相は高温での安定オース
テナイト(A)母相よりも1/2から1/3程度柔らか
く変形が容易である。すなわち、低温から高温になるに
つれて形状記憶合金では剛性率が2〜3倍程度上昇す
る。また、この際に予ひずみを付与して、その変形を拘
束した場合には、逆に2〜3倍程度の大きな回復力が得
られることになる。この温度上昇に伴う材料強化現象が
通常の金属材料での高温低強度・軟化現象とは大きく異
なる点であり、この特異な現象(=熱弾性的マルテンサ
イト変態)を利用して、ポリマ系複合材料の材料強化や
複合材内部の剛性の相違を利用した高減衰性発現が可能
になるわけである。
In general, the shape memory phenomenon of the alloy system is caused by the thermoelastic martensite (M) transformation. This is not due to a crystal slip due to dislocation formation, but due to a shearing movement accompanied by the movement of the phase boundary surface and the twin interface accompanying the heat absorption. Much smaller siblings (variants) are formed. It can reversibly return to its original crystalline structure state by external heat or absorption of stress-strain energy.
This is the cause of manifestation of the shape memory effect. Unlike the martensitic transformation M phase that occurs by quenching in steel, etc., the low temperature M phase in the shape memory alloy system is softer than the stable austenite (A) matrix at high temperature by 1/2 to 1/3 and is deformed. It's easy. That is, the rigidity of the shape memory alloy increases by about 2 to 3 times as the temperature goes from low to high. In addition, in this case, if pre-strain is applied to restrain the deformation, a large recovery force of about 2 to 3 times is obtained. The material strengthening phenomenon associated with this temperature rise is very different from the high-temperature low-strength / softening phenomenon in ordinary metal materials. By utilizing this unique phenomenon (= thermoelastic martensite transformation), polymer-based composite High damping properties can be realized by utilizing the material reinforcement of the material and the difference in rigidity inside the composite material.

【0011】 なお、形状記憶合金の熱弾性的変態にお
ける各変態温度を以下に記号で示す。低温側マルテンサ
イト変態終了、開始温度をMf,Ms、高温側で安定な
母相オーステナイト変態(逆変態)開始、終了温度をA
s,Afと呼ぶ。これらの形状記憶合金系での温度変化
に伴う材料特性発現を図2にまとめて示した。また、低
温マルテンサイト相では、微細な双晶変態相、兄弟結晶
(バリアント)が形成され、かつそれらの境界は外的な
熱や応力により非常に動き易く、お互いに干渉しあって
いる。この時の、低温マルテンサイト相での応力〜ひず
み曲線のヒステリシスは非常に大きくなり、そのひずみ
エネルギーは、材料内部に吸収され熱として外部に散逸
されるので、低温相ほど形状記憶合金自体も内部摩擦が
大きく高減衰材料となる。一般的な金属材料と比較して
一連の形状記憶合金が減衰能および強度の両方が極めて
大きな特長を有する材料であることを図3に黒印で示
す。このことから熱弾性型相変態合金である形状記憶合
金(SMA)系材料が、機械・構造物用の環境問題とし
て最近重要な課題となってきている振動制御、騒音抑制
を行うための一つの構成材料要素としての可能性を見い
出すことも出来るわけである。
The respective transformation temperatures in the thermoelastic transformation of the shape memory alloy are shown below by the symbols. End of low temperature martensitic transformation, start temperature Mf, Ms, start of stable parent phase austenite transformation (reverse transformation) on high temperature side, end temperature A
Call s, Af. The development of material properties with temperature changes in these shape memory alloy systems is summarized in FIG. Further, in the low temperature martensite phase, fine twin transformation phase and sibling crystals (variants) are formed, and their boundaries are very mobile due to external heat and stress and interfere with each other. At this time, the hysteresis of the stress-strain curve in the low temperature martensite phase becomes very large, and the strain energy is absorbed inside the material and is dissipated to the outside as heat. It has high friction and becomes a high damping material. It is shown by a black mark in FIG. 3 that a series of shape memory alloys have extremely great characteristics in both damping ability and strength as compared with general metallic materials. For this reason, shape memory alloy (SMA) -based material, which is a thermoelastic phase change alloy, is one of the important issues for vibration control and noise suppression, which has recently become an important issue as an environmental problem for machines and structures. It is possible to find the possibility as a constituent material element.

【0012】さらに、形状記憶合金は一般的に金属間化
合物(IntermetallicCompound)
なので脆くて硬い性質があり、耐摩耗性は一般に高い傾
向がある。
Further, shape memory alloys are generally intermetallic compounds.
Therefore, it is brittle and hard, and its wear resistance generally tends to be high.

