JPH06209122A - Indium gallium nitride semiconductor and growing method thereof - Google Patents

Indium gallium nitride semiconductor and growing method thereof

Info

Publication number
JPH06209122A
JPH06209122A JP10655793A JP10655793A JPH06209122A JP H06209122 A JPH06209122 A JP H06209122A JP 10655793 A JP10655793 A JP 10655793A JP 10655793 A JP10655793 A JP 10655793A JP H06209122 A JPH06209122 A JP H06209122A
Authority
JP
Japan
Prior art keywords
growth
ingan
gallium nitride
growing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10655793A
Other languages
Japanese (ja)
Other versions
JP2751987B2 (en
Inventor
Shuji Nakamura
修二 中村
Takashi Mukai
孝志 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26446669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06209122(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP10655793A priority Critical patent/JP2751987B2/en
Publication of JPH06209122A publication Critical patent/JPH06209122A/en
Application granted granted Critical
Publication of JP2751987B2 publication Critical patent/JP2751987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide InGaN having high quality and excellent crystallizability and a growing method thereof in excellent reproducibility. CONSTITUTION:This indium gallium semiconductor represented by a general formula of InalphaGal-alphaN (where 0<alpha<0.5) is grown by an organic metal vapor deposition process meeting the requirement assuming the growing temperature ( deg.C) (a) to be on X axis and the growing rate (Angstrom /min) (b) to be on Y axis within the region encircled by respective coordinates of a (659, 1), b (650, 5), c (900, 60), d (900, 1) in the annexed figure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青色発光ダイオード、青
色レーザーダイオード等に使用される窒化インジウムガ
リウム半導体の成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing an indium gallium nitride semiconductor used for blue light emitting diodes, blue laser diodes and the like.

【0002】[0002]

【従来の技術】青色ダイオード、青色レーザーダイオー
ド等に使用される実用的な半導体材料として窒化ガリウ
ム(GaN)、窒化インジウムガリウム(InGa
N)、窒化ガリウムアルミニウム(GaAlN)等の窒
化ガリウム系化合物半導体が注目されており、その中で
もInGaNはバンドギャップが2eV〜3.4eVま
であるため非常に有望視されている。
2. Description of the Related Art Gallium nitride (GaN) and indium gallium nitride (InGa) are practical semiconductor materials used for blue diodes, blue laser diodes and the like.
N) and gallium nitride-based compound semiconductors such as gallium aluminum nitride (GaAlN) have attracted attention. Among them, InGaN has a bandgap of 2 eV to 3.4 eV and thus is regarded as very promising.

【0003】従来、有機金属気相成長法{以下、MOC
VD(Metal Organic Chemical Vapor Deposition)法
という。}によりInGaNを成長させる場合、成長温
度500℃〜600℃の低温で、サファイア基板上に成
長されていた。なぜなら、InNの融点はおよそ500
℃、GaNの融点はおよそ1000℃であるため、60
0℃以上の高温でInGaNを成長させると、InGa
N中のInNの分解圧がおよそ10気圧以上となり、I
nGaNがほとんど分解してしまい、形成されるものは
GaのメタルとInのメタルの堆積物のみとなってしま
うからである。従って、従来InGaNを成長させよう
とする場合は成長温度を低温に保持しなければならなか
った。
Conventionally, metal organic chemical vapor deposition method {hereinafter, MOC
It is called a VD (Metal Organic Chemical Vapor Deposition) method. }, The InGaN was grown on the sapphire substrate at a low growth temperature of 500 ° C to 600 ° C. Because the melting point of InN is about 500
℃, the melting point of GaN is about 1000 ℃, 60
When InGaN is grown at a high temperature of 0 ° C. or higher, InGa
The decomposition pressure of InN in N becomes about 10 atm or more, and I
This is because most of the nGaN is decomposed and only the deposits of Ga metal and In metal are formed. Therefore, in order to grow InGaN conventionally, the growth temperature had to be kept low.

【0004】このような条件の下で成長されたInGa
Nの結晶性は非常に悪く、例えば室温でフォトルミネッ
センス測定を行っても、バンド間発光はほとんど見られ
ず、深い準位からの発光がわずかに観測されるのみであ
り、青色発光が観測されたことはなかった。しかも、X
線回折でInGaNのピークを検出しようとしてもほと
んどピークは検出されず、その結晶性は、単結晶という
よりも、アモルファス状結晶に近いのが実状であった。
InGa grown under such conditions
The crystallinity of N is very poor. For example, even when photoluminescence measurement is performed at room temperature, almost no interband emission is observed, only a slight emission from a deep level is observed, and blue emission is observed. It never happened. Moreover, X
Even if an InGaN peak was detected by line diffraction, almost no peak was detected, and the crystallinity was closer to that of an amorphous crystal rather than a single crystal.

