JPH0620995A - Semiconductor device and production thereof - Google Patents

Semiconductor device and production thereof

Info

Publication number
JPH0620995A
JPH0620995A JP17222492A JP17222492A JPH0620995A JP H0620995 A JPH0620995 A JP H0620995A JP 17222492 A JP17222492 A JP 17222492A JP 17222492 A JP17222492 A JP 17222492A JP H0620995 A JPH0620995 A JP H0620995A
Authority
JP
Japan
Prior art keywords
film
diffusion layer
contact hole
interlayer insulating
connection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17222492A
Other languages
Japanese (ja)
Inventor
Takashi Arima
高志 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17222492A priority Critical patent/JPH0620995A/en
Publication of JPH0620995A publication Critical patent/JPH0620995A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the performance of a semiconductor device by preventing the deterioration of yield and reliability due to wiring disconnection by the step on the side surface of a contact hole and increasing the contact area of the contact hole. CONSTITUTION:A contact hole 6 for electrically connecting a diffused layer 2A formed on a silicon substrate 1 with a wiring layer is formed on a second BPSG film 3B, a CVD oxide film 5 and a first BPSG film 3A and a polycrystal silicon film side wall 7 is formed on the side surface of the contact hole 6. Then, a Ti-TiN film 8 and an Al film 9 are formed as the top layer wiring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置およびその
製造方法に関し、特に拡散層と配線とを接続する接続孔
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a connection hole for connecting a diffusion layer and a wiring.

【0002】[0002]

【従来の技術】半導体装置においては、近年の高集積化
に伴ない、素子や配線等の微細化が急速に進んでいる。
素子や配線の微細化が進むにつれ半導体基板の拡散層と
配線との接続を行なう接続孔の面積は、縮小率の2乗に
比例して急速に小さくなってきている。
2. Description of the Related Art In semiconductor devices, the miniaturization of elements, wirings, etc. is rapidly advancing along with the recent high integration.
With the progress of miniaturization of elements and wirings, the area of the connection hole for connecting the diffusion layer of the semiconductor substrate and the wiring is rapidly decreasing in proportion to the square of the reduction rate.

【0003】現在一般的に用いられている接続孔は図2
に示す様な断面構造となっている。まずP型シリコン基
板1上にホトリソグラフィー技術とイオン注入技術を用
いN型拡散層2を形成する。その後層間絶縁膜となる第
1BPSG膜3AをCVD法により形成し、その上に多
結晶シリコン膜または高融点金属シリサイド膜より成る
下層配線4を、CVD技術またはスパッタリング技術、
ホトリソグラフィー技術、エッチング技術を用いて形成
する。その後第2のBPSG膜3Bよりリンやボロンの
外向拡散を防止するためのCVD法による酸化膜(CV
D酸化膜)5を堆積したのち、その上に第2BPSG膜
3BをCVD法により堆積する。
FIG. 2 shows a connection hole which is commonly used at present.
The cross-sectional structure is as shown in. First, the N-type diffusion layer 2 is formed on the P-type silicon substrate 1 by using the photolithography technique and the ion implantation technique. After that, a first BPSG film 3A to be an interlayer insulating film is formed by a CVD method, and a lower layer wiring 4 made of a polycrystalline silicon film or a refractory metal silicide film is formed thereon by a CVD technique or a sputtering technique,
It is formed by using photolithography technology and etching technology. After that, an oxide film (CV) is formed by the CVD method for preventing outward diffusion of phosphorus and boron from the second BPSG film 3B.
After the D oxide film) 5 is deposited, the second BPSG film 3B is deposited thereon by the CVD method.

【0004】この後上層配線とN型拡散層2との接続の
ためウェットエッチングと異方性のドライエッチングに
て接続孔6Aを形成する。次に、接続抵抗の低抵抗化ま
たリーク電流防止のために接続孔内部に不純物をイオン
注入するが、この時の接続孔内部の基板表面へのダメー
ジ防止のため、また注入されたイオンの活性化のための
熱処理時の、第1、第2BPSG膜3A、3Bからのリ
ンやボロンの外向拡散防止のため、CVD技術により薄
い酸化膜(図示せず)を形成する。その後、前記目的に
より、イオン注入、熱処理を行なう。
After that, a connection hole 6A is formed by wet etching and anisotropic dry etching for connecting the upper wiring and the N-type diffusion layer 2. Next, impurities are ion-implanted into the inside of the contact hole in order to lower the connection resistance and prevent leakage current. At this time, in order to prevent damage to the substrate surface inside the contact hole, the activity of the injected ions is also reduced. A thin oxide film (not shown) is formed by the CVD technique to prevent outward diffusion of phosphorus and boron from the first and second BPSG films 3A and 3B during the heat treatment for conversion. Then, according to the above purpose, ion implantation and heat treatment are performed.

【0005】次にこの薄い酸化膜を取り除くためにフッ
素系のエッチング液によりウェットエッチングを行な
う。その後上層の金属配線膜としてTi−TiN膜8と
SiとCuを含むAl膜9をスパッタ技術、ホトリソグ
ラフィー技術、エッチング技術により形成する。
Next, in order to remove the thin oxide film, wet etching is performed with a fluorine-based etching solution. After that, a Ti—TiN film 8 and an Al film 9 containing Si and Cu are formed as an upper metal wiring film by a sputtering technique, a photolithography technique, and an etching technique.

【0006】[0006]

【発明が解決しようとする課題】この従来の接続孔の製
造方法では、接続孔内部へのイオン注入を行なう前に堆
積した薄い酸化膜をウェットエッチングにて除去する際
に接続孔の側壁も同時にエッチングされてしまう。この
時接続孔の側壁は層間絶縁膜としての第1BPSG膜3
A、CVD酸化膜5及び第2BPSG膜3Bが形成され
ているが、ウェットエッチング液での各膜のエッチング
速度が異なるため、ウェットエッチング終了時には、接
続孔の側壁に段差が生じる。そのため、上層配線用の金
属材料、すなわちTi−TiN膜8とAl膜9が接続孔
の内部で切断され、半導体装置の歩留り低下又は信頼性
の悪化が起るという問題点があった。また接続孔の面積
が小さいことによる接続孔内の導体の抵抗増大による電
圧降下により、電源電圧マージンの悪化、スピード派性
の悪化という問題も生じている。
In this conventional method for manufacturing a contact hole, the sidewall of the contact hole is simultaneously removed when the thin oxide film deposited before the ion implantation into the inside of the contact hole is removed by wet etching. It will be etched. At this time, the sidewall of the contact hole is covered with the first BPSG film 3 as an interlayer insulating film.
A, the CVD oxide film 5 and the second BPSG film 3B are formed, but since the etching rate of each film with the wet etching solution is different, a step is formed on the sidewall of the connection hole at the end of the wet etching. Therefore, there is a problem that the metal material for the upper layer wiring, that is, the Ti—TiN film 8 and the Al film 9 is cut inside the connection hole, and the yield of the semiconductor device is reduced or the reliability is deteriorated. Further, due to the decrease in the area of the connection hole, the voltage drop due to the increase in the resistance of the conductor in the connection hole causes a problem that the power supply voltage margin is deteriorated and the speed characteristic is deteriorated.

【0007】[0007]

【課題を解決するための手段】第1の発明の半導体装置
は、半導体基板表面に形成された拡散層と、この拡散層
上に形成されたエッチングレートの異なる複数の層間絶
縁膜と、この層間絶縁膜と前記拡散層の一部を掘り下げ
て形成された接続孔と、この接続孔の側面に形成された
多結晶シリコン膜からなるサイドウオールとを含むもの
である。
A semiconductor device according to a first aspect of the present invention comprises a diffusion layer formed on the surface of a semiconductor substrate, a plurality of interlayer insulating films formed on the diffusion layer and having different etching rates, and the interlayer insulating film. The insulating film and the diffusion layer include a connection hole formed by digging a part of the diffusion layer, and a sidewall made of a polycrystalline silicon film formed on a side surface of the connection hole.

【0008】第2の発明の半導体装置の製造方法は、半
導体基板の表面に拡散層を形成する工程と、この拡散層
を含む全面にエッチングレートの異なる複数の層間絶縁
膜を形成する工程と、この層間絶縁膜と前記拡散層の表
面をエッチングし接続孔を形成する工程と、全面に多結
晶シリコン膜を形成したのちエッチングし前記接続孔の
側面に多結晶シリコン膜からなるサイドウオールを形成
する工程とを含むものである。
A method of manufacturing a semiconductor device according to a second aspect of the present invention includes a step of forming a diffusion layer on the surface of a semiconductor substrate, and a step of forming a plurality of interlayer insulating films having different etching rates on the entire surface including the diffusion layer, The step of etching the surface of the interlayer insulating film and the diffusion layer to form a contact hole, and the step of forming a polycrystalline silicon film on the entire surface and then etching to form a sidewall made of a polycrystalline silicon film on the side surface of the contact hole. And a process.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(c)は本発明の一実施例を説明する
ための半導体チップの断面図である。
The present invention will be described below with reference to the drawings. 1A to 1C are sectional views of a semiconductor chip for explaining an embodiment of the present invention.

【0010】まず図1(a)に示すように、P型のシリ
コン基板1上にホトリソグラフィ技術とイオン注入技術
により第1のN型拡散層2Aを形成する。その後層間絶
縁膜として第1BPSG膜をCVD法を用いて400n
mの厚さに形成したのち、その上に多結晶シリコン膜ま
たは高融点金属シリサイド膜等より成る下層配線4を形
成する。その後第2のBPSG膜よりのリンやボロンの
外向拡散防止用としてCVD酸化膜5を100nm堆積
し、次に第2のBPSG膜3BをCVD法により形成す
る。
First, as shown in FIG. 1A, a first N-type diffusion layer 2A is formed on a P-type silicon substrate 1 by a photolithography technique and an ion implantation technique. After that, a first BPSG film is formed as an interlayer insulating film with a thickness of 400 n using the CVD method.
After being formed to a thickness of m, a lower layer wiring 4 made of a polycrystalline silicon film, a refractory metal silicide film or the like is formed thereon. After that, a CVD oxide film 5 is deposited to 100 nm to prevent outward diffusion of phosphorus and boron from the second BPSG film, and then a second BPSG film 3B is formed by the CVD method.

【0011】この後ホトリソグラフィー技術により接続
孔6を形成する。この場合、まずフッ酸系のエッチング
液により200nmウェットエッチング後、CF4 系の
エッチングガスによる異方性のエッチングで半導体基板
まで酸化膜のエッチングを行なう。その後シリコン基板
を掘り下げるためにSF6 /Cl2 系のエッチングガス
により異方性のドライエッチングを行ない深さ200n
mの溝10を形成する。
After this, the connection hole 6 is formed by the photolithography technique. In this case, first, wet etching is performed to 200 nm with a hydrofluoric acid-based etching solution, and then the oxide film is etched to the semiconductor substrate by anisotropic etching with a CF 4 -based etching gas. Then, anisotropic dry etching is performed with an SF 6 / Cl 2 -based etching gas to dig down the silicon substrate to a depth of 200 n.
The groove 10 of m is formed.

【0012】次に図1(b)に示すように、接続抵抗の
抵抗低減、およびリーク電流の減少のためPをイオン注
入により、セルファラインで60kev、ドーズ量5×
1015/m2 、7°と15°の傾きでシリコン基板の接
続孔の側壁にも注入される様に注入し、第2のN型拡散
層3Bを形成する。その後CVD法により多結晶シリコ
ンを200nmの厚さに形成したのち、HBr/Cl2
系のエッチングガスにより異方性のドライエッチバック
処理をおこない、接続孔6の側面に多結晶シリコン膜の
サイドウォール7を形成する。この後接続孔の形状改善
のため、窒素雰囲気中で900℃15分の熱処理を行な
う。この時に若干の酸化膜が成長するためフッ酸系のエ
ッチング液で15秒のウェットエッチングを行なう。
Next, as shown in FIG. 1 (b), P is ion-implanted to reduce the resistance of the connection resistance and the leakage current, so that 60 kev is obtained at the self-alignment and the dose amount is 5 ×.
The second N-type diffusion layer 3B is formed by injecting so as to inject into the sidewall of the connection hole of the silicon substrate at an inclination of 10 15 / m 2 and 7 °. After that, polycrystalline silicon is formed to a thickness of 200 nm by the CVD method, and then HBr / Cl 2 is added.
Anisotropic dry etch back processing is performed using a system etching gas to form the sidewalls 7 of the polycrystalline silicon film on the side surfaces of the connection holes 6. Thereafter, in order to improve the shape of the connection hole, heat treatment is performed at 900 ° C. for 15 minutes in a nitrogen atmosphere. At this time, since a small amount of oxide film grows, wet etching is performed for 15 seconds with a hydrofluoric acid-based etching solution.

【0013】次に図1(c)に示すように、上層の配線
となるTi−TiN膜8(Ti膜を60nm、TiN膜
を100nm)をスパッタ法により堆積し、高速熱処理
を行ないTi膜をシリサイド化する。次にSiとCuを
含むAl膜9を600nm堆積したのち、ホトリソグラ
フィー技術を用いてパターニングを行なう。
Next, as shown in FIG. 1 (c), a Ti-TiN film 8 (Ti film 60 nm, TiN film 100 nm) to be an upper wiring is deposited by a sputtering method, and a high speed heat treatment is performed to form a Ti film. Silicide. Next, after depositing an Al film 9 containing Si and Cu to a thickness of 600 nm, patterning is performed using the photolithography technique.

【0014】このように本実施例によれば、接続孔の側
面にサイドウォールを形成したのち熱処理し、形成され
た酸化膜をウエットエッチング法で除去しているため、
接続孔の側面に段差が形成されることはなくなる。従っ
て上層配線が切断されることはなくなる。
As described above, according to this embodiment, since the sidewall is formed on the side surface of the contact hole and then the heat treatment is performed, the formed oxide film is removed by the wet etching method.
No step is formed on the side surface of the connection hole. Therefore, the upper layer wiring is not cut.

【0015】尚、上記実施例においてはPをイオン注入
したのち多結晶シリコン膜からなるサイドウォール7を
形成したが、サイドウォール7を形成したのちのイオン
注入を行ってもよい。この場合、イオン注入によりサイ
ドウォール7がより導体化するため、接続抵抗をより小
さくすることができる。
In the above embodiment, the side wall 7 made of a polycrystalline silicon film was formed after P was ion-implanted. However, the side wall 7 may be formed and then ion-implanted. In this case, since the sidewall 7 is made more conductive by the ion implantation, the connection resistance can be further reduced.

【0016】[0016]

【発明の効果】以上説明した様に本発明は、接続孔の側
面に多結晶シリコン膜のサイドウォールを形成後に接続
孔の形状改善の熱処理を行なう様にしたため、その後の
フッ酸系のウエットエッチング時にエッチングレートの
異なる複数の層間絶縁膜に形成した接続孔の側璧に段差
が生じることはなくなる。また、その他の洗浄などで生
じた接続孔の側璧の段差部でも、サイドウォールを形成
して、上層の配線が接続孔の内部で断切れすることを防
止する様にしたため、半導体装置の歩留り及び信頼性が
向上するという効果を有する。
As described above, according to the present invention, since the sidewall of the polycrystalline silicon film is formed on the side surface of the contact hole, the heat treatment for improving the shape of the contact hole is performed. At times, no step is formed on the side walls of the connection holes formed in the plurality of interlayer insulating films having different etching rates. In addition, even in the step portion of the side wall of the connection hole caused by other cleaning, the side wall is formed to prevent the wiring in the upper layer from being cut off inside the connection hole. It also has the effect of improving reliability.

【0017】また接続孔を半導体基板表面にまで掘り下
げて形成するため、接続部の接触面積が大きくなり、同
じサイズの接続孔に比べ接続抵抗を小さくすることが可
能となり、電源電圧マージンの向上、スピード派生の向
上という効果も有する。
Further, since the connection hole is formed by digging down to the surface of the semiconductor substrate, the contact area of the connection portion becomes large, and the connection resistance can be made smaller than that of the connection hole of the same size, improving the power supply voltage margin, It also has the effect of improving speed derivation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための半導体チッ
プの断面図。
FIG. 1 is a sectional view of a semiconductor chip for explaining an embodiment of the present invention.

【図2】従来の半導体装置の製造方法を説明するための
半導体チップの断面図。
FIG. 2 is a cross-sectional view of a semiconductor chip for explaining a conventional method of manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2A,2B N型拡散層 3A,3B BPSG膜 4 下層配線 5 CVD酸化膜 6,6A 接続孔 7 サイドウォール 8 Ti−TiN膜 9 Al膜 10 溝 DESCRIPTION OF SYMBOLS 1 Silicon substrate 2A, 2B N-type diffusion layer 3A, 3B BPSG film 4 Lower layer wiring 5 CVD oxide film 6, 6A Connection hole 7 Sidewall 8 Ti-TiN film 9 Al film 10 Groove

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/306 S 9278−4M 21/3205 21/90 C 7514−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication H01L 21/306 S 9278-4M 21/3205 21/90 C 7514-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面に形成された拡散層と、
この拡散層上に形成されたエッチングレートの異なる複
数の層間絶縁膜と、この層間絶縁膜と前記拡散層の一部
を掘り下げて形成された接続孔と、この接続孔の側面に
形成された多結晶シリコン膜からなるサイドウオールと
を含むことを特徴とする半導体装置。
1. A diffusion layer formed on the surface of a semiconductor substrate,
A plurality of interlayer insulating films formed on the diffusion layer and having different etching rates, a connection hole formed by digging a part of the interlayer insulating film and the diffusion layer, and a multi-hole formed on the side surface of the connection hole. A semiconductor device comprising a sidewall made of a crystalline silicon film.
【請求項2】 半導体基板の表面に拡散層を形成する工
程と、この拡散層を含む全面にエッチングレートの異な
る複数の層間絶縁膜を形成する工程と、この層間絶縁膜
と前記拡散層の表面をエッチングし接続孔を形成する工
程と、全面に多結晶シリコン膜を形成したのちエッチン
グし前記接続孔の側面に多結晶シリコン膜からなるサイ
ドウオールを形成する工程とを含むことを特徴とする半
導体装置の製造方法。
2. A step of forming a diffusion layer on a surface of a semiconductor substrate, a step of forming a plurality of interlayer insulating films having different etching rates on the entire surface including the diffusion layer, and a surface of the interlayer insulating film and the diffusion layer. And forming a contact hole, and forming a polycrystalline silicon film on the entire surface and then etching to form a side wall made of a polycrystalline silicon film on the side surface of the contact hole. Device manufacturing method.
JP17222492A 1992-06-30 1992-06-30 Semiconductor device and production thereof Withdrawn JPH0620995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17222492A JPH0620995A (en) 1992-06-30 1992-06-30 Semiconductor device and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17222492A JPH0620995A (en) 1992-06-30 1992-06-30 Semiconductor device and production thereof

Publications (1)

Publication Number Publication Date
JPH0620995A true JPH0620995A (en) 1994-01-28

Family

ID=15937903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17222492A Withdrawn JPH0620995A (en) 1992-06-30 1992-06-30 Semiconductor device and production thereof

Country Status (1)

Country Link
JP (1) JPH0620995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146982A (en) * 1994-09-23 2000-11-14 Infineon Technologies Ag Method for producing a low-impedance contact between a metallizing layer and a semiconductor material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146982A (en) * 1994-09-23 2000-11-14 Infineon Technologies Ag Method for producing a low-impedance contact between a metallizing layer and a semiconductor material

Similar Documents

Publication Publication Date Title
EP0139165B1 (en) Method of making a trench isolated integrated circuit device
US5166767A (en) Sidewall contact bipolar transistor with controlled lateral spread of selectively grown epitaxial layer
JPS6347337B2 (en)
JPS6118147A (en) Method of forming semiconductor device
US4871684A (en) Self-aligned polysilicon emitter and contact structure for high performance bipolar transistors
US5897359A (en) Method of manufacturing a silicon/silicon germanium heterojunction bipolar transistor
JPH08293465A (en) Manufacture of semiconductor device
JPH0241170B2 (en)
US5946595A (en) Method of forming a local interconnect between electronic devices on a semiconductor substrate
CA1312679C (en) Sidewall contact bipolar transistor with controlled lateral spread of selectively grown epitaxial layer
US5851901A (en) Method of manufacturing an isolation region of a semiconductor device with advanced planarization
JPH0620995A (en) Semiconductor device and production thereof
JPS6252950B2 (en)
JPH0243336B2 (en)
JP2940492B2 (en) Semiconductor device and manufacturing method thereof
KR100187672B1 (en) Method of forming contact hole in semiconductor device
US4677456A (en) Semiconductor structure and manufacturing method
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS60258964A (en) Manufacture of semiconductor device
RU2244985C1 (en) Method for manufacturing complementary vertical bipolar transistors as parts of integrated circuits
JPH0620989A (en) Contact hole formation
JPS63237471A (en) Semiconductor device and its manufacture
JP3388679B2 (en) Method for manufacturing semiconductor device
JP2828126B2 (en) Semiconductor device and manufacturing method thereof
JPH05183127A (en) Manufacture of semiconductor memory

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831