【0013】さて、形状記憶現象に伴う大きな回復力を
利用して、本発明の高分子基形状記憶繊維複合材料を強
化するプロセスを模式的に図4に示す。予め低温マルテ
ンサイト相状態で伸びひずみ(図中ε)を与えた形状記
憶TiNi合金を埋め込んだ高分子複合材料をオーステ
ナイト(A)域まで加温すると、内在TiNi繊維は逆
変態を起こして収縮し母材内部に圧縮応力が発生し、か
つTiNi繊維の剛性の向上も起こるので、相乗的に複
合材料は強化出来ることがわかる。
Now, a process for strengthening the polymer-based shape memory fiber composite material of the present invention by utilizing the large recovery force associated with the shape memory phenomenon is schematically shown in FIG. When a polymer composite material embedded with a shape memory TiNi alloy that has been subjected to elongation strain (ε in the figure) in the low temperature martensite phase state is heated to the austenite (A) region, the internal TiNi fiber undergoes reverse transformation and shrinks. Since compressive stress is generated inside the base material and the rigidity of the TiNi fiber is improved, it can be understood that the composite material can be reinforced synergistically.

【0014】本発明の複合材料は、形状記憶強化のため
の加熱・熱処理後にMf以下の低温に置かれれば、再び
M相としての制振性も現れてくるはずだが、さらに環境
温度に影響されない制振性を付与するためには、第2の
変態温度の高いSMA素子を混合させる必要がある。ま
た、本材料の破壊靭性、強度向上のためには、第3の混
合素子として炭素繊維などの添加が効果的である。
If the composite material of the present invention is placed at a low temperature of Mf or lower after heating and heat treatment for strengthening shape memory, the damping property as the M phase should appear again, but it is not affected by the ambient temperature. In order to impart the vibration damping property, it is necessary to mix the second SMA element having a high transformation temperature. Further, in order to improve the fracture toughness and strength of this material, it is effective to add carbon fiber or the like as the third mixing element.

【0015】[0015]

【実施例】本発明の実施例について、図5に航空機翼な
どでの形状記憶TiNi繊維強化複合材料での、内在損
傷割れ・欠陥などへの能動的閉鎖作用例を示す。複合材
表面での歪ゲージや圧電素子PVDFフィルムからの設
定値以上の変形や圧力信号を検知して、TiNiファイ
バに通電加熱を行い、TiNiファイバの収縮により、
欠陥としてのき裂、空洞などを閉鎖出来るわけである。
また、ポリマが母材の場合は、その絶縁性を利用して、
図6に示される様に埋没ファイバの相変態に伴う電気抵
抗変化から、この複合材料内部の発生応力・ひずみ・温
度状態などが非破壊的に把握出来ることになり、この埋
没ファイバ自体をセンサとしても利用出来る。
EXAMPLE FIG. 5 shows an example of the active closing action of the shape memory TiNi fiber reinforced composite material for an aircraft wing, etc., to the internal damage cracks / defects of the example of the present invention. Detecting deformation or pressure signal above the set value from the strain gauge or piezoelectric element PVDF film on the surface of the composite material, the TiNi fiber is electrically heated, and the TiNi fiber contracts.
It is possible to close cracks and cavities as defects.
If the polymer is a base material, use its insulating properties to
As shown in Fig. 6, it is possible to nondestructively grasp the generated stress, strain, temperature state, etc. inside the composite material from the electric resistance change accompanying the phase transformation of the buried fiber, and the buried fiber itself is used as a sensor. Can also be used.

【0016】図7には、エポキシ系ポリマ母材中にTi
Ni系長繊維を配列させた複合材料板の外観図で、一端
を自由振動させた場合の表面貼付歪ゲージ出力の動特性
とその減衰性を測定した。図8に示される様に複合板表
面での変位振幅の減衰性の明確な増加が確認出来た。さ
らに、図9に示される様に、単ロール液体急冷凝固(メ
ルト・スパン)法により作製したTiNi系合金薄帯は
従来の溶解・加工法による材料よりも大幅な減衰(内
耗)性の向上が可能であり、室温付近ではポリカーボネ
イト(PC)材料よりも10倍程度高いことがわかっ
た。このように急冷凝固法により、合金薄帯でのtan
δは大幅に向上して、複合材料化のための形状記憶素子
として最適である。
FIG. 7 shows Ti in the epoxy polymer matrix.
An external view of a composite material plate in which Ni-based long fibers are arranged was used to measure the dynamic characteristics of the surface-applied strain gauge output and its damping property when one end was freely vibrated. As shown in FIG. 8, a clear increase in the damping property of the displacement amplitude on the composite plate surface was confirmed. Further, as shown in FIG. 9, the TiNi alloy ribbon produced by the single roll liquid rapid solidification (melt / span) method has a significantly improved damping (inner wear) property as compared with the conventional melt / processing method. It is possible, and it is found that the temperature is about 10 times higher than that of the polycarbonate (PC) material near room temperature. In this way, the tan in the alloy ribbon is obtained by the rapid solidification method.
δ is greatly improved, and is optimal as a shape memory element for forming a composite material.

