JP2002131265A - Damage detection sensor, production method thereof and composite material with the same incorporated therein - Google Patents

Damage detection sensor, production method thereof and composite material with the same incorporated therein

Info

Publication number
JP2002131265A
JP2002131265A JP2000319508A JP2000319508A JP2002131265A JP 2002131265 A JP2002131265 A JP 2002131265A JP 2000319508 A JP2000319508 A JP 2000319508A JP 2000319508 A JP2000319508 A JP 2000319508A JP 2002131265 A JP2002131265 A JP 2002131265A
Authority
JP
Japan
Prior art keywords
titanium
nickel alloy
alloy foil
detection sensor
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000319508A
Other languages
Japanese (ja)
Other versions
JP4583576B2 (en
Inventor
Toshimitsu Ogisu
巣 敏 充 荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
R & D Inst Of Metals & Composi
R & D Inst Of Metals & Composites For Future Industries
Original Assignee
R & D Inst Of Metals & Composi
R & D Inst Of Metals & Composites For Future Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R & D Inst Of Metals & Composi, R & D Inst Of Metals & Composites For Future Industries filed Critical R & D Inst Of Metals & Composi
Priority to JP2000319508A priority Critical patent/JP4583576B2/en
Publication of JP2002131265A publication Critical patent/JP2002131265A/en
Application granted granted Critical
Publication of JP4583576B2 publication Critical patent/JP4583576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a damage detection sensor, capable of specifying a damaged site, a composite material enabling inhibition of the spread of damages at the damaged site, and to a provide manufacturing method of the damage detection sensor. SOLUTION: The damage detection sensor 1 has a titanium-nickel alloy foil 2, an electric circuit 3 bonded on one side of the titanium-nickel alloy foil 2 and a strain gauge 4 disposed on the electric circuit 3. The composite material 10 is made up of the damage detection sensor 1, which is arranged between fiber-reinforced resin layers 11 given distortions under normal temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合材の損傷部分
を特定する損傷検出センサー、損傷検出センサーの製造
方法および損傷検出センサーを組み込んだ複合材に関す
る。
The present invention relates to a damage detection sensor for specifying a damaged portion of a composite material, a method for manufacturing the damage detection sensor, and a composite material incorporating the damage detection sensor.

【0002】[0002]

【従来の技術】航空機や宇宙機器、超高層建築、公共イ
ンフラストラクチャ及び高速車両に適用される複合材
は、衝撃荷重に対して材料内部が損傷を受け易いという
性質を有するため、設計許容値を低く設定し、複合材本
来の持つ強度を生かし切れないでいる。また、設計許容
値を引き上げるために、複合材の内部に損傷抑制効果の
ある材料を埋め込み、複合材に衝撃荷重が負荷された時
にもその際の荷重及び損傷を検知することにより安全性
を高めるようにした複合材は知られている。
2. Description of the Related Art Composite materials applied to aircraft, space equipment, skyscrapers, public infrastructures and high-speed vehicles have a design allowance because the inside of the material is easily damaged by impact loads. It is set low and does not make full use of the inherent strength of the composite material. In addition, in order to raise the design tolerance, a material that has a damage suppressing effect is embedded inside the composite material, and even when an impact load is applied to the composite material, the load and damage at that time are detected to enhance safety. Such composites are known.

【0003】チタン−ニッケル合金の形状記憶効果を用
いて、構造用複合材の亀裂の進展を抑制するアクチュエ
ータ、または剛性変化を起こさせて振動を抑制する制振
材として用いることは、たとえば、特開平8−1520
8号公報、特開平7−48637号公報および特開平7
−48637号公報に開示されている。
[0003] The use of a titanium-nickel alloy as an actuator for suppressing the propagation of cracks in a structural composite material or a vibration damping material for suppressing vibration by causing a change in rigidity by using the shape memory effect of the titanium-nickel alloy is, for example, disclosed in, Kaihei 8-1520
No. 8, JP-A-7-48637 and JP-A-7-48637
-48637.

【0004】特開平8−15208号公報には、積層構
造を有する複合材料にチタン−ニッケル形状記憶合金の
細線を埋め込んだ後、細線に電流を流し、マトリックス
材料に亀裂や損傷が生じた際の細線の電流抵抗変化を検
出する複合材料損傷検知システムが記載されている。
Japanese Patent Application Laid-Open No. 8-15208 discloses that when a fine wire of a titanium-nickel shape memory alloy is embedded in a composite material having a laminated structure, an electric current is applied to the fine wire to cause cracks or damage to the matrix material. A composite damage detection system for detecting a change in current resistance of a thin wire is described.

【0005】特開平6−212018号公報には、逆変
態終了温度以下の少なくとも1種類以上の形状記憶合金
材料を母材表面または母材内に配列した構造の高分子基
複合機能性材料が記載されている。
Japanese Patent Application Laid-Open No. 6-212018 describes a polymer-based composite functional material having a structure in which at least one or more shape memory alloy materials having a temperature equal to or lower than a reverse transformation end temperature are arranged on the surface of or in the base material. Have been.

【0006】特開平7−48637号公報には、熱弾性
変態を起こす少なくとも1種類以上の形状記憶合金材料
素子を母材内に混入もしくは配列させた構造の金属基複
合材料が記載されている。
Japanese Patent Application Laid-Open No. 7-48637 describes a metal-based composite material having a structure in which at least one or more types of shape memory alloy material elements that cause thermoelastic transformation are mixed or arranged in a base material.

【0007】[0007]

【発明が解決しようとする課題】特開平8−15208
号公報には、形状記憶合金の電気抵抗特性の変化を利用
して損傷部の特定を行い、損傷部近傍の形状記憶合金を
加熱して収縮させて損傷の進展を防止する技術手段が開
示されているが、この技術手段では、形状記憶合金の長
さが長くなると特性の変化量が小さくなって変化が捉ら
えにくくなるとともに、該当する形状記憶合金の特性変
化を起こした損傷部を特定できない虞がある。
Problems to be Solved by the Invention
Japanese Patent Application Laid-Open Publication No. H10-157, discloses a technical means for identifying a damaged portion by utilizing a change in the electric resistance characteristic of a shape memory alloy, and heating and shrinking the shape memory alloy in the vicinity of the damaged portion to prevent the progress of damage. However, with this technical means, when the length of the shape memory alloy is increased, the amount of change in the characteristics becomes smaller and the change becomes difficult to catch, and the damaged portion that caused the change in the characteristics of the relevant shape memory alloy is identified. It may not be possible.

【0008】特開平6−212018号公報および特開
平7−148637号公報には、チタン−ニッケル合金
を構造用複合材の亀裂の進展を抑制するアクチュエータ
として用いられることは記載されているが、センサーと
しては歪ゲージや圧電素子を用いることができると記載
されているだけで、それらをどのように用いるかについ
ては何も記載されていない。
JP-A-6-212018 and JP-A-7-148637 describe that a titanium-nickel alloy is used as an actuator for suppressing the growth of a crack in a structural composite material. Only describes that a strain gauge or a piezoelectric element can be used, but does not describe how to use them.

【0009】本発明は、上記した点を考慮してなされた
もので、複合材の損傷部位を特定できる損傷検出センサ
ー、損傷検出センサーの製造方法および損傷検出センサ
ーを組み込んで複合材の損傷部位の損傷の進展を抑制す
ることができる複合材を提供することを目的とする。
The present invention has been made in consideration of the above points, and provides a damage detection sensor capable of specifying a damaged portion of a composite material, a method of manufacturing the damage detection sensor, and a method of manufacturing a damaged portion of a composite material by incorporating the damage detection sensor. An object of the present invention is to provide a composite material capable of suppressing the progress of damage.