【0005】[0005]

【発明が解決しようとする課題】青色発光ダイオード、
青色レーザーダイオード等の青色発光デバイスを実現す
るためには、高品質で、かつ優れた結晶性を有するIn
GaNの実現が強く望まれている。しかしながらInG
aNの成長に成功したという報告は未だされておらず、
その成長方法もよく知られていないのが実状である。よ
って、本発明はこの問題を解決するべくなされたもので
あり、その目的とするところは、高品質で結晶性に優れ
たInGaNの成長方法を提供すると共に、再現性良く
確実にその結晶が得られる方法を提供するものである。
A blue light emitting diode,
In order to realize a blue light emitting device such as a blue laser diode, In having high quality and excellent crystallinity is used.
Realization of GaN is strongly desired. However, InG
There have been no reports of successful growth of aN,
The reality is that the growth method is not well known. Therefore, the present invention has been made to solve this problem, and an object of the present invention is to provide a method for growing InGaN having high quality and excellent crystallinity, and to obtain the crystal reliably and with good reproducibility. It provides a method to be performed.

【0006】[0006]

【課題を解決するための手段】我々は、InGaNをM
OCVD法で成長するにあたり、数々の実験を繰り返し
た結果、GaNの上に、ある特定の範囲内の成長温度と
成長速度で成長させることにより、その結晶性が格段に
向上することを新たに見いだし本発明を成すに至った。
[Means for Solving the Problems]
As a result of repeated experiments on the growth by the OCVD method, it was newly found that the crystallinity of GaN was remarkably improved by growing it on GaN at a growth temperature and a growth rate within a specific range. The present invention has been accomplished.

【0007】即ち、本発明の成長方法は、MOCVD法
により、一般式InαGa1-αN(但し、αは0<α<
0.5の範囲である。)で表される窒化インジウムガリ
ウム半導体を成長させる方法であって、成長温度(℃)
をX軸、成長速度(オングストローム/分)をY軸とし
て、添付図1のa(650,1)、b(650,5)、
c(900,60)、d(900,1)の各座標で囲ま
れた領域内の条件で、窒化ガリウムの上に成長させるこ
とを特徴とする。
In other words, the growth method of the present invention is based on the general formula InαGa1-αN (where α is 0 <α <
It is in the range of 0.5. ) Is a method of growing an indium gallium nitride semiconductor represented by
Is the X-axis and the growth rate (angstrom / min) is the Y-axis, and a (650,1), b (650,5), and
It is characterized in that it is grown on gallium nitride under the condition of the region surrounded by the coordinates of c (900, 60) and d (900, 1).

【0008】本発明の成長方法において、MOCVD法
に用いる原料ガスとして、例えばガリウム源にはトリメ
チルガリウム(TMG)、トリエチルガリウム(TE
G)、インジウム源としてトリメチルインジウム(TM
I)、トリエチルインジウム(TEI)等の有機金属化
合物ガス、窒素源にはアンモニア(NH3)、ヒドラジ
ン(N24)等のガスを好ましく用いることができ、こ
れらのガスをキャリアガスと共に混合し、加熱された基
板に向かって噴射することによりInGaNを成長させ
ることができる。InGaNの成長速度はGa源のガス
流量を制御することにより調整することができる。
In the growth method of the present invention, as a source gas used in the MOCVD method, for example, trimethylgallium (TMG) or triethylgallium (TE) is used as a gallium source.
G), trimethylindium (TM) as an indium source
I), an organometallic compound gas such as triethylindium (TEI), or a gas such as ammonia (NH 3 ) or hydrazine (N 2 H 4 ) as a nitrogen source can be preferably used, and these gases can be mixed with a carrier gas. Then, by spraying toward the heated substrate, InGaN can be grown. The growth rate of InGaN can be adjusted by controlling the gas flow rate of the Ga source.

【0009】成長温度は650℃〜900℃の範囲に調
整する必要がある。650℃より低い温度でもInGa
Nを成長させることは可能であるが、前記したように6
00℃以下であると、GaNの結晶が成長しにくいた
め、InGaNの結晶ができにくく、できたとしても従
来のように結晶性の悪いInGaNとなる。また600
℃〜650℃では再現性よく結晶性に優れたInGaN
を得ることが困難となる傾向にある。900℃より高い
温度であるとInNが分解しやすくなるため、InGa
NがGaNになりやすい傾向にある。成長温度は700
℃〜850℃の範囲が最も好ましい。
The growth temperature must be adjusted within the range of 650 ° C to 900 ° C. InGa even at a temperature lower than 650 ° C
It is possible to grow N, but as described above, 6
If the temperature is not higher than 00 ° C., it is difficult for GaN crystals to grow, and thus it is difficult to form InGaN crystals, and even if they are formed, InGaN having poor crystallinity as in the conventional case is obtained. Again 600
InGaN with excellent reproducibility and excellent crystallinity at ℃ to 650 ℃
Tends to be difficult to obtain. InGa is easily decomposed at a temperature higher than 900 ° C., so InGa
N tends to be GaN. Growth temperature is 700
Most preferred is the range of ° C to 850 ° C.