【0017】[0017]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載されるような効果を奏でる。本発
明の高分子基複合機能性材料は、埋め込まれた形状記憶
合金素子の相変態と材料機能特性を生かした形で、高分
子(ポリマ)系材料で不可避的な温度上昇に伴う強度低
下を抑えられるのみならず、ポリマ母材と形状記憶素子
間での剛性の相違による高制振性、さらには、埋め込み
素子自体の電気抵抗変化を利用した自己診断性、または
事故などの際の異常な温度上昇を自らが検知して、内在
形状記憶合金素子が収縮して、き裂なども閉鎖できる自
己修復機能が付与できる。
Since the present invention is constructed as described above, the following effects can be obtained. INDUSTRIAL APPLICABILITY The polymer-based composite functional material of the present invention is a polymer (polymer) -based material that undergoes an unavoidable decrease in strength with an increase in temperature in a form that takes advantage of the phase transformation and material functional characteristics of the embedded shape memory alloy element. Not only can it be suppressed, but also high vibration damping due to the difference in rigidity between the polymer base material and the shape memory element, as well as self-diagnosis utilizing the change in electrical resistance of the embedded element itself, or abnormalities during accidents, etc. A self-healing function can be imparted by detecting the temperature rise by itself and shrinking the internal shape memory alloy element to close a crack.

【0018】 それゆえに、高温での材料強度向上や軽
量化が必要な部分、騒音・振動問題などが深刻になって
ぃる各種高分子系材料、すなわち、建築材料、船艇、船
舶、航空機・宇宙、自動車、車両、化学大型プラントな
ど機械構造物の構成材料、パイプ・タンク類、耐食機器
・装置類、電気・電子部品、雑貨類などの機械・電子部
品、制振、吸音マットとしてなど広い用途が可能とな
る。
Therefore, various polymer-based materials, such as building materials, boats, ships, aircraft, etc., for which the material strength improvement and weight reduction at high temperatures are required, and noise and vibration problems are becoming serious. Widely used as a material for constructing mechanical structures such as space, automobiles, vehicles, and large chemical plants, pipes / tanks, corrosion-resistant equipment / devices, electrical / electronic parts, mechanical / electronic parts such as miscellaneous goods, vibration control, and sound absorbing mats. It can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】透過損失と質量、弾性率(剛性)、内部摩擦の
関係
[Figure 1] Relationship between transmission loss, mass, elastic modulus (rigidity), and internal friction

【図2】形状記憶合金系材料(図中の黒丸)の高強度と
高制振性
FIG. 2 High strength and high vibration damping of shape memory alloy type material (black circles in the figure)

【図3】形状記憶合金(SMA)での温度変化に伴う材
料特性
FIG. 3 Material properties of shape memory alloy (SMA) with temperature change

【図4】形状記憶複合材料の材料設計と加工プロセスFIG. 4 Material design and processing process of shape memory composite material

【図5】高分子基形状記憶繊維強化複合材料での内在割
れの能動的閉鎖例
FIG. 5: Example of active closure of intrinsic crack in polymer-based shape memory fiber reinforced composite material

【図6】高分子基形状記憶TiNi長繊維複合材料の歪
量と電気抵抗変化
FIG. 6: Strain amount and electric resistance change of polymer-based shape memory TiNi long fiber composite material

【図7】カーボン/エポキシ母材中に形状記憶アクチュ
エータ繊維を埋め込んだ複合材料例(片持ち梁)
FIG. 7: Example of composite material in which shape memory actuator fibers are embedded in carbon / epoxy matrix (cantilever)

【図8】高分子基形状記憶複合材料での振動減衰性の向
FIG. 8: Improvement of vibration damping in polymer-based shape memory composite material

【図9】液体急冷凝固TiNi合金での内耗(tan
δ)の上昇
FIG. 9: Internal wear (tan) in liquid rapidly solidified TiNi alloy
δ) rise

【符号の説明】[Explanation of symbols]

1 形状記憶合金素子(繊維) 2 高分子母体 3 ひずみゲージ 1 Shape memory alloy element (fiber) 2 Polymer matrix 3 Strain gauge

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 逆変態終了温度以下の少なくとも一種類
以上の形状記憶合金材料を母材表面に配列接合・付設も
しくは母材内に配列・混合させた高分子基複合材料
1. A polymer-based composite material in which at least one or more shape memory alloy materials having a temperature not higher than the reverse transformation end temperature are arrayed and attached to the surface of the base material or attached or arranged and mixed in the base material.
【請求項2】変態終了点以下の温度で塑性的伸びを付与
されてなる少なくとも一種類以上の形状記憶合金材料素
子を母材表面に配列接合・付設もしくは母材内に配列・
混合させた高分子基複合材料
2. At least one kind of shape memory alloy material element, which has been subjected to plastic elongation at a temperature below the transformation end point, is arranged on the surface of the base material by bonding, attachment or arrangement in the base material.
Mixed polymer matrix composites
【請求項3】形状記憶合金の作製にあたり、その合金系
溶湯を10〜10℃/secの範囲で急冷凝固させ
て得られる金属結晶質を有する範囲の形状記憶合金系材
料素子を母材内に混合・配列させた請求項1、2記載の
金属基複合材料
3. A base material for a shape memory alloy-based material element having a metal crystallinity, which is obtained by rapidly solidifying the melt of the alloy-based metal in the range of 10 2 to 10 6 ° C./sec in producing a shape memory alloy. The metal-based composite material according to claim 1, wherein the metal-based composite material is mixed and arranged in the interior.
【請求項4】逆変態終了点以下の温度で塑性的伸びを付
与されてなる少なくとも一種類以上の第一の形状記憶合
金と、第一の形状記憶合金の逆変態終了点以上の逆変態
開始点を有する少なくとも一種類以上の第二の形状記憶
合金とを混合させた請求項1、2、3記載の金属基複合
材料
4. At least one kind of first shape memory alloy which is provided with plastic elongation at a temperature below the reverse transformation end point, and reverse transformation start above the reverse transformation end point of the first shape memory alloy. The metal matrix composite material according to claim 1, 2 or 3, wherein at least one kind of second shape memory alloy having dots is mixed.
【請求項5】第三の複合強化材料素子として炭素繊維を
混合させた請求項1、2、3、4記載の高分子基複合材
5. The polymer-based composite material according to claim 1, wherein carbon fibers are mixed as the third composite reinforcing material element.
JP3725693A 1993-01-14 1993-01-14 Polymer-based material having composite functions Pending JPH06212018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3725693A JPH06212018A (en) 1993-01-14 1993-01-14 Polymer-based material having composite functions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3725693A JPH06212018A (en) 1993-01-14 1993-01-14 Polymer-based material having composite functions

Publications (1)

Publication Number Publication Date
JPH06212018A true JPH06212018A (en) 1994-08-02

Family

ID=12492574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3725693A Pending JPH06212018A (en) 1993-01-14 1993-01-14 Polymer-based material having composite functions

Country Status (1)

Country Link
JP (1) JPH06212018A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012588A1 (en) * 1994-10-19 1996-05-02 Dpd, Inc. Shape-memory material repair system and method of use therefor
JP2002131265A (en) * 2000-10-19 2002-05-09 R & D Inst Of Metals & Composites For Future Industries Damage detection sensor, production method thereof and composite material with the same incorporated therein
JP2002225166A (en) * 2001-01-29 2002-08-14 Fuji Heavy Ind Ltd Composite material and method for controlling damage to composite material
WO2002097149A1 (en) * 2001-05-29 2002-12-05 National Institute Of Advanced Industrial Science And Technology Functional composite material using shape memory alloy and production method therefor
WO2003102256A1 (en) * 2002-06-04 2003-12-11 National Institute Of Advanced Industrial Science And Technology Extremely fine shape memory alloy wire, composite material thereof and process for producing the same
JP2006505655A (en) * 2002-11-04 2006-02-16 ザ・ボーイング・カンパニー Polymer composite structure reinforced with shape memory alloy and manufacturing method thereof
JP2008030351A (en) * 2006-07-31 2008-02-14 Satoshi Shimamoto Method of controlling shape recovery force of intellectual material and intellectual material
JP2008518072A (en) * 2004-10-28 2008-05-29 キネティック リミテッド Composite material
JP2009162233A (en) * 2008-01-09 2009-07-23 Rosati Fratelli Srl Variable geometry fan and method for manufacturing blade thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012588A1 (en) * 1994-10-19 1996-05-02 Dpd, Inc. Shape-memory material repair system and method of use therefor
JP2002131265A (en) * 2000-10-19 2002-05-09 R & D Inst Of Metals & Composites For Future Industries Damage detection sensor, production method thereof and composite material with the same incorporated therein
JP4583576B2 (en) * 2000-10-19 2010-11-17 富士重工業株式会社 Damage position detection device for fiber reinforced resin composite and method for manufacturing damage detection sensor
JP2002225166A (en) * 2001-01-29 2002-08-14 Fuji Heavy Ind Ltd Composite material and method for controlling damage to composite material
JP4562295B2 (en) * 2001-01-29 2010-10-13 富士重工業株式会社 COMPOSITE MATERIAL AND DAMAGE CONTROL METHOD FOR COMPOSITE MATERIAL
US7253219B2 (en) 2001-05-29 2007-08-07 National Institute Of Advanced Industrial Science And Technology Functional composite material using shape memory alloy and production method therefor
DE10296902B4 (en) * 2001-05-29 2008-01-03 National Institute Of Advanced Industrial Science And Technology A method of making a composite functional material using shape memory alloys
WO2002097149A1 (en) * 2001-05-29 2002-12-05 National Institute Of Advanced Industrial Science And Technology Functional composite material using shape memory alloy and production method therefor
WO2003102256A1 (en) * 2002-06-04 2003-12-11 National Institute Of Advanced Industrial Science And Technology Extremely fine shape memory alloy wire, composite material thereof and process for producing the same
JP2006505655A (en) * 2002-11-04 2006-02-16 ザ・ボーイング・カンパニー Polymer composite structure reinforced with shape memory alloy and manufacturing method thereof
JP2008518072A (en) * 2004-10-28 2008-05-29 キネティック リミテッド Composite material
US11198924B2 (en) 2004-10-28 2021-12-14 Qinetiq Limited Composite materials
JP2008030351A (en) * 2006-07-31 2008-02-14 Satoshi Shimamoto Method of controlling shape recovery force of intellectual material and intellectual material
JP2009162233A (en) * 2008-01-09 2009-07-23 Rosati Fratelli Srl Variable geometry fan and method for manufacturing blade thereof

Similar Documents

Publication Publication Date Title
Liang et al. Design of shape memory alloy springs with applications in vibration control
Auad et al. Characterization of nanocellulose‐reinforced shape memory polyurethanes
Prasob et al. Static and dynamic behavior of jute/epoxy composites with ZnO and TiO2 fillers at different temperature conditions
Schwartz Smart materials
Mehar et al. Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method
JPH06212018A (en) Polymer-based material having composite functions
US20050127574A1 (en) Method of fabricating an isolator mount
CN101319750A (en) Tunable impedance load-bearing structures
Sanusi et al. A concise review of the applications of NiTi shape-memory alloys in composite materials
AU2008317745A1 (en) Method for designing the wall thickness of components and component
Chen et al. Smart composites of piezoelectric particles and shape memory polymers for actuation and nanopositioning
Dew-Hughes et al. Fatigue of fibre—reinforced plastics: a review
Chen et al. Analyzing effects of interfaces on recovery rates of shape memory composites from the perspective of molecular motions
Groo et al. Dehydrofluorinated PVDF for structural health monitoring in fiber reinforced composites
Shufrin et al. Effective properties of layered auxetic hybrids
Khanna et al. High strain rate behavior of graphene reinforced polyurethane composites
Zhou et al. Fatigue performance of an injection molded talc‐filled polypropylene
Jiang et al. Micromechanical modeling of a composite containing piezoelectric and shape memory alloy inclusions
Mohamed et al. Mechanical and Dynamic Properties of Hybrid Composite laminates
EP1516936A1 (en) Extremely fine shape memory alloy wire, composite material thereof and process for producing the same
Aimmanee et al. A comparison of the deformations of various piezoceramic actuators
Moradi‐Dastjerdi et al. Layer Arrangement Impact on the Electromechanical Performance of a Five‐Layer Multifunctional Smart Sandwich Plate
Wastiels Sandwich panels in construction with HPFRCC faces: new possibilities and adequate modelling
Schaller 8.7 High Damping Materials
Kowbel et al. PZT/polymer flexible composites for embedded actuator and sensor applications