【0010】[0010]

【課題を解決するための手段】本発明の損傷検出センサ
ーは、チタン−ニッケル合金箔と、このチタン−ニッケ
ル合金箔の一面に接着された電気回路と、この電気回路
に配置された歪ゲージとから構成され、たとえば複合材
に適用した場合に、複合材の損傷部位を歪ゲージが検出
する歪量により特定することができる。
A damage detection sensor according to the present invention comprises a titanium-nickel alloy foil, an electric circuit adhered to one surface of the titanium-nickel alloy foil, and a strain gauge arranged in the electric circuit. For example, when applied to a composite material, a damaged portion of the composite material can be specified by the amount of strain detected by the strain gauge.

【0011】本発明の損傷検出センサーの製造方法は、
チタン−ニッケル合金箔に所定の歪み量を与え、歪み量
を与えたチタン−ニッケル合金箔をフッ酸と硝酸の混合
水溶液により酸化被膜を除去し、酸化被膜を除去したチ
タン−ニッケル合金箔を水酸化ナトリウム溶液で陽極酸
化処理し、陽極酸化処理したチタン−ニッケル合金箔の
上に、歪ゲージを結合した電気回路を有するフィルムを
貼着することで構成される。
A method for manufacturing a damage detection sensor according to the present invention comprises:
A predetermined amount of strain is applied to the titanium-nickel alloy foil, and the oxide film is removed from the titanium-nickel alloy foil having the strain amount by using a mixed aqueous solution of hydrofluoric acid and nitric acid. It is configured by anodizing with a sodium oxide solution and attaching a film having an electric circuit to which a strain gauge is connected on a titanium-nickel alloy foil that has been anodized.

【0012】本発明の損傷検出センサーの製造方法は、
チタン−ニッケル合金箔に所定の歪み量を与え、歪み量
を与えたチタン−ニッケル合金箔をフッ酸と硝酸の混合
水溶液により酸化被膜を除去し、酸化被膜を除去したチ
タン−ニッケル合金箔の表面にチタンコーティング処理
を行い、さらに、化成被膜処理し、化成被膜処理したチ
タンコーティングの上に歪ゲージを結合した電気回路を
有するフィルムを貼着することで構成される。
A method for manufacturing a damage detection sensor according to the present invention comprises:
A predetermined amount of strain is applied to the titanium-nickel alloy foil, the oxide film is removed from the titanium-nickel alloy foil having the strain amount by a mixed aqueous solution of hydrofluoric acid and nitric acid, and the surface of the titanium-nickel alloy foil from which the oxide film is removed Is formed by applying a titanium coating treatment, further subjecting to a chemical conversion coating treatment, and attaching a film having an electric circuit to which a strain gauge is connected on the titanium coating subjected to the chemical conversion coating treatment.

【0013】本発明の複合材は、請求項1に記載の損傷
検出センサーを常温で歪みが与えられた状態で繊維強化
樹脂層の間に配置して構成され、チタン−ニッケル合金
箔の形状回復機能を損傷抑制機能として利用することで
損傷の進展を抑制することができる。
[0013] The composite material of the present invention comprises the damage detection sensor according to claim 1 disposed between the fiber reinforced resin layers in a state where the strain is applied at room temperature, and recovers the shape of the titanium-nickel alloy foil. By using the function as a damage suppression function, the progress of damage can be suppressed.

【0014】[0014]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明による損傷検出センサ
ーの分解斜視図を示し、この損傷検出センサー1は、接
着性を高めるように表面処理したチタン−ニッケル合金
箔2と、このチタン−ニッケル合金箔2の一面に接着さ
れた電気回路3と、この電気回路3に配置された歪ゲー
ジ4とから構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view of a damage detection sensor according to the present invention. The damage detection sensor 1 has a titanium-nickel alloy foil 2 surface-treated to enhance adhesiveness, and a titanium-nickel alloy foil 2 on one side. The electric circuit 3 includes the bonded electric circuit 3 and the strain gauge 4 disposed on the electric circuit 3.

【0015】上記チタン−ニッケル合金箔2は、フッ酸
と硝酸の混合水溶液の常温浴に浸漬することで熱処理時
に表面に生成された酸化被膜を除去し、水酸化ナトリウ
ム溶液で陽極酸化処理することにより表面に陽極酸化被
膜を生成するように表面処理される。
The titanium-nickel alloy foil 2 is immersed in a room temperature bath of a mixed aqueous solution of hydrofluoric acid and nitric acid to remove the oxide film formed on the surface during the heat treatment, and then anodized with a sodium hydroxide solution. To form an anodized film on the surface.

【0016】チタン−ニッケル合金箔2から酸化被膜を
除去する表面処理は、たとえば、3%濃度のフッ酸と1
0%ないし15%濃度の硝酸の混合水溶液に室温で3分
ないし5分浸漬することで行われる。チタン−ニッケル
合金箔2に陽極酸化被膜を生成する表面処理は、たとえ
ば、温度10〜20℃とした10〜15%NaOHの電
解溶液に電圧10〜20Vで30〜60秒間処理するこ
とで行われる。
The surface treatment for removing the oxide film from the titanium-nickel alloy foil 2 is performed, for example, by using 3% hydrofluoric acid and 1% hydrofluoric acid.
This is performed by immersing in a mixed aqueous solution of 0 to 15% nitric acid at room temperature for 3 to 5 minutes. The surface treatment for forming an anodic oxide film on the titanium-nickel alloy foil 2 is performed, for example, by treating a 10 to 15% NaOH electrolytic solution at a temperature of 10 to 20 ° C. at a voltage of 10 to 20 V for 30 to 60 seconds. .

【0017】または、チタン−ニッケル合金箔2は、酸
化被膜を除去した表面にチタンコーティング処理を行
い、さらに、化成被膜処理して化成被膜を生成するよう
に表面処理される。チタンコーティングはイオンプレー
ティング法によることが望ましい。
Alternatively, the titanium-nickel alloy foil 2 is subjected to a titanium coating treatment on the surface from which the oxide film has been removed, and further subjected to a chemical conversion treatment to form a chemical conversion film. Preferably, the titanium coating is formed by an ion plating method.

【0018】上記電気回路3は、図3に示すように、樹
脂シート5に銅箔6が一体に接着された市販のフィルム
を用い、その銅箔6の表面に樹脂インク7を用いて歪ゲ
ージから信号を取り出すための回路図を描き、フィルム
を塩化第二鉄溶液でエッチングし、樹脂インク7で線引
きされた部分を除いて銅箔6を樹脂シート5から除去す
ることで形成される。歪ゲージ取り付け部を符号7aで
示し、樹脂インク7で線引きされた部分がリード線7b
である。
As shown in FIG. 3, the electric circuit 3 uses a commercially available film in which a copper foil 6 is integrally bonded to a resin sheet 5, and uses a resin ink 7 on the surface of the copper foil 6 to use a strain gauge. Is formed by drawing a circuit diagram for extracting a signal from the resin sheet, etching the film with a ferric chloride solution, and removing the copper foil 6 from the resin sheet 5 except for the portion drawn with the resin ink 7. The strain gauge mounting portion is indicated by reference numeral 7a, and the portion drawn by the resin ink 7 is a lead wire 7b.
It is.

【0019】上記電気回路3は、図1に示すように、歪
ゲージ取付け部7aの間隔を歪ゲージ取付け部7aに配
置された歪ゲージ4が所要の大きさの損傷を検出できる
ように実験あるいはシミュレーション計算により予め決
められる間隔に対応するように決める。実験によれば、
歪ゲージ4の間隔は50〜100センチメートルの範囲
が適当である。図1に示す電気回路3においては、各歪
ゲージ4は、所定間隔を置いて同一方向に配置されてい
る。
As shown in FIG. 1, the electric circuit 3 is designed so that the distance between the strain gauge mounting portions 7a is set so that the strain gauges 4 arranged on the strain gauge mounting portion 7a can detect damage of a required size. It is determined so as to correspond to an interval predetermined by simulation calculation. According to experiments,
An appropriate distance between the strain gauges 4 is in the range of 50 to 100 cm. In the electric circuit 3 shown in FIG. 1, the respective strain gauges 4 are arranged at predetermined intervals in the same direction.

【0020】上記チタン−ニッケル合金箔2は、一面に
塗布される接着剤層8を介して電気回路3を一体的に結
合する。これにより、チタン−ニッケル合金箔2の表面
に所要の歪検出回路が形成される。この場合、チタン−
ニッケル合金箔2に塗布される接着剤層8、樹脂シート
5、さらには歪ゲージ4を覆う図示しない樹脂シート
は、繊維強化樹脂複合材の母材に用いられる樹脂と同種
のものまたは母材と馴染のよいものが選ばれる。また、
回路として残される銅箔部は十分に細いものとして、プ
リプレグとチタン−ニッケル合金箔2との接着強度に影
響を及ぼさないようにすることが望ましい。
The above-mentioned titanium-nickel alloy foil 2 integrally connects the electric circuit 3 via an adhesive layer 8 applied on one surface. Thereby, a required strain detection circuit is formed on the surface of the titanium-nickel alloy foil 2. In this case, titanium
The adhesive layer 8 applied to the nickel alloy foil 2, the resin sheet 5, and the resin sheet (not shown) covering the strain gauge 4 are made of the same or the same resin as that used for the base material of the fiber-reinforced resin composite material. The familiar one is chosen. Also,
It is desirable that the copper foil portion left as a circuit be sufficiently thin so as not to affect the adhesive strength between the prepreg and the titanium-nickel alloy foil 2.

【0021】図4は本発明による損傷検出センサーの他
の実施の形態を示し、この損傷検出センサー1aは、接
着性を高めるように表面処理したチタン−ニッケル合金
箔2と、このチタン−ニッケル合金箔2の一面に接着さ
れた電気回路3aと、この電気回路3aに配置された歪
ゲージ4とから構成されている。
FIG. 4 shows another embodiment of the damage detection sensor according to the present invention. This damage detection sensor 1a is composed of a titanium-nickel alloy foil 2 surface-treated so as to enhance adhesion, and a titanium-nickel alloy. It is composed of an electric circuit 3a adhered to one surface of the foil 2 and a strain gauge 4 arranged on the electric circuit 3a.

【0022】上記電気回路3aは、図4に示すように、
力の方向に45度の傾きを持たせたたホイーストンブリ
ッジ9を形成し、ホイーストンブリッジ9に4個の歪ゲ
ージ4a,4b,4c,4dが配置されている。この場
合、隣り合う歪ゲージ4aと4b、4bと4c、4cと
4d、4dと4aは、互いに直交する向きに配置されて
いる。
The electric circuit 3a is, as shown in FIG.
A Wheatstone bridge 9 having a 45-degree inclination in the direction of the force is formed, and four strain gauges 4a, 4b, 4c, and 4d are arranged on the Wheatstone bridge 9. In this case, the adjacent strain gauges 4a and 4b, 4b and 4c, 4c and 4d, 4d and 4a are arranged in directions orthogonal to each other.

【0023】上記ホイーストンブリッジ9において、出
力電圧は、各歪ゲージ4a,4b,4c,4dの歪E
1,E2,E3,E4から計算される、E1−E2+E
3−E4に比例する電圧が出力されるので、出力値の符
号により場所が推定できる。たとえば、正の電圧が出力
された場合、歪ゲージ4a若しくは4cに近い部分に亀
裂が発生し、負の電圧が出力された場合、歪ゲージ4b
若しくは4dに近い部分に亀裂が発生していることが分
かる。
In the Wheatstone bridge 9, the output voltage is the strain E of each of the strain gauges 4a, 4b, 4c and 4d.
E1-E2 + E calculated from E1, E2, E3 and E4
Since a voltage proportional to 3-E4 is output, the location can be estimated from the sign of the output value. For example, when a positive voltage is output, a crack is generated in a portion near the strain gauge 4a or 4c, and when a negative voltage is output, the strain gauge 4b is output.
Alternatively, it can be seen that a crack is generated in a portion near 4d.

【0024】つぎに、本発明による損傷検出センサーの
製造方法を説明する。まず、チタン−ニッケル合金箔2
と、樹脂シート5に銅箔6を一体に接着したフィルムを
用意する。
Next, a method of manufacturing the damage detection sensor according to the present invention will be described. First, titanium-nickel alloy foil 2
And a film in which the copper foil 6 is integrally bonded to the resin sheet 5 is prepared.

【0025】つぎに、チタン−ニッケル合金箔2の両端
を把持して引っ張ることで、チタン−ニッケル合金箔2
に所定の歪み量を付与する。歪み量が付与されたチタン
−ニッケル合金箔2をフッ酸と硝酸の混合水溶液に浸漬
し、チタン−ニッケル合金箔2の表面に生成された酸化
被膜を除去し、これに続いて、チタン−ニッケル合金箔
2を水酸化ナトリウム溶液で陽極酸化処理する。これに
より、チタン−ニッケル合金箔2の表面に陽極酸化被膜
が生成される。この陽極酸化被膜は、チタン−ニッケル
合金箔2の接着性能を向上させる機能を有することが実
験的に分かっている。
Next, the both ends of the titanium-nickel alloy foil 2 are gripped and pulled, whereby the titanium-nickel alloy foil 2
Is given a predetermined amount of distortion. The strained titanium-nickel alloy foil 2 is immersed in a mixed aqueous solution of hydrofluoric acid and nitric acid to remove an oxide film formed on the surface of the titanium-nickel alloy foil 2. The alloy foil 2 is anodized with a sodium hydroxide solution. Thereby, an anodic oxide film is generated on the surface of the titanium-nickel alloy foil 2. It has been experimentally found that this anodized film has a function of improving the adhesion performance of the titanium-nickel alloy foil 2.

【0026】酸化被膜を除去した表面にチタンコーティ
ング処理を行い、さらに、化成被膜処理して化成被膜を
生成するように表面処理することもできる。チタンコー
ティングはイオンプレーティング法によることが望まし
い。そして、チタン−ニッケル合金箔2の陽極酸化被膜
または化成被膜の上に樹脂材料を塗布する。
It is also possible to perform a titanium coating treatment on the surface from which the oxide film has been removed, and further a surface treatment so as to form a chemical conversion film by performing a chemical conversion coating treatment. Preferably, the titanium coating is formed by an ion plating method. Then, a resin material is applied on the anodic oxide film or the chemical conversion film of the titanium-nickel alloy foil 2.

【0027】一方、樹脂シート5と銅箔6を有するフィ
ルムは、銅箔6の表面に樹脂インク7を用いて歪ゲージ
から信号を取り出すための回路図を描き、塩化第二鉄溶
液でエッチングし、樹脂インク7で線引きされた部分を
除くことでリード線7bが形成される。この電気回路の
各歪ゲージ取付け部7aに歪みゲージ4が互いに同一方
向を向くように配置される。
On the other hand, for the film having the resin sheet 5 and the copper foil 6, a circuit diagram for extracting a signal from the strain gauge using the resin ink 7 on the surface of the copper foil 6 is drawn and etched with a ferric chloride solution. By removing the portion drawn by the resin ink 7, the lead wire 7b is formed. The strain gauges 4 are arranged at the respective strain gauge mounting portions 7a of the electric circuit so as to face in the same direction.

【0028】つぎに、チタン−ニッケル合金箔2の一面
に塗布した樹脂材料の上に、歪ゲージ4を結合した電気
回路3を有するフィルムを接着剤を介して貼着し、チタ
ン−ニッケル合金箔2とフィルムを一体的に結合する。
これにより、損傷検出センサー1が作られる。
Next, a film having an electric circuit 3 to which a strain gauge 4 is connected is adhered on a resin material applied to one surface of the titanium-nickel alloy foil 2 via an adhesive, and the titanium-nickel alloy foil 2 and the film are integrally joined.
Thereby, the damage detection sensor 1 is manufactured.

【0029】つぎに、損傷検出センサー1を組み込んだ
複合材パネルを図5および図6を参照して説明する。図
5において、符号10は本発明による複合材パネルを示
し、この複合材パネル10は、複数の損傷検出センサー
1,1,…を繊維強化樹脂層11,11の間に配置して
構成される。
Next, a composite panel incorporating the damage detection sensor 1 will be described with reference to FIGS. In FIG. 5, reference numeral 10 denotes a composite panel according to the present invention. The composite panel 10 is configured by disposing a plurality of damage detection sensors 1, 1,... Between fiber-reinforced resin layers 11, 11. .

【0030】上記各損傷検出センサー1は、常温で歪み
が与えられた状態、すなわち変態点以下の温度で歪みが
保持された状態で繊維強化樹脂層11,11の間に配置
される。各繊維強化樹脂層11は、繊維強化樹脂のプリ
プレグを複数枚積層して形成され、チタン−ニッケル合
金箔2が収縮しないように拘束した状態で加熱して硬化
される。また、この加熱を利用して、電気回路3が接着
された樹脂シート5とチタン−ニッケル合金箔2とを接
着する接着剤を硬化させることもできる。
Each of the damage detection sensors 1 is arranged between the fiber reinforced resin layers 11 in a state where strain is applied at room temperature, that is, in a state where strain is maintained at a temperature lower than the transformation point. Each fiber reinforced resin layer 11 is formed by laminating a plurality of prepregs of fiber reinforced resin, and is cured by heating in a state where the titanium-nickel alloy foil 2 is restrained so as not to shrink. Further, by using this heating, the adhesive for bonding the resin sheet 5 to which the electric circuit 3 is bonded and the titanium-nickel alloy foil 2 can be cured.

【0031】上記損傷検出センサー1は、図1に示すよ
うに、チタン−ニッケル合金箔2と、このチタン−ニッ
ケル合金箔2の一面に接着された電気回路3と、この電
気回路3に配置された歪ゲージ4とから構成される。
As shown in FIG. 1, the damage detection sensor 1 is disposed on a titanium-nickel alloy foil 2, an electric circuit 3 bonded to one surface of the titanium-nickel alloy foil 2, and the electric circuit 3. And a strain gauge 4.

【0032】上記損傷検出センサー1を構成するチタン
−ニッケル合金箔2は、一般に、外的な熱によって可逆
的に元の結晶構造状態に戻るという特性を有するもので
あり、低温マルテンサイト相が高温での安定オーステナ
イト相よりも1/2〜1/3程度柔らかく変形が容易で
あり、低温から高温になるにつれて剛性率が2〜3倍程
度上昇し、予ひずみを付与してその変形を拘束した場合
には、逆に2〜3倍程度の大きい回復力が得られるとい
う特性を備えている。
The titanium-nickel alloy foil 2 constituting the damage detection sensor 1 generally has the property of reversibly returning to the original crystal structure state by external heat, and the low-temperature martensite phase has a high temperature. About 1/3 to 1/3 softer than the stable austenite phase and easy to deform, the rigidity increases about 2 to 3 times from low temperature to high temperature, and pre-strain is applied to restrain the deformation. In this case, on the contrary, it has a characteristic that a large recovery force of about 2 to 3 times can be obtained.

【0033】本発明の複合材パネル10は、損傷検出セ
ンサー1を変態点以下の温度で変形を拘束した状態で繊
維強化樹脂層11,11の間に配置し、損傷検出センサ
ー1のチタン−ニッケル合金箔2を変態点以上の温度に
加熱して形状変化させることで、複合材料の各層にせん
断応力を発生させ、これにより、デラミネーション(層
間剥離)を抑制させる応力を発生させる。
In the composite panel 10 of the present invention, the damage detection sensor 1 is disposed between the fiber reinforced resin layers 11 in a state where the deformation is restrained at a temperature lower than the transformation point. By heating the alloy foil 2 to a temperature equal to or higher than the transformation point to change the shape, a shear stress is generated in each layer of the composite material, thereby generating a stress for suppressing delamination (delamination).

【0034】上記複合材パネル10は、具体的には図6
に示すように、6枚の繊維強化樹脂層11b,11c,
11d,11e,11f,11gと5枚の損傷検出セン
サー1b,1c,1d,1e,1fとから形成され、6
枚の繊維強化樹脂層のうちの端側に位置する繊維強化樹
脂層11b,11gを2枚の炭素繊維強化樹脂を積層し
たもので形成し、中間に位置する繊維強化樹脂層11
c,11d,11e,11fを3枚の炭素繊維強化樹脂
を積層したもので形成し、損傷検出センサー1b,1
c,1d,1e,1f1を繊維強化樹脂層11b,11
c,11d,11e,11f,11g11の間にそれぞ
れ配置して構成される。
The composite material panel 10 is specifically shown in FIG.
As shown in the figure, six fiber-reinforced resin layers 11b, 11c,
11d, 11e, 11f, 11g and five damage detection sensors 1b, 1c, 1d, 1e, 1f, 6
The fiber reinforced resin layers 11b and 11g located on the end side of the fiber reinforced resin layers are formed by laminating two carbon fiber reinforced resins, and the fiber reinforced resin layer 11 located in the middle is formed.
c, 11d, 11e, and 11f are formed by laminating three carbon fiber reinforced resins, and the damage detection sensors 1b, 1
c, 1d, 1e, and 1f1 are converted to fiber-reinforced resin layers 11b and 11
c, 11d, 11e, 11f, and 11g11.

【0035】つぎに、複合材パネル10の損傷制御方法
について説明する。各損傷検出センサー1b,1c,1
d,1e,1fは、チタン−ニッケル合金箔2と図1に
示す電気回路3を有する構成であり、チタン−ニッケル
合金箔2に微弱な一定電流を流しておくことで、複合材
料内部で亀裂が発生した場合、チタン−ニッケル合金箔
2に局部的な歪みが発生し、この歪みによってチタン−
ニッケル合金箔2の電気抵抗が変化する。
Next, a method of controlling damage to the composite panel 10 will be described. Each damage detection sensor 1b, 1c, 1
Reference numerals d, 1e, and 1f denote a configuration having the titanium-nickel alloy foil 2 and the electric circuit 3 shown in FIG. 1. By passing a weak constant current through the titanium-nickel alloy foil 2, cracks are generated inside the composite material. Occurs, local distortion occurs in the titanium-nickel alloy foil 2, and this distortion causes
The electric resistance of the nickel alloy foil 2 changes.