【0010】基板にはSi、SiC等もあるが、サファ
イアが用いられることが多い。また、基板の上に低温で
GaXAl1-XN(0≦X≦1)よりなるバッファ層を形
成することにより、その上に成長するGaNの結晶性を
向上させることができ、好ましくはAlNよりも、Ga
Nバッファ層の方が、その上に成長するGaN層の結晶
性を向上させることができる。
Although there are Si, SiC and the like for the substrate, sapphire is often used. Further, by forming a buffer layer made of GaXAl1-XN (0≤X≤1) on the substrate at a low temperature, the crystallinity of GaN grown on the substrate can be improved. Ga
The N buffer layer can improve the crystallinity of the GaN layer grown thereon.

【0011】成長中に供給する原料ガス中のインジウム
源のガスのインジウムのモル比は、ガリウム1に対し、
好ましく0.1以上、さらに好ましくは1.0以上に調
整することが望ましい。インジウムのモル比が0.1よ
り少ないと、InGaNの混晶が得にくく、また結晶性
が悪くなる傾向にある。なぜなら、成長温度650℃以
上では、多少なりともInNの分解が発生しInNがG
aN結晶中に入りにくくなる。そのため好ましくその分
解分よりもインジウムを多く供給することによって、I
nNをGaNの結晶中により多く入れることができる。
The molar ratio of indium of the source gas of indium in the source gas supplied during growth is 1 gallium:
It is desirable to adjust to 0.1 or more, more preferably 1.0 or more. If the molar ratio of indium is less than 0.1, it is difficult to obtain a mixed crystal of InGaN, and the crystallinity tends to deteriorate. This is because at a growth temperature of 650 ° C. or higher, InN is decomposed to some extent and
It becomes difficult to enter the aN crystal. Therefore, it is preferable to supply more indium than the decomposed portion,
More nN can be included in the GaN crystal.

【0012】このように650℃以上ではInNが非常
に分解しやすく、GaNは分解しにくい性質を有してい
るため、InGaNの成長速度はGaNの成長速度に支
配される。つまり、前記のようにガリウム源のガス流量
を調整することによって成長速度を自由に調整すること
ができる。
As described above, InN is very easily decomposed at 650 ° C. or higher, and GaN is hard to be decomposed. Therefore, the growth rate of InGaN is controlled by the growth rate of GaN. That is, the growth rate can be freely adjusted by adjusting the gas flow rate of the gallium source as described above.

【0013】また、InαGa1-αNの目的とするα値
は、インジウムガスのガリウムに対するモル比、および
成長温度を変えることにより適宜変更できる。例えばI
nを多くしようとすれば650℃前後の低温で成長させ
るか、または原料ガスのInのモル比を多くすればよ
い、一方Gaを多くしようとするならば900℃前後の
高温で成長させればよい。インジウムガスのモル比は高
温で成長するほど多くする方が好ましく、例えば、90
0℃前後の成長温度では、インジウムをガリウムの10
〜50倍程度供給することにより、α値を0.5未満と
するInαGa1-αNを得ることができる。
The desired α value of InαGa1-αN can be appropriately changed by changing the molar ratio of indium gas to gallium and the growth temperature. For example I
To increase n, the growth should be carried out at a low temperature of around 650 ° C., or the molar ratio of In in the source gas should be increased, while to increase Ga, the growth should be carried out at a high temperature of around 900 ° C. Good. It is preferable that the molar ratio of indium gas be increased as the temperature grows, for example, 90
At a growth temperature around 0 ° C., indium is converted into gallium 10
By supplying approximately 50 times, InαGa1-αN having an α value of less than 0.5 can be obtained.

【0014】さらに、結晶性に優れたInαGa1-αN
が得られるα値は0<X<0.5の範囲にあり、またα
値を0.5以上とするInαGa1-αNを発光ダイオー
ド等の発光デバイスの発光素子とした場合、その発光波
長は黄色の領域にあり、青色として使用し得るものでは
ないため、α値は0.5未満を限定理由とした。
Furthermore, InαGa1-αN having excellent crystallinity
The α value for which is obtained is in the range of 0 <X <0.5, and α
When InαGa1-αN having a value of 0.5 or more is used as a light-emitting element of a light-emitting device such as a light-emitting diode, the emission wavelength is in the yellow region and it cannot be used as blue. The reason for limitation is less than 5.

【0015】さらにまた、これらの原料ガスのキャリア
ガスとして、好ましく窒素を使用することにより、In
GaN中のInNが分解して結晶格子中から出ていくの
を抑制することができる。
Furthermore, by using nitrogen as a carrier gas for these source gases, it is possible to obtain In
InN in GaN can be prevented from decomposing and coming out of the crystal lattice.

【0016】[0016]

【作用】従来ではサファイア基板の上にInGaN層を
成長させていたが、サファイアとInGaNとでは格子
定数不整がおよそ15%以上もあるため、得られた結晶
の結晶性が悪くなると考えられる。一方、本発明ではG
aN層の上に成長させることにより、その格子定数不整
を5%以下と小さくすることができるため、結晶性に優
れたInGaNを形成することができる。本発明の成長
方法において、このGaN層のGaの一部をAlで置換
してもよく、またSi、Ge等のn型不純物、Zn、M
g、Cd等のp型不純物をドープしてもよく、技術範囲
内である。
In the past, an InGaN layer was grown on a sapphire substrate, but since the lattice constant mismatch between sapphire and InGaN is about 15% or more, it is considered that the crystallinity of the obtained crystal deteriorates. On the other hand, in the present invention, G
By growing on the aN layer, the lattice constant irregularity can be reduced to 5% or less, so that InGaN having excellent crystallinity can be formed. In the growth method of the present invention, part of Ga in this GaN layer may be replaced with Al, and n-type impurities such as Si and Ge, Zn and M may be substituted.
It may be doped with p-type impurities such as g and Cd, which is within the technical range.

【0017】図1は、MOCVD法により、サファイア
基板上にGaNバッファ層とGaN層とを順に積層した
後、さらにそのGaN層の上に数々の成長温度、成長速
度でInGaN層を成長させ、成長させたInGaN層
に室温でHe−Cdレーザーを照射し、そのフォトルミ
ネッセンス測定を行った結果、図2−aに示すようなI
nGaNのバンド間の発光ピークが得られたものだけを
プロットした図である。また、同時に本願の請求項1の
成長温度および成長速度の範囲も示している。なお、図
2−(A)に示すようにInGaNのシャープなバンド
間発光が得られているものは、そのInGaNの結晶性
が優れていると見なすことができる。
In FIG. 1, a GaN buffer layer and a GaN layer are sequentially stacked on a sapphire substrate by the MOCVD method, and then an InGaN layer is grown on the GaN layer at various growth temperatures and growth rates. The resulting InGaN layer was irradiated with a He—Cd laser at room temperature, and its photoluminescence measurement was performed. As a result, I as shown in FIG.
It is the figure which plotted only what obtained the light emission peak between bands of nGaN. At the same time, the ranges of the growth temperature and the growth rate of claim 1 of the present application are also shown. Note that, as shown in FIG. 2- (A), a material in which sharp InGaN band emission is obtained can be considered to have excellent InGaN crystallinity.

【0018】図2は、GaN層の上に、成長温度805
℃において、In0.15Ga0.86Nを成長速度20オング
ストローム/分で成長させたもの(A)と、成長速度6
0オングストローム/分で成長させたもの(B)とのフ
ォトルミネッセンス測定のスペクトルを比較して示す図
である。この図において、縦軸の発光強度は任意単位で
あり、(B)のスペクトルの発光強度は実測値を6倍に
拡大して示している。つまり、(B)の発光強度の1/
6が、(A)の縦軸のスケールと同一となる。
FIG. 2 shows the growth temperature 805 on the GaN layer.
In 0.15 Ga 0.86 N at a growth rate of 20 Å / min (A) and a growth rate of 6
It is a figure which compares and shows the spectrum of the photoluminescence measurement with what was grown at 0 angstrom / min (B). In this figure, the emission intensity on the vertical axis is an arbitrary unit, and the emission intensity of the spectrum of (B) is shown by enlarging the measured value by 6 times. That is, 1 / of the emission intensity of (B)
6 is the same as the scale on the vertical axis in (A).

【0019】この図に示すように(A)では406nm
付近に強いIn0.15Ga0.86Nのバンド間発光が見られ
るのに対し、(B)では強度が弱く、しかも深い準位か
らの発光が強くなっている。即ち、(A)の方が(B)
に比して圧倒的に結晶性が優れていることを示し、40
6nm付近のピークを見ると(A)は(B)に比してお
よそ35倍も発光強度が大きい。
As shown in this figure, (A) is 406 nm.
Intense band-to-band emission of In0.15Ga0.86N is observed in the vicinity, whereas in (B), the intensity is weak and the emission from a deep level is strong. That is, (A) is (B)
It shows that the crystallinity is overwhelmingly superior to
Looking at the peak around 6 nm, (A) has an emission intensity that is about 35 times greater than that of (B).

【0020】このように図1に示す範囲、つまりa点の
成長温度650℃、成長速度1オングストローム/分
と、b点の成長温度650℃、成長速度5オングストロ
ーム/分と、c点の成長温度900℃、成長速度60オ
ングストローム/分と、d点の成長温度900℃、成長
速度1オングストローム/分とを結ぶ範囲内の条件で、
InGaNをGaNの上に成長させることにより、優れ
た結晶性を実現できる。さらに、好ましい範囲としてプ
ロット数の多い成長温度700〜850℃で囲まれる範
囲を推奨できる。
Thus, in the range shown in FIG. 1, that is, the growth temperature at point a is 650 ° C., the growth rate is 1 Å / min, the growth temperature at point b is 650 ° C., the growth rate is 5 Å / min, and the growth temperature at point c. At a temperature within the range of 900 ° C., a growth rate of 60 Å / min, a growth temperature of 900 ° C. at the point d, and a growth rate of 1 Å / min,
Excellent crystallinity can be achieved by growing InGaN on GaN. Furthermore, it is possible to recommend a range surrounded by a growth temperature of 700 to 850 ° C. with a large number of plots as a preferable range.

【0021】[0021]

【実施例】以下、図面を元に実施例で本発明の成長方法
を詳説する。図3は本発明の成長方法に使用したMOC
VD装置の主要部の構成を示す概略断面図であり、反応
部の構造、およびその反応部と通じるガス系統図を示し
ている。1は真空ポンプおよび排気装置と接続された反
応容器、2は基板を載置するサセプター、3はサセプタ
ーを加熱するヒーター、4はサセプターを回転、上下移
動させる制御軸、5は基板に向かって斜め、または水平
に原料ガスを供給する石英ノズル、6は不活性ガスを基
板に向かって垂直に供給することにより、原料ガスを基
板面に押圧して、原料ガスを基板に接触させる作用のあ
るコニカル石英チューブ、7は基板である。TMG、T
MI等の有機金属化合物ソースは微量のバブリングガス
によって気化され、メインガスであるキャリアガスによ
って反応容器内に供給される。なお、特に図示していな
いが、各原料ガス、キャリアガスの流量は、各ガスライ
ンに設置されたマスフローコントローラ(MFC)によ
って制御されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The growth method of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 3 shows the MOC used in the growth method of the present invention.
FIG. 3 is a schematic cross-sectional view showing the configuration of the main part of the VD device, showing the structure of a reaction part and a gas system diagram communicating with the reaction part. Reference numeral 1 is a reaction vessel connected to a vacuum pump and an exhaust device, 2 is a susceptor for mounting a substrate, 3 is a heater for heating the susceptor, 4 is a control shaft for rotating and vertically moving the susceptor, and 5 is a diagonal to the substrate. , Or a quartz nozzle that supplies the raw material gas horizontally, and 6 is a conical device that presses the raw material gas against the substrate surface by supplying the inert gas vertically toward the substrate to bring the raw material gas into contact with the substrate. A quartz tube, 7 is a substrate. TMG, T
The organometallic compound source such as MI is vaporized by a small amount of bubbling gas and supplied into the reaction vessel by the carrier gas which is the main gas. Although not shown in particular, the flow rates of the source gases and the carrier gas are controlled by a mass flow controller (MFC) installed in each gas line.

【0022】[実施例1]まず、よく洗浄したサファイ
ア基板7をサセプター2にセットし、反応容器内を水素
で十分置換する。
Example 1 First, a well-cleaned sapphire substrate 7 is set on the susceptor 2, and the inside of the reaction vessel is sufficiently replaced with hydrogen.

【0023】次に、石英ノズル5から水素を流しながら
ヒーター3で温度を1050℃まで上昇させ、20分間
保持しサファイア基板7のクリーニングを行う。
Next, while flowing hydrogen from the quartz nozzle 5, the temperature is raised to 1050 ° C. by the heater 3 and kept for 20 minutes to clean the sapphire substrate 7.

【0024】続いて、温度を510℃まで下げ、石英ノ
ズル5からアンモニア(NH3)4リットル/分と、T
MGを27×10ー6モル/分と、キャリアガスとして水
素を2リットル/分とで流しながら、1分間保持してG
aNバッファー層を約200オングストローム成長す
る。この間、コニカル石英チューブ7からは水素を10
リットル/分と、窒素を10リットル/分とで流し続
け、サセプター2をゆっくりと回転させる。
Then, the temperature was lowered to 510 ° C., and the quartz nozzle 5 was used to feed ammonia (NH 3 ) 4 liter / min.
Hold MG for 1 minute while flowing MG at 27 × 10 −6 mol / min and hydrogen as carrier gas at 2 liter / min.
The aN buffer layer is grown to about 200 Å. During this time, hydrogen is supplied from the conical quartz tube 7 to 10
Continue to flow liters / minute and nitrogen at 10 liters / minute and slowly rotate susceptor 2.

【0025】バッファ層成長後、TMGのみ止めて、温
度を1020℃まで上昇させる。温度が1020℃にな
ったら、同じく水素をキャリアガスとしてTMGを60
×10ー6モル/分で流して30分間成長させ、GaN層
を約2μm成長させる。
After the growth of the buffer layer, only TMG is stopped and the temperature is raised to 1020 ° C. When the temperature reaches 1020 ℃, hydrogen is also used as carrier gas and TMG is added to 60
Flowing at 10 −6 mol / min for 30 minutes to grow the GaN layer to about 2 μm.

【0026】GaN層成長後、温度を805℃にして、
キャリアガスを窒素に切り替え、窒素を2リットル/
分、TMGを2×10-6モル/分、TMIを20×10
-6モル/分、アンモニアを4リットル/分、およびn型
不純物ガスとしてシラン(SiH4)を1×10-9モル
/分で流しながら、SiドープInGaNを成長速度2
0オングストーム/分で60分間成長させる。なお、こ
の間、コニカル石英チューブ7から供給するガスも窒素
のみとし、20リットル/分で流し続ける。
After growing the GaN layer, the temperature is set to 805 ° C. and
Switch the carrier gas to nitrogen and add 2 liters of nitrogen
Min, TMG 2 × 10 -6 mol / min, TMI 20 × 10
-6 mol / min, ammonia 4 l / min, and silane (SiH 4 ) as an n-type impurity gas at a flow rate of 1 × 10 -9 mol / min while growing Si-doped InGaN at a growth rate of 2
Grow for 60 minutes at 0 Angstrom / minute. During this time, the gas supplied from the conical quartz tube 7 is nitrogen only, and the gas is kept flowing at 20 liters / minute.

【0027】成長後、反応容器からウエハーを取り出
し、InGaN層に10mWのHe−Cdレーザーを照
射して室温でフォトルミネッセンス測定を行うと、ピー
ク波長406nmにIn0.15Ga0.85Nの強いバンド間
発光を示した。
After the growth, the wafer was taken out from the reaction container, the InGaN layer was irradiated with 10 mW of He—Cd laser, and the photoluminescence measurement was performed at room temperature. Indicated.

【0028】[実施例2]実施例1のバッファ層成長
後、TMGのみ止めて、温度を1020℃まで上昇させ
る。温度が1020℃になったら、同じく水素をキャリ
アガスとしてTMGを54×10ー6モル/分、TMAを
6×10-6モル/分で流して30分間成長させ、Ga0.
9Al0.1N層を2μm成長させる他は実施例1と同様に
してSiドープInGaNを、Ga0.9Al0.1N層の上
に成長させる。成長後、得られたInGaN層のフォト
ルミネッセンス測定を行うと、同じくピーク波長406
nmにIn0.15Ga0.85Nの強いバンド間発光を示し
た。
[Embodiment 2] After growing the buffer layer of Embodiment 1, only TMG is stopped and the temperature is raised to 1020 ° C. When the temperature became 1020 ° C., likewise hydrogen 54 × 10 -6 mol / min and TMG as the carrier gas, by flowing TMA at 6 × 10 -6 mol / min was grown for 30 minutes, Ga0.
Si-doped InGaN is grown on the Ga0.9Al0.1N layer in the same manner as in Example 1 except that the 9Al0.1N layer is grown to 2 μm. When the photoluminescence measurement of the obtained InGaN layer is performed after the growth, the same peak wavelength 406 is obtained.
nm showed strong band emission of In0.15Ga0.85N.

【0029】[比較例]GaN層成長後InGaNを成
長させる際、TMGの流量を3倍にして、SiドープI
nGaNを成長温度805℃、成長速度60オングスト
ローム/分で20分間成長させる他は実施例1と同様に
して、InGaNを成長させる。このInGaNのフォ
トルミネッセンス測定を行ったところ、430nm付近
に微弱なバンド間発光を示し、550nm付近の深い準
位のブロードな発光が支配的であった。これより成長さ
れたInGaNの結晶性は非常に悪いことがわかった。
[Comparative Example] When InGaN is grown after the growth of the GaN layer, the flow rate of TMG is tripled and Si-doped I
InGaN is grown in the same manner as in Example 1 except that nGaN is grown for 20 minutes at a growth temperature of 805 ° C. and a growth rate of 60 Å / min. When the photoluminescence measurement of this InGaN was performed, a weak interband emission was shown at around 430 nm, and a deep level broad emission near 550 nm was dominant. It was found that the crystallinity of InGaN grown from this is very poor.

【0030】このことを確かめるために成長したInG
aNのX線ロッキングカーブを測定したところ、その半
値幅は約1度近くあり、またピーク位置はGaNの所に
あり、結晶はInGaNがアモルファス状になっている
ことが判明した。
InG grown to confirm this
When the X-ray rocking curve of aN was measured, the full width at half maximum was about 1 degree, the peak position was at GaN, and it was found that InGaN was amorphous in the crystal.

【0031】[0031]

【発明の効果】従来、発光波長が青色領域にある発光ダ
イオードで実用化されている半導体材料はSiCしかな
く、他の材料は未だ実用域には至っていない。また室温
で発光する青色レーザーダイオードはいまだに報告され
ていない。
In the past, the only semiconductor material that has been put to practical use in light emitting diodes whose emission wavelength is in the blue region is SiC, and other materials have not yet reached the practical range. Also, a blue laser diode that emits light at room temperature has not been reported yet.

【0032】しかしながら、本発明の成長方法による
と、一般式αを0<α<0.5とする結晶性に優れたI
nαGa1-αNを確実に成長させることができ、αを前
記範囲とするInGaNはその発光波長が青色領域にあ
る。そのため、本発明の方法を用いることにより、窒化
ガリウム系化合物半導体を利用した半導体デバイスをダ
ブルへテロ構造にでき、発光効率の高い青色発光ダイオ
ードや、青色レーザーダイオードが実現可能となり、そ
の産業上の利用価値は非常に大きい。
However, according to the growth method of the present invention, I having an excellent crystallinity in which the general formula α is 0 <α <0.5 is obtained.
It is possible to reliably grow nαGa1-αN, and InGaN having α in the above range has an emission wavelength in the blue region. Therefore, by using the method of the present invention, a semiconductor device using a gallium nitride-based compound semiconductor can be made into a double hetero structure, and a blue light emitting diode or a blue laser diode with high light emission efficiency can be realized, which is industrially applicable. The utility value is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の請求項1に係る成長温度と成長速度
の範囲を示す図。
FIG. 1 is a diagram showing a range of a growth temperature and a growth rate according to claim 1 of the present invention.

【図2】 本発明の一実施例によるInGaNと、本発
明の範囲外によるInGaNとのフォトルミネッセンス
測定のスペクトルを比較して示す図。
FIG. 2 is a diagram showing a comparison of spectra obtained by photoluminescence measurement of InGaN according to an embodiment of the present invention and InGaN according to an embodiment outside the scope of the present invention.

【図3】 本発明の一実施例に使用したMOCVD装置
の主要部の構成を示す概略断面図。
FIG. 3 is a schematic cross-sectional view showing the configuration of the main part of a MOCVD apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・・・反応容器 2・・・・・・・・サセプター 3・・・・・・・・ヒーター 4・・・・・・・・制御軸 5・・・・・・・・石英ノズル 6・・・・・・・・コニカル石英
チューブ 7・・・・・・・・基板
1 ... Reaction container 2 ... Susceptor 3 ... Heater 4 ... Control shaft 5 ...・ Quartz nozzle 6 ・ ・ ・ ・ ・ ・ ・ ・ Conical quartz tube 7 ・ ・ ・ ・ ・ ・ Substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機金属気相成長法により、一般式In
αGa1-αN(但し、αは0<α<0.5の範囲であ
る。)で表される窒化インジウムガリウム半導体を成長
させる方法であって、成長温度(℃)をX軸、成長速度
(オングストローム/分)をY軸として、添付図1のa
(650,1)、b(650,5)、c(900,6
0)、d(900,1)の各座標で囲まれた領域内の条
件で、窒化ガリウムの上に成長させることを特徴とする
窒化インジウムガリウム半導体の成長方法。
1. The general formula In is obtained by a metal organic chemical vapor deposition method.
A method for growing an indium gallium nitride semiconductor represented by αGa1-αN (where α is in the range of 0 <α <0.5), wherein the growth temperature (° C) is the X axis, the growth rate (angstrom is / Min) as the Y axis
(650,1), b (650,5), c (900,6)
0) and d (900, 1) are grown on gallium nitride under the conditions in the region surrounded by the coordinates, and a method for growing an indium gallium nitride semiconductor is provided.
【請求項2】 前記窒化ガリウムはそのガリウムの一部
をアルミニウムで置換した窒化ガリウムアルミニウムで
あることを特徴とする請求項1に記載の窒化インジウム
ガリウム半導体の成長方法。
2. The method for growing an indium gallium nitride semiconductor according to claim 1, wherein the gallium nitride is gallium aluminum nitride in which a part of the gallium is replaced with aluminum.
JP10655793A 1992-11-20 1993-05-07 Method for growing indium gallium nitride semiconductor Expired - Fee Related JP2751987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10655793A JP2751987B2 (en) 1992-11-20 1993-05-07 Method for growing indium gallium nitride semiconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-335557 1992-11-20
JP33555792 1992-11-20
JP10655793A JP2751987B2 (en) 1992-11-20 1993-05-07 Method for growing indium gallium nitride semiconductor

Publications (2)

Publication Number Publication Date
JPH06209122A true JPH06209122A (en) 1994-07-26
JP2751987B2 JP2751987B2 (en) 1998-05-18

Family

ID=26446669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10655793A Expired - Fee Related JP2751987B2 (en) 1992-11-20 1993-05-07 Method for growing indium gallium nitride semiconductor

Country Status (1)

Country Link
JP (1) JP2751987B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0858155A (en) * 1994-08-24 1996-03-05 Rohm Co Ltd Led printing head and led array chip and manufacture of the led array chip
US5886367A (en) * 1996-08-07 1999-03-23 Showa Denko K.K. Epitaxial wafer device including an active layer having a two-phase structure and light-emitting device using the wafer
US6030849A (en) * 1997-06-16 2000-02-29 Matsushita Electric Industrial Co. Ltd. Methods of manufacturing semiconductor, semiconductor device and semiconductor substrate
JP2005277357A (en) * 2004-03-26 2005-10-06 Ngk Insulators Ltd Semiconductor multilayer structure, method of manufacturing the same and transistor element
KR100743209B1 (en) * 1999-12-08 2007-07-26 소니 가부시끼 가이샤 Method of manufacturing nitride system iii-v compound layer and method of manufacturing substrate
WO2012060299A1 (en) 2010-11-05 2012-05-10 住友電気工業株式会社 Group iii nitride semiconductor device, method of manufacturing group iii nitride semiconductor devices, and epitaxial substrate
JP2015170677A (en) * 2014-03-06 2015-09-28 豊田合成株式会社 Schottky barrier diode and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP5349420B2 (en) 2010-08-04 2013-11-20 株式会社東芝 Manufacturing method of semiconductor light emitting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0858155A (en) * 1994-08-24 1996-03-05 Rohm Co Ltd Led printing head and led array chip and manufacture of the led array chip
US5886367A (en) * 1996-08-07 1999-03-23 Showa Denko K.K. Epitaxial wafer device including an active layer having a two-phase structure and light-emitting device using the wafer
DE19734034C2 (en) * 1996-08-07 2000-07-13 Showa Denko Kk Epitaxial wafer for light emitting device, method of forming the wafer and light emitting device using the wafer
US6110757A (en) * 1996-08-07 2000-08-29 Showa Denko K. K. Method of forming epitaxial wafer for light-emitting device including an active layer having a two-phase structure
US6030849A (en) * 1997-06-16 2000-02-29 Matsushita Electric Industrial Co. Ltd. Methods of manufacturing semiconductor, semiconductor device and semiconductor substrate
KR100743209B1 (en) * 1999-12-08 2007-07-26 소니 가부시끼 가이샤 Method of manufacturing nitride system iii-v compound layer and method of manufacturing substrate
JP2005277357A (en) * 2004-03-26 2005-10-06 Ngk Insulators Ltd Semiconductor multilayer structure, method of manufacturing the same and transistor element
WO2012060299A1 (en) 2010-11-05 2012-05-10 住友電気工業株式会社 Group iii nitride semiconductor device, method of manufacturing group iii nitride semiconductor devices, and epitaxial substrate
US8809868B2 (en) 2010-11-05 2014-08-19 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor device, method for fabricating Group-III nitride semiconductor device, and epitaxial substrate
JP2015170677A (en) * 2014-03-06 2015-09-28 豊田合成株式会社 Schottky barrier diode and manufacturing method thereof

Also Published As

Publication number Publication date
JP2751987B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
JP2751963B2 (en) Method for growing indium gallium nitride semiconductor
US6852161B2 (en) Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JP2827794B2 (en) Method for growing p-type gallium nitride
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
JP3656606B2 (en) Method for producing group III nitride semiconductor crystal
JPH0415200B2 (en)
JPH04297023A (en) Crystal growth method of gallium nitride compound semiconductor
JP3940673B2 (en) Method for producing group III nitride semiconductor crystal and method for producing gallium nitride compound semiconductor
JP2751987B2 (en) Method for growing indium gallium nitride semiconductor
US8236103B2 (en) Group III nitride semiconductor crystal, production method thereof and group III nitride semiconductor epitaxial wafer
JP3857467B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JP3991823B2 (en) Group III nitride semiconductor crystal, method for producing the same, group III nitride semiconductor epitaxial wafer
JP3091593B2 (en) Stack for nitride semiconductor light emitting device
JP3274907B2 (en) Method for growing indium gallium nitride compound semiconductor
JP4222287B2 (en) Group III nitride semiconductor crystal manufacturing method
JP3257344B2 (en) Crystal growth method of gallium nitride based compound semiconductor
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JP3203282B2 (en) Indium gallium nitride semiconductor for light emitting devices
JP3473595B2 (en) Light emitting device
JP3077781B2 (en) Method for growing indium gallium nitride
JP3984365B2 (en) Compound semiconductor manufacturing method and semiconductor light emitting device
JPH07283436A (en) Iii-v compound semiconductor and light-emitting element
JP3214349B2 (en) Semiconductor wafer having InGaN layer, method of manufacturing the same, and light emitting device having the same
JP4009043B2 (en) Method for producing p-type group III nitride semiconductor
JPH05198841A (en) Forming method for p-type of gallium nitride compound semiconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees