JPH0621012B2 - Method for manufacturing superconducting film - Google Patents

Method for manufacturing superconducting film

Info

Publication number
JPH0621012B2
JPH0621012B2 JP63297007A JP29700788A JPH0621012B2 JP H0621012 B2 JPH0621012 B2 JP H0621012B2 JP 63297007 A JP63297007 A JP 63297007A JP 29700788 A JP29700788 A JP 29700788A JP H0621012 B2 JPH0621012 B2 JP H0621012B2
Authority
JP
Japan
Prior art keywords
film
superconducting film
gas
target
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63297007A
Other languages
Japanese (ja)
Other versions
JPH02145762A (en
Inventor
幸夫 西山
七雄 河合
知二 川合
仁 田畑
修 村田
順三 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP63297007A priority Critical patent/JPH0621012B2/en
Publication of JPH02145762A publication Critical patent/JPH02145762A/en
Priority to US07/735,175 priority patent/US5236895A/en
Publication of JPH0621012B2 publication Critical patent/JPH0621012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は超電導膜の製造方法に関するものである。TECHNICAL FIELD The present invention relates to a method for producing a superconducting film.

(従来の技術及びその問題点) 近年、高温超電導膜の成膜方法についての研究や開発が
活発に行われており、Y系、Bi系、Tl系等で良好な特性
が得られている。
(Prior Art and Problems Thereof) In recent years, active research and development have been conducted on a method for forming a high-temperature superconducting film, and good characteristics have been obtained for Y-based, Bi-based, Tl-based, and the like.

ところで超電導膜を電子デバイスに適用するためには、
直接成膜時の基板温度を低温化する必要があるが、マグ
ネトロンスパッタ法やレーザスパッタ法で高温超電導膜
を直接成膜する場合、Bi系超電導膜やY系超電導膜で
は、成膜時の基板温度を、600℃〜900℃の高温にする必
要があり、このことが直接成膜を電子デバイスへ適用す
るに当っての難点の一つとなっている。このため成膜時
の基板温度をできるだけ低温化する努力がなされてい
る。
By the way, in order to apply the superconducting film to electronic devices,
Although it is necessary to lower the substrate temperature during direct deposition, when directly depositing a high-temperature superconducting film by the magnetron sputtering method or laser sputtering method, when using a Bi-based superconducting film or a Y-based superconducting film, the substrate at the time of deposition It is necessary to raise the temperature to a high temperature of 600 ° C to 900 ° C, which is one of the difficulties in applying the film directly to the electronic device. Therefore, efforts are being made to reduce the substrate temperature during film formation as much as possible.

したがってこの発明の目的は、従来よりも低い基板温度
で成膜が可能な超電導膜の製造方法を提供することにあ
る。
Therefore, an object of the present invention is to provide a method of manufacturing a superconducting film which can be formed at a substrate temperature lower than that of the conventional one.

上記目的達成のため、本発明者等は各種成膜条件の検討
を行い、酸素よりも酸化力の強い気体の存在下において
成膜することにより、従来よりも基板温度を低下し得る
ことを知見し、本発明をなすに至った。
In order to achieve the above object, the present inventors have studied various film forming conditions, and found that the film formation can be performed in the presence of a gas having an oxidizing power stronger than that of oxygen, whereby the substrate temperature can be lowered as compared with the conventional case. Thus, the present invention has been completed.

(問題点を解決するための手段) すなわち、この発明の超電導膜の製造方法は、酸素より
も酸化力の強いN2Oガス、NO2ガス等の気体の存在下に
おいて、ターゲットにレーザビームを照射するレーザス
パッタリング法を用いて基板に直接成膜することを特徴
としている。
(Means for Solving Problems) That is, the method for producing a superconducting film according to the present invention uses a laser beam to a target in the presence of a gas such as N 2 O gas or NO 2 gas having a stronger oxidizing power than oxygen. It is characterized in that the film is directly formed on the substrate by using the laser sputtering method of irradiation.

(作用) 上記のようにレーザビームをターゲットに照射すると、
ターゲットから励起種(励起分子、励起原子、励起イオ
ン等)が発生し、この励起種とN2Oガス等が反応する。
この際、例えばN2Oガスを使用した場合、N2Oガスは比
較的低い温度(例えば、480℃前後)で分解し、活性化
状態(発生期状態)の酸素を発生し、この状態の酸素が
結晶化反応を促進するが、上記照射されるレーザビーム
はN2Oガスをも励起状態にするので、上記活性化状態の
酸素発生が促進されることになる。つまりレーザビーム
によってターゲットが励起されるのみならず、さらにN2
Oガス等もが励起されることになるのであり、このよう
にターゲットとガスとの両者が励起される結果、従来法
よりも低温状態(従来よりも150℃以上も低温の状態)
での結晶化が可能となる。
(Operation) When the target is irradiated with the laser beam as described above,
Excited species (excited molecules, excited atoms, excited ions, etc.) are generated from the target, and the excited species react with N 2 O gas or the like.
At this time, for example, when N 2 O gas is used, the N 2 O gas decomposes at a relatively low temperature (for example, around 480 ° C.) to generate oxygen in an activated state (evolving state), Although oxygen accelerates the crystallization reaction, the irradiated laser beam also causes the N 2 O gas to be in an excited state, so that oxygen generation in the activated state is promoted. That is, not only the target is excited by the laser beam, but also N 2
O gas and the like are also excited. As a result of both the target and gas being excited in this way, the temperature is lower than in the conventional method (150 ° C. or more lower than in the conventional method).
Crystallization is possible.

(実施例) 実施例1 レーザスパッタ法により、基板温度を480℃に保ち、下
記条件でBi系高温超電導膜を成膜した。膜(as-grown)
はX線回折ピークにより超電導膜であることを確認した
(第1図参照)。
(Example) Example 1 A substrate temperature was kept at 480 ° C by a laser sputtering method, and a Bi-based high temperature superconducting film was formed under the following conditions. Membrane (as-grown)
Was confirmed to be a superconducting film by the X-ray diffraction peak (see FIG. 1).

〔成膜条件〕[Film forming conditions]

ターゲット:Bi7Pb3Oy、SrCuOy、CaCuOy 雰囲気 :N2Oガス気流(10-1〜1Torr) レーザ強度:70mJ/shot 成膜時間 :40〜60min. 発振周波数:7〜10Hz なお上記のように3種類のターゲットを使用しているの
は、3種類のターゲットに所定の順番にレーザを照射
し、これにより複数層が所定層順に積層されて成る膜を
上記基板に成膜するためである(以下、同じ)。
Target: Bi 7 Pb 3 Oy, SrCuOy, CaCuOy atmosphere: N 2 O gas flow (10 -1 -1 Torr) Laser intensity: 70 mJ / shot Film formation time: 40-60 min. Oscillation frequency: 7-10 Hz As above The reason why the three types of targets are used is to irradiate the three types of targets with a laser in a predetermined order, thereby forming a film in which a plurality of layers are stacked in a predetermined layer order on the substrate ( same as below).

比較例1 レーザスパッタ法により、基板温度を600℃に保ち、下
記条件でBi系高温超電導膜を成膜した。膜(as-grown)
のX線回折ピークは弱く、ブロードで結晶化が不完全で
あった(第2図参照)。
Comparative Example 1 A substrate temperature was kept at 600 ° C. by a laser sputtering method, and a Bi type high temperature superconducting film was formed under the following conditions. Membrane (as-grown)
X-ray diffraction peak was weak and the crystallization was broad and incomplete (see FIG. 2).

〔成膜条件〕[Film forming conditions]

ターゲット:Bi7Pb3Oy、SrCuOy、CaCuOy 雰囲気 :O2ガス(〜10-3Torr) レーザ強度:70mJ/shot 成膜時間 :60min. 発振周波数:15〜20Hz 実施例2 レーザスパッタ法により、基板温度を500℃に保ち、下
記条件でY系高温超電導膜を成膜した。膜(as-grown)
のX線回折ピークから超電導膜であることを確認した
(第3図参照)。
Target: Bi 7 Pb 3 Oy, SrCuOy, CaCuOy atmosphere: O 2 gas (up to 10 −3 Torr) Laser intensity: 70 mJ / shot Film formation time: 60 min. Oscillation frequency: 15 to 20 Hz Example 2 Laser sputtering method While maintaining the temperature at 500 ° C., a Y-type high temperature superconducting film was formed under the following conditions. Membrane (as-grown)
It was confirmed that the film was a superconducting film from the X-ray diffraction peak (see FIG. 3).

〔成膜条件〕[Film forming conditions]

ターゲット:Y2O3、BaO、CuO 雰囲気 :N2Oガス気流(10-1〜1Torr) レーザ強度:50mJ/shot 成膜時間 :60min. 発振周波数:10〜15Hz 比較例2 またO2ガス雰囲気化で、基板温度を600℃に保ち、上記
実施例2と略同様の条件で成膜したが、X線回折ピーク
は弱く、ブロードで結晶化は不完全であった。
Target: Y 2 O 3 , BaO, CuO atmosphere: N 2 O gas flow (10 -1 to 1 Torr) Laser intensity: 50 mJ / shot Film formation time: 60 min. Oscillation frequency: 10 to 15 Hz Comparative example 2 Also O 2 gas atmosphere The film was formed under the conditions similar to those in Example 2 while keeping the substrate temperature at 600 ° C., but the X-ray diffraction peak was weak and the crystallization was broad and incomplete.

(発明の効果) 上記のように、この発明の超電導膜の製造方法によれ
ば、成膜時の基板温度を従来よりも低下でき、そのため
電子デバイスへ適用するのに適している。しかもこのよ
うな低温状態での結晶化を、単一のエネルギ源にてなし
得ることから、その実施が容易であるとの利点が生じ
る。
(Effects of the Invention) As described above, according to the method for manufacturing a superconducting film of the present invention, the substrate temperature during film formation can be lowered as compared with the prior art, and therefore it is suitable for application to electronic devices. Moreover, since crystallization in such a low temperature state can be performed by a single energy source, there is an advantage that the crystallization is easy.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の超電導膜の製造方法の第1実施例で
のX線回折パターン図、第2図は第1比較例でのX線回
折パターン図、第3図はこの発明の第2実施例でのX線
回折パターン図である。
FIG. 1 is an X-ray diffraction pattern diagram in the first embodiment of the method for manufacturing a superconducting film of the present invention, FIG. 2 is an X-ray diffraction pattern diagram in the first comparative example, and FIG. 3 is a second embodiment of the present invention. It is an X-ray-diffraction pattern figure in an Example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 12/06 ZAA 8936−5G 13/00 HCU Z 7244−5G H01L 39/24 ZAA B 8728−4M (72)発明者 村田 修 兵庫県明石市川崎町1番1号 川崎重工業 株式会社技術研究所内 (72)発明者 藤岡 順三 兵庫県明石市川崎町1番1号 川崎重工業 株式会社技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical display location H01B 12/06 ZAA 8936-5G 13/00 HCU Z 7244-5G H01L 39/24 ZAA B 8728-4M (72) Inventor Osamu Murata 1-1 Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries Ltd. Technical Research Institute (72) Inventor Junzo Fujioka 1-1, Kawasaki-cho Akashi-shi Hyogo Prefecture Kawasaki Heavy Industries Ltd. Technical Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素よりも酸化力の強いN2Oガス、NO2
ス等の気体の存在下において、ターゲットにレーザビー
ムを照射するレーザスパッタリング法を用いて基板に直
接成膜することを特徴とする超電導膜の製造方法。
1. A film is directly formed on a substrate by using a laser sputtering method in which a target is irradiated with a laser beam in the presence of a gas such as N 2 O gas or NO 2 gas, which has a stronger oxidizing power than oxygen. And a method for manufacturing a superconducting film.
JP63297007A 1988-11-24 1988-11-24 Method for manufacturing superconducting film Expired - Lifetime JPH0621012B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63297007A JPH0621012B2 (en) 1988-11-24 1988-11-24 Method for manufacturing superconducting film
US07/735,175 US5236895A (en) 1988-11-24 1991-07-23 Production of oxide superconducting films by laser sputtering using N22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63297007A JPH0621012B2 (en) 1988-11-24 1988-11-24 Method for manufacturing superconducting film

Publications (2)

Publication Number Publication Date
JPH02145762A JPH02145762A (en) 1990-06-05
JPH0621012B2 true JPH0621012B2 (en) 1994-03-23

Family

ID=17841042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63297007A Expired - Lifetime JPH0621012B2 (en) 1988-11-24 1988-11-24 Method for manufacturing superconducting film

Country Status (1)

Country Link
JP (1) JPH0621012B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230428A (en) * 1988-03-10 1989-09-13 Oki Electric Ind Co Ltd Production of superconducting thin film
JPH0244014A (en) * 1987-11-25 1990-02-14 Kawatetsu Mining Co Ltd Production of electroconductive or superconducting thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244014A (en) * 1987-11-25 1990-02-14 Kawatetsu Mining Co Ltd Production of electroconductive or superconducting thin film
JPH01230428A (en) * 1988-03-10 1989-09-13 Oki Electric Ind Co Ltd Production of superconducting thin film

Also Published As

Publication number Publication date
JPH02145762A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
US4452644A (en) Process for doping semiconductors
DE4132882C2 (en) Process for the production of pn CdTe / CdS thin-film solar cells
US6489587B2 (en) Fabrication method of erbium-doped silicon nano-size dots
JPH0621012B2 (en) Method for manufacturing superconducting film
JP2965641B2 (en) Superconducting element manufacturing method
US3737346A (en) Semiconductor device fabrication using combination of energy beams for masking and impurity doping
JP2925571B2 (en) How to make a superconducting circuit
JP2822623B2 (en) Method of forming electrodes on superconductor
JPH08970B2 (en) Method for forming multi-element compound thin film
JPS6142987A (en) Manufacture of semiconductor laser
JPS5856327A (en) Manufacture of semiconductor device
JPH01290576A (en) Production of superconducting thin film
JPS6457615A (en) Manufacture of thin film type semiconductor device
JPH0381313B2 (en)
JPS63266063A (en) Ito film formation
JPH0417329A (en) Formation of thin film
SU561331A1 (en) Method of obtaining silicon carbide layers
JPS5575276A (en) 3[5 group compound semiconductor device
JPH02307807A (en) Production of oxide superconducting film
JP2733693B2 (en) Ln ▲ lower 2 ▲ lower-▼ lower x ▼ Ce ▲ lower x ▼ CuO ▲ lower 4 ▲ lower-▼ ▲ lower y ▼ Single crystal and Ln ▲ lower 2 ▲ lower-▼ lower x ▼ Ce ▲ lower x ▼ CuO Lower 4 ▼ Lower-▼ Lower y
JPS59232413A (en) Method of manufacturing semiconductor device and facilities for manufacturing the same
JPH01162775A (en) Formation of thin film having high adhesive power
JPH07108763B2 (en) Method for manufacturing superconducting film
JPH02137785A (en) Working of oxide superconductor
JPH0360028A (en) Doping n-type impurity