【0036】すなわち、複合材パネル10に図6に示す
ようなデラミネーションが発生すると、繊維強化樹脂層
11eに負荷された応力または繊維強化樹脂層11が損
傷を受けた場合に受ける応力集中による応力バランスが
変化し、応力バランスの変化が損傷検出センサー1dお
よび1eのチタン−ニッケル合金箔2自身の歪みとして
感受され、この歪みの変化がチタン−ニッケル合金箔2
の形状変化による電気抵抗の変化となる。したがって、
複合材パネル10に配置された複数の損傷検出センサー
1b,1c,1d,1e,1fのうちのどのチタン−ニ
ッケル合金箔2の電気抵抗が変化したかを検知すること
で、複合材パネル10のうちのどの繊維強化樹脂層11
b,11c,11d,11e,11f,11gが損傷さ
れたかを検出することができる。
That is, when delamination occurs in the composite material panel 10 as shown in FIG. 6, the stress applied to the fiber reinforced resin layer 11e or the stress caused by the stress concentration when the fiber reinforced resin layer 11 is damaged. The balance is changed, and the change in the stress balance is sensed as distortion of the titanium-nickel alloy foil 2 of the damage detection sensors 1d and 1e, and the change in the distortion is detected by the titanium-nickel alloy foil 2.
Changes in the electrical resistance due to the change in the shape. Therefore,
By detecting which of the plurality of damage detection sensors 1b, 1c, 1d, 1e, 1f arranged in the composite material panel 10 has changed the electrical resistance of the titanium-nickel alloy foil 2, the composite material panel 10 Throat fiber reinforced resin layer 11
It is possible to detect whether or not b, 11c, 11d, 11e, 11f, and 11g are damaged.

【0037】図6に示す複合材パネル10において、繊
維強化樹脂層11eにデラミネーションが発生したとす
ると、この繊維強化樹脂層11eを挟んだ損傷検出セン
サー1d,1eのチタン−ニッケル合金箔2,2の電気
抵抗値に最も大きな変化が生じるとともにその他の損傷
検出センサーのチタン−ニッケル合金箔2の電気抵抗値
も変化する。損傷の程度によるが、損傷検出センサー1
d,1eのチタン−ニッケル合金箔2,2との間の電気
抵抗変化が急激になる。このとき、損傷検出センサー1
d,1eのチタン−ニッケル合金箔2,2に通電するこ
とで、繊維強化樹脂層11eを構成する層のデラミネー
ションを防止することができる。
In the composite panel 10 shown in FIG. 6, if delamination occurs in the fiber reinforced resin layer 11e, the titanium-nickel alloy foils 2 of the damage detection sensors 1d and 1e sandwiching the fiber reinforced resin layer 11e. 2 and the electric resistance of the titanium-nickel alloy foil 2 of the other damage detection sensor also changes. Depending on the degree of damage, damage detection sensor 1
The electrical resistance between the titanium-nickel alloy foils 2 and 2 of d and 1e changes rapidly. At this time, the damage detection sensor 1
By applying a current to the titanium-nickel alloy foils 2 and 2 of d and 1e, delamination of the layers constituting the fiber-reinforced resin layer 11e can be prevented.

【0038】つぎに、図1に示した損傷検出センサーを
用いた複合材の損傷位置検出方法について説明する。チ
タン−ニッケル合金箔2とこのチタン−ニッケル合金箔
2の一面に接着された電気回路3とこの電気回路3に所
定間隔を置いて同一方向に配置された複数の歪ゲージ4
を有する損傷検出センサー1を設け、この損傷検出セン
サー1を常温で歪みが与えられた状態で繊維強化樹脂層
11,11の間に配置する。
Next, a description will be given of a method of detecting a damage position of a composite material using the damage detection sensor shown in FIG. A titanium-nickel alloy foil 2, an electric circuit 3 bonded to one surface of the titanium-nickel alloy foil 2, and a plurality of strain gauges 4 arranged in the same direction at predetermined intervals in the electric circuit 3.
Is provided between the fiber reinforced resin layers 11 and 11 in a state where distortion is applied at normal temperature.

【0039】また、歪ゲージが検出する歪み量を計測し
て解析する解析装置を設け、この解析装置に損傷部位に
よって変化する複数の歪ゲージの歪み量を相対化して歪
パターンとして予め記憶させて置く。
Further, an analyzer is provided for measuring and analyzing the amount of strain detected by the strain gauge, and the analyzer is made to store in advance the amount of strain of the plurality of strain gauges which varies depending on the damaged part and store them as strain patterns in advance. Put.

【0040】つぎに、損傷検出センサー1の歪ゲージ4
が検出する歪み量を相対化して歪パターンを算出し、算
出された歪パターンを解析装置に予め記憶された歪パタ
ーンと比較して、複合材に発生する損傷部位を特定す
る。
Next, the strain gauge 4 of the damage detection sensor 1
Calculates the strain pattern by relativizing the detected strain amount, and compares the calculated strain pattern with a strain pattern stored in advance in the analysis device to specify a damaged portion generated in the composite material.

【0041】たとえば、複合材の繊維強化樹脂層11の
強化繊維がトランスバースクラック応力方向と直角方向
に切断され亀裂が生じた場合、その亀裂を囲む歪ゲージ
4が検出する歪み量は大きく増加する。そして歪みの大
きさで損傷の大きさが判別できる。
For example, when a reinforcing fiber of the fiber reinforced resin layer 11 of the composite material is cut in a direction perpendicular to the direction of the transversal crack stress and a crack is generated, the amount of strain detected by the strain gauge 4 surrounding the crack is greatly increased. . Then, the magnitude of the damage can be determined from the magnitude of the distortion.

【0042】また、デラミネーションが発生した場合、
その損傷部位を境にして、一方では、損傷部分を囲む歪
ゲージの値が増加し、もう片方では減少するという非連
続性が起こるので、上記の応力と直角方向の損傷とは区
別できる。そして、損傷部分を囲む歪ゲージに損傷位置
の影響による歪み値が出るので、直角方向の損傷と同様
にして損傷の位置と大きさを特定することができる。
When delamination occurs,
On the one hand, the above-mentioned stress can be distinguished from the normal damage because of the discontinuity in which the value of the strain gauge surrounding the damaged part increases on the one hand and decreases on the other. Then, since a strain value due to the influence of the damage position appears on the strain gauge surrounding the damaged portion, the position and size of the damage can be specified in the same manner as in the case of the damage in the perpendicular direction.

【0043】そして、歪パターンの例としては等歪み線
図を利用することができる。この場合、所定時間毎に各
点の歪み量が計測され、さらに比較されて最大点と最大
値が求められる。その後、各点の歪み値が最大値で除さ
れ、最大値に対する相対値が各点の値として記憶され
る。この状態で相対値を用いて等歪み線を求め、この等
歪み線を予めシュミレーションにより求めて解析装置に
記憶させて置いた等歪み線図と比較することで正確な損
傷位置を求めることができる。あるいは、単に計測値よ
り求めた等歪み線図の中心を損傷点とすることもでき
る。
As an example of the distortion pattern, an iso-distortion diagram can be used. In this case, the amount of distortion at each point is measured at predetermined time intervals and further compared to determine the maximum point and the maximum value. After that, the distortion value of each point is divided by the maximum value, and the relative value to the maximum value is stored as the value of each point. In this state, an iso-strain line is obtained by using a relative value, and an accurate damage position can be obtained by obtaining the iso-strain line by simulation in advance and comparing it with an iso-strain diagram stored in an analyzer. . Alternatively, the center of the iso-distortion diagram obtained simply from the measured values may be used as the damage point.

【0044】もう一つの損傷位置の推定方法としては、
デラミネーションの平面上の位置を推定する場合、たと
えば、最大歪値を示す歪ゲージを含んで一方向に並ぶ3
個の歪ゲージとその歪値から2次曲線を導出し、その最
大歪点を求める。そして、この最大点を通り3個の歪ゲ
ージが並ぶ方向に直交する直線Yを求めておく。上記と
同様にして上記一方向と直交する方向で2次曲線を導出
しその最大歪点を求め、この最大歪点を通り上記一方向
に平行な直線Xを求める。そして、直線XとYの交点を
平面上の損傷位置と推定する。トランスバースクラック
が入る場合には、亀裂の両側にある歪ゲージの値が急激
に上昇するので容易に位置が断定てきる。
Another method of estimating the damage position is as follows.
When estimating the position of the delamination on the plane, for example, three lines arranged in one direction including a strain gauge showing the maximum strain value
A quadratic curve is derived from the strain gauges and their strain values, and the maximum strain point is obtained. Then, a straight line Y passing through the maximum point and orthogonal to the direction in which the three strain gauges are arranged is determined. In the same manner as above, a quadratic curve is derived in a direction orthogonal to the one direction, a maximum strain point is obtained, and a straight line X passing through the maximum strain point and parallel to the one direction is obtained. Then, the intersection of the straight lines X and Y is estimated as the damage position on the plane. When transversal cracks enter, the position of the strain gauges on both sides of the crack rapidly rises, so that the position is easily determined.

【0045】通常の場合、場所も大きさも正確に特定せ
ずともよい場合が多いので、最大歪を示す歪ゲージから
損傷部を推定し、損傷部の周囲の歪み値の和から損傷の
大きさを推定することもできる。
In the normal case, it is often unnecessary to specify both the location and the size accurately. Therefore, the damaged part is estimated from the strain gauge showing the maximum strain, and the magnitude of the damage is calculated from the sum of the strain values around the damaged part. Can also be estimated.

【0046】しかして、複合材の損傷部位に対応して個
々の歪ゲージが検出する歪み量を実験もしくは有限要素
解析により損傷部位によって変化する複数の歪ゲージの
歪み量を相対化して歪パターンとして解析装置に記憶さ
せて置き、複合材に発生する歪ゲージの歪み量を相対化
して歪パターンを算出し、算出された歪パターンを解析
装置に予め記憶させた歪パターンと比較して、複合材に
発生する損傷部位を特定することができる。あるいは、
計測された歪パターンからも損傷部位を推定することが
できる。
Thus, the strain amount detected by each strain gauge corresponding to the damaged part of the composite material is made relative to the strain amount of a plurality of strain gauges that vary depending on the damaged part by experiment or finite element analysis to form a strain pattern. It is stored in the analyzer, the strain pattern is calculated by relativizing the amount of strain of the strain gauge generated in the composite material, and the calculated strain pattern is compared with the strain pattern stored in the analyzer in advance. The damage site which occurs in can be specified. Or
The damaged site can be estimated from the measured strain pattern.

【0047】また、出力する電圧を常にモニタリングし
ておけば、その変化によって材料内部の損傷が検知でき
る。予備試験及び検討によって、損傷が起こった場合の
電圧の変化を把握しておき、電圧の変化をコンピュータ
に記憶させておけば損傷に等しい出力があった場合、損
傷の検知が可能である。たとえば、損傷がない通常のパ
ターンが変化した場合、他の部分より大きく変化した出
力を示す歪ゲージの出現により損傷が検知でき、そし
て、その歪ゲージの近傍あるいは複数の歪ゲージに囲ま
れた部分を損傷部位とすれば、損傷部位の推定もでき
る。
Further, if the output voltage is constantly monitored, it is possible to detect the damage inside the material by the change. By preliminarily testing and examining the change in voltage in the event of damage, if the change in voltage is stored in a computer, damage can be detected if there is an output equal to the damage. For example, if the normal pattern with no damage changes, damage can be detected by the appearance of a strain gauge that shows a greatly changed output than other parts, and the area near the strain gauge or the area surrounded by multiple strain gauges can be detected. If is assumed to be the damaged site, the damaged site can be estimated.

【0048】すなわち、複合材10に発生するトランス
バースクラック、デラミネーション等異なる種類、位置
及び大きさの損傷と電気抵抗の関係とその電気抵抗の分
布を把握することにより、複合材10に発生する損傷の
種類、位置及び大きさが推定可能である。
That is, the relationship between damage of different types, positions and sizes, such as transversal cracks and delaminations, and the electrical resistance generated in the composite material 10 and the distribution of the electrical resistance, and the distribution of the electrical resistance are grasped, so that the composite material 10 is generated. The type, location and size of the damage can be estimated.

【0049】図7は形状記憶合金を積層した複合材の効
果を示す図であり、同図において、横軸が歪み(%)、
縦軸がトランスバースクラック密度(/cm)であり、
白点が2%の永久歪みを与えた形状記憶合金を積層した
複合材、黒点が形状記憶合金のない複合材を示す。図7
によれば、形状記憶合金を積層した複合材は、0.4%
の歪みを与えた状態でトランスバースクラックの発生が
抑制されていることが分かる。
FIG. 7 is a diagram showing the effect of the composite material obtained by laminating the shape memory alloys. In FIG. 7, the horizontal axis represents the strain (%),
The vertical axis is Transverse crack density (/ cm),
A white point indicates a composite material laminated with a shape memory alloy having a 2% permanent strain, and a black point indicates a composite material having no shape memory alloy. FIG.
According to the report, 0.4% of composite material laminated with shape memory alloy
It can be seen that the occurrence of the transversal crack is suppressed in the state where the distortion is given.

【0050】[0050]

【発明の効果】本発明の損傷検出センサーは、チタン−
ニッケル合金箔の一面に接着された電気回路に歪ゲージ
を配置したことで、複合材に適用した場合に、複合材に
発生する損傷部位を検出することができる。
The damage detection sensor according to the present invention has a titanium-
By arranging the strain gauge on the electric circuit bonded to one surface of the nickel alloy foil, it is possible to detect a damaged portion generated in the composite material when applied to the composite material.

【0051】本発明の損傷検出センサーの製造方法は、
歪み量を与えたチタン−ニッケル合金箔から酸化被膜を
除去した後、陽極酸化処理して陽極酸化被膜を形成する
ことで、ニッケル合金箔と歪ゲージを結合した電気回路
を有するフィルムとの接着性能を高めることができる。
The method for manufacturing the damage detection sensor of the present invention comprises:
After removing the oxide film from the strained titanium-nickel alloy foil, anodizing treatment is performed to form an anodic oxide film, so that the adhesion performance between the nickel alloy foil and the film having the electric circuit in which the strain gauges are connected. Can be increased.

【0052】本発明の損傷検出センサーの製造方法は、
歪み量を与えたチタン−ニッケル合金箔から酸化被膜を
除去した後、化成被膜処理して化成被膜を形成すること
で、チタン−ニッケル合金箔と歪ゲージを結合した電気
回路を有するフィルムとの接着性能を高めることができ
る。
The method for manufacturing the damage detection sensor according to the present invention comprises:
After removing the oxide film from the strained titanium-nickel alloy foil and forming a chemical conversion film by chemical conversion coating, adhesion between the titanium-nickel alloy foil and the film having an electric circuit in which the strain gauges are bonded. Performance can be enhanced.

【0053】本発明の複合材は、損傷検出センサーを常
温で歪みが与えられた状態で繊維強化樹脂層の間に配置
することで、損傷および損傷位置を検出できる複合材を
得ることができ、さらに、損傷検出センサーのチタン−
ニッケル合金箔の形状回復機能を損傷抑制機能を利用し
て損傷の進展を抑制することができる。
According to the composite material of the present invention, a composite material capable of detecting damage and a damaged position can be obtained by disposing a damage detection sensor between fiber-reinforced resin layers in a state where strain is applied at ordinary temperature. In addition, titanium-
By utilizing the shape recovery function of the nickel alloy foil and the damage suppressing function, the progress of damage can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による損傷検出センサーの分解斜視図。FIG. 1 is an exploded perspective view of a damage detection sensor according to the present invention.

【図2】図1のI−I線に沿った断面図。FIG. 2 is a sectional view taken along the line II of FIG. 1;

【図3】樹脂シートと銅箔を有するフィルムから作られ
る電気回路を示す図。
FIG. 3 is a diagram showing an electric circuit formed from a film having a resin sheet and a copper foil.

【図4】本発明による損傷検出センサーの他の実施の態
様を示す分解斜視図。
FIG. 4 is an exploded perspective view showing another embodiment of the damage detection sensor according to the present invention.

【図5】本発明による複合材の斜視図。FIG. 5 is a perspective view of a composite material according to the present invention.

【図6】本発明による複合材の層間剥離を示す図。FIG. 6 is a view showing delamination of a composite material according to the present invention.

【図7】形状記憶合金を積層した複合材の効果を示す
図。
FIG. 7 is a view showing an effect of a composite material in which shape memory alloys are laminated.

【符号の説明】[Explanation of symbols]

1 損傷検出センサー 2 チタン−ニッケル合金箔 3 電気回路 4 歪ゲージ 10 複合材パネル 11 繊維強化樹脂層 DESCRIPTION OF SYMBOLS 1 Damage detection sensor 2 Titanium-nickel alloy foil 3 Electric circuit 4 Strain gauge 10 Composite panel 11 Fiber reinforced resin layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】チタン−ニッケル合金箔と、このチタン−
ニッケル合金箔の一面に接着された電気回路と、この電
気回路に配置された歪ゲージとを有する損傷検出センサ
ー。
(1) a titanium-nickel alloy foil;
A damage detection sensor having an electric circuit adhered to one surface of a nickel alloy foil and a strain gauge arranged in the electric circuit.
【請求項2】歪ゲージは所定間隔を置いて同一方向に配
置され、各歪ゲージごとに独立した出力部が設けられて
いることを特徴とする請求項1に記載の損傷検出センサ
ー。
2. The damage detection sensor according to claim 1, wherein the strain gauges are arranged in the same direction at predetermined intervals, and an independent output unit is provided for each strain gauge.
【請求項3】電気回路がホイーストンブリッジを形成
し、電気回路に歪ゲージが配置されていることを特徴と
する請求項1に記載の損傷検出センサー。
3. The damage detection sensor according to claim 1, wherein the electric circuit forms a Wheatstone bridge, and a strain gauge is arranged in the electric circuit.
【請求項4】隣り合う歪ゲージは互いに直交する向きに
配置されていることを特徴とする請求項3に記載の損傷
検出センサー。
4. The damage detection sensor according to claim 3, wherein adjacent strain gauges are arranged in directions orthogonal to each other.
【請求項5】チタン−ニッケル合金箔に所定の歪み量を
与え、歪み量を与えたチタン−ニッケル合金箔をフッ酸
と硝酸の混合水溶液により酸化被膜を除去し、酸化被膜
を除去したチタン−ニッケル合金箔を水酸化ナトリウム
溶液で陽極酸化処理し、陽極酸化処理したチタン−ニッ
ケル合金箔の上に、歪ゲージを結合した電気回路を有す
るフィルムを貼着することを特徴とする損傷検出センサ
ーの製造方法。
5. A titanium-nickel alloy foil having a predetermined amount of strain, an oxide film is removed from the strained titanium-nickel alloy foil with a mixed aqueous solution of hydrofluoric acid and nitric acid, and the titanium-nickel alloy foil having the oxide film removed therefrom. A damage detection sensor characterized in that a nickel alloy foil is anodized with a sodium hydroxide solution, and a film having an electric circuit coupled with a strain gauge is attached on the anodized titanium-nickel alloy foil. Production method.
【請求項6】チタン−ニッケル合金箔に所定の歪み量を
与え、歪み量を与えたチタン−ニッケル合金箔をフッ酸
と硝酸の混合水溶液により酸化被膜を除去し、酸化被膜
を除去したチタン−ニッケル合金箔の表面にチタンコー
ティング処理を行い、さらに、化成被膜処理し、化成被
膜処理したチタンコーティングの上に歪ゲージを結合し
た電気回路を有するフィルムを貼着することを特徴とす
る損傷検出センサーの製造方法。
6. A titanium-nickel alloy foil having a predetermined amount of strain, an oxide film is removed from the titanium-nickel alloy foil with the strain by a mixed aqueous solution of hydrofluoric acid and nitric acid, and the titanium-nickel alloy foil is removed. Damage detection sensor characterized by performing a titanium coating treatment on the surface of a nickel alloy foil, further subjecting to a chemical conversion coating treatment, and attaching a film having an electric circuit with a strain gauge on the titanium coating subjected to the chemical conversion coating treatment. Manufacturing method.
【請求項7】請求項1に記載の損傷検出センサーを常温
で歪みが与えられた状態で繊維強化樹脂層の間に配置し
たことを特徴とする複合材。
7. A composite material, wherein the damage detection sensor according to claim 1 is disposed between fiber-reinforced resin layers in a state where strain is applied at normal temperature.
【請求項8】損傷検出センサーと繊維強化樹脂層とが積
層されていることを特徴とする請求項7に記載の複合
材。
8. The composite material according to claim 7, wherein the damage detection sensor and the fiber reinforced resin layer are laminated.
JP2000319508A 2000-10-19 2000-10-19 Damage position detection device for fiber reinforced resin composite and method for manufacturing damage detection sensor Expired - Fee Related JP4583576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000319508A JP4583576B2 (en) 2000-10-19 2000-10-19 Damage position detection device for fiber reinforced resin composite and method for manufacturing damage detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319508A JP4583576B2 (en) 2000-10-19 2000-10-19 Damage position detection device for fiber reinforced resin composite and method for manufacturing damage detection sensor

Publications (2)

Publication Number Publication Date
JP2002131265A true JP2002131265A (en) 2002-05-09
JP4583576B2 JP4583576B2 (en) 2010-11-17

Family

ID=18797958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319508A Expired - Fee Related JP4583576B2 (en) 2000-10-19 2000-10-19 Damage position detection device for fiber reinforced resin composite and method for manufacturing damage detection sensor

Country Status (1)

Country Link
JP (1) JP4583576B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071793A (en) * 2005-09-09 2007-03-22 Hitachi Zosen Corp Method for sensing crack of structural member
JP2009047639A (en) * 2007-08-22 2009-03-05 Nippon Oil Corp Method of monitoring fatigue crack development of cfrp plate patch region
JP2016141329A (en) * 2015-02-04 2016-08-08 川崎重工業株式会社 Leaf spring state monitoring device for railway vehicle truck
WO2017043079A1 (en) * 2015-09-10 2017-03-16 川崎重工業株式会社 Methof for manufacturing leafspring with electrodes for railcar truck
JP2018119810A (en) * 2017-01-23 2018-08-02 株式会社デンソー Collision sensor for vehicle and attachment structure thereof
US11226311B2 (en) 2016-04-06 2022-01-18 Subaru Corporation Ultrasonic inspection system, ultrasonic inspection method and aircraft structural object
CN116650323A (en) * 2023-07-24 2023-08-29 成都中医药大学 Sensing needle based on micro force sensing technology and biological principle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267206U (en) * 1985-09-17 1987-04-27
JPS635461U (en) * 1986-06-28 1988-01-14
JPH06212018A (en) * 1993-01-14 1994-08-02 Yasubumi Furuya Polymer-based material having composite functions
JPH09113490A (en) * 1995-10-23 1997-05-02 Takenaka Komuten Co Ltd Damage locating system for structure
JPH09176330A (en) * 1995-12-26 1997-07-08 Kagaku Gijutsu Shinko Jigyodan Composite material with fracture propagation-proof function and fracture propagation-proofing system
JPH10153499A (en) * 1996-08-19 1998-06-09 Kamenzer Boris Improve force transducer having coplanar strain gauge
JPH10311767A (en) * 1997-05-13 1998-11-24 Omron Corp Physical quantity sensor
JPH11515073A (en) * 1996-09-05 1999-12-21 マイクロドメイン インコーポレイテッド Distributed activator for two-dimensional shape memory alloy
JP2000334888A (en) * 1999-05-28 2000-12-05 Fuji Heavy Ind Ltd Composite material and damage control method thereof
JP2001226782A (en) * 1999-12-03 2001-08-21 Fuji Heavy Ind Ltd Surface treating method for titanium-nickel alloy material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267206U (en) * 1985-09-17 1987-04-27
JPS635461U (en) * 1986-06-28 1988-01-14
JPH06212018A (en) * 1993-01-14 1994-08-02 Yasubumi Furuya Polymer-based material having composite functions
JPH09113490A (en) * 1995-10-23 1997-05-02 Takenaka Komuten Co Ltd Damage locating system for structure
JPH09176330A (en) * 1995-12-26 1997-07-08 Kagaku Gijutsu Shinko Jigyodan Composite material with fracture propagation-proof function and fracture propagation-proofing system
JPH10153499A (en) * 1996-08-19 1998-06-09 Kamenzer Boris Improve force transducer having coplanar strain gauge
JPH11515073A (en) * 1996-09-05 1999-12-21 マイクロドメイン インコーポレイテッド Distributed activator for two-dimensional shape memory alloy
JPH10311767A (en) * 1997-05-13 1998-11-24 Omron Corp Physical quantity sensor
JP2000334888A (en) * 1999-05-28 2000-12-05 Fuji Heavy Ind Ltd Composite material and damage control method thereof
JP2001226782A (en) * 1999-12-03 2001-08-21 Fuji Heavy Ind Ltd Surface treating method for titanium-nickel alloy material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071793A (en) * 2005-09-09 2007-03-22 Hitachi Zosen Corp Method for sensing crack of structural member
JP4707506B2 (en) * 2005-09-09 2011-06-22 日立造船株式会社 Method for detecting cracks in structural members
JP2009047639A (en) * 2007-08-22 2009-03-05 Nippon Oil Corp Method of monitoring fatigue crack development of cfrp plate patch region
US10964131B2 (en) 2015-02-04 2021-03-30 Kawasaki Jukogyo Kabushiki Kaisha State monitoring device for plate spring of railcar bogie
WO2016125448A1 (en) * 2015-02-04 2016-08-11 川崎重工業株式会社 Device for monitoring state of plate spring in railroad vehicular carriage
KR20170107504A (en) * 2015-02-04 2017-09-25 카와사키 주코교 카부시키 카이샤 Plate spring condition monitoring device for railroad cars
KR101967332B1 (en) 2015-02-04 2019-04-09 카와사키 주코교 카부시키 카이샤 Plate spring condition monitoring device for railroad cars
JP2016141329A (en) * 2015-02-04 2016-08-08 川崎重工業株式会社 Leaf spring state monitoring device for railway vehicle truck
WO2017043079A1 (en) * 2015-09-10 2017-03-16 川崎重工業株式会社 Methof for manufacturing leafspring with electrodes for railcar truck
JP2017052415A (en) * 2015-09-10 2017-03-16 川崎重工業株式会社 Method for manufacturing leaf spring with electrode for railroad vehicle carriage
CN107921974A (en) * 2015-09-10 2018-04-17 川崎重工业株式会社 The manufacture method of the electroded leaf spring of railcar bogie
CN107921974B (en) * 2015-09-10 2019-07-09 川崎重工业株式会社 The manufacturing method of the electroded leaf spring of railcar bogie
US11226311B2 (en) 2016-04-06 2022-01-18 Subaru Corporation Ultrasonic inspection system, ultrasonic inspection method and aircraft structural object
JP2018119810A (en) * 2017-01-23 2018-08-02 株式会社デンソー Collision sensor for vehicle and attachment structure thereof
CN116650323A (en) * 2023-07-24 2023-08-29 成都中医药大学 Sensing needle based on micro force sensing technology and biological principle
CN116650323B (en) * 2023-07-24 2023-09-22 成都中医药大学 Sensing needle based on micro force sensing technology and biological principle

Also Published As

Publication number Publication date
JP4583576B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
US7082837B2 (en) Composite material and method of controlling damage thereto and damage sensor
Abry et al. In situ detection of damage in CFRP laminates by electrical resistance measurements
Remmers et al. Delamination buckling of fibre–metal laminates
JP3342467B2 (en) Crack-type fatigue detecting element, method of manufacturing the same, and damage estimation method using crack-type fatigue detecting element
Williams Nonlinear mechanical and actuation characterization of piezoceramic fiber composites
US20090145239A1 (en) Strain sensing means and methods
EP1454737A1 (en) Composite material and method of manufacturing the same
US20030196485A1 (en) Method and sheet like sensor for measuring stress distribution
JP2002131265A (en) Damage detection sensor, production method thereof and composite material with the same incorporated therein
KR20140038149A (en) Structural health monitoring system of fiber reinforced composites including conductive nano-materials, the monitoring and the manufacturing method of the same, and structural health monitoring system of wind turbine blade including conductive nano-materials, the manufacturing method of the same
Abot et al. Strain gauge sensors comprised of carbon nanotube yarn: Parametric numerical analysis of their piezoresistive response
Zhu et al. Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms
JP4338823B2 (en) Damage control method for composite materials
Todoroki et al. Low-cost delamination monitoring of CFRP beams using electrical resistance changes with neural networks
Singh et al. Progressive failure of symmetrically laminated plates under uni-axial compression
JP2002098626A (en) Method of diagnosing degree of danger of cracking using piezoelectric material and apparatus therefor
Hirano et al. Damage identification of woven graphite/epoxy composite beams using the electrical resistance change method
US11592377B2 (en) Fatigue life sensor for measuring repetitive loads applied to a structure based upon cracks propagating from crack initiation features of the sensor
Takahashi et al. Statistical damage detection of laminated CFRP beam using electrical resistance change method
JP2001004440A (en) Plate embedded with optical fiber sensor, composite material embedded with optical fiber sensor and production thereof
Bala et al. Electrode position optimization in magnetoelectric sensors based on magnetostrictive-piezoelectric bilayers on cantilever substrates
Cheng et al. Prestressed composite laminates featuring interlaminar imperfection
Ogisu et al. Damage suppression in CFRP laminates using embedded shape memory alloy foils
Zymelka et al. Printed sensors for damage detection in large engineering structures
JP3406045B2 (en) FRP member capable of detecting internal damage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4583576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees