JPH0620772A - Power supply method to arc electrode in ac arc heating furnace - Google Patents

Power supply method to arc electrode in ac arc heating furnace

Info

Publication number
JPH0620772A
JPH0620772A JP4197902A JP19790292A JPH0620772A JP H0620772 A JPH0620772 A JP H0620772A JP 4197902 A JP4197902 A JP 4197902A JP 19790292 A JP19790292 A JP 19790292A JP H0620772 A JPH0620772 A JP H0620772A
Authority
JP
Japan
Prior art keywords
arc
electrode
furnace
phase
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4197902A
Other languages
Japanese (ja)
Inventor
Yoichi Nakanishi
洋一 中西
Tsutomu Takahashi
勉 高橋
Tamotsu Nomura
保 野村
Yoshinobu Masutani
佳宣 増谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4197902A priority Critical patent/JPH0620772A/en
Publication of JPH0620772A publication Critical patent/JPH0620772A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To supply electric power uniformly to arc electrodes in three phases when from a transformer for a heating furnace. CONSTITUTION:Through cables 14, electric power is supplied from a transformer for heating furnace to arc electrodes 4 in three phases, which are supported by respective arms 7, in the condition that the spacing of cables in connection with those of the three arms which are positioned on the outsides is made larger than the spacing of cables in connection with the arms 7 positioned in the middle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3相交流アーク加熱炉に
おいて、炉に備えられた複数のアーク電極に炉用変圧器
から電力を供給する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying electric power from a furnace transformer to a plurality of arc electrodes provided in a furnace in a three-phase AC arc heating furnace.

【0002】[0002]

【従来の技術】この種のアーク加熱炉は、炉の上方に三
つの電極支腕が並設され、各電極支腕の前端部において
は夫々上記炉内に向けて挿入されたアーク電極が支持さ
れていると共に、各電極支腕の後部側には各前端部のア
ーク電極に電気的に接続するケーブル端子が備えられ、
上記各ケーブル端子は、夫々ケーブルを介して炉用変圧
器に接続してある。
2. Description of the Related Art In an arc heating furnace of this type, three electrode supporting arms are arranged in parallel above the furnace, and the arc electrodes inserted toward the inside of the furnace are respectively supported at the front ends of the electrode supporting arms. Along with being provided, a cable terminal that is electrically connected to the arc electrode of each front end is provided on the rear side of each electrode support arm,
Each of the cable terminals is connected to a furnace transformer via a cable.

【0003】[0003]

【発明が解決しようとする課題】このようなアーク加熱
炉において炉用変圧器から上記各アーク電極に電力を供
給する場合、各電極支腕におけるケーブル端子から各ア
ーク電極までのリアクタンスが、それらの電極支腕のう
ち中間に位置する電極支腕の相では小さく、両外側に位
置する相では大きい。この為中間に位置する相に係わる
アーク電極に供給される電力が他の相に係わるアーク電
極に供給される電力よりも大きくなり、炉内においては
前者のアーク電極の近傍の炉内耐火物にホットスポット
が生じてそこを局所的に損傷したり、炉内の溶解原料の
溶解に不均一をもたらす問題点があった。
When power is supplied from the furnace transformer to the above arc electrodes in such an arc heating furnace, the reactance from the cable terminal in each electrode support arm to each arc electrode is It is small in the phase of the electrode support arm located in the middle of the electrode support arms, and large in the phase located on both outer sides. Therefore, the electric power supplied to the arc electrodes related to the intermediate phase becomes larger than the electric power supplied to the arc electrodes related to other phases, and in the furnace, refractory materials in the furnace near the former arc electrode There have been problems that hot spots are generated and are locally damaged, or that the melting of raw materials in the furnace is not uniform.

【0004】本願発明は上記従来技術の問題点(技術的
課題)を解決する為になされたもので、炉用変圧器から
複数のアーク電極に電力を供給する場合、各アーク電極
に電力を均等に供給することができて、炉の局部的な損
傷を招いたりすることなく炉内の溶解原料を均一溶解さ
せることを可能にできるようにした交流アーク加熱炉に
おけるアーク電極への電力供給方法を提供することを目
的としている。
The present invention has been made to solve the above-mentioned problems (technical problems) of the prior art. When power is supplied from a furnace transformer to a plurality of arc electrodes, the power is evenly distributed to the arc electrodes. The method for supplying electric power to the arc electrode in the AC arc heating furnace, which is capable of uniformly melting the molten raw material in the furnace without causing local damage to the furnace, It is intended to be provided.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する為
に、本願発明における交流アーク加熱炉におけるアーク
電極への電力供給方法は、炉の上方に三つの電極支腕が
並設され、各電極支腕の前端部においては夫々上記炉内
に向けて挿入されたアーク電極が支持されていると共
に、各電極支腕の後部側には各前端部のアーク電極に電
気的に接続するケーブル端子が備えられ、上記各ケーブ
ル端子は、夫々複数本のケーブルを介して炉用変圧器に
接続してある交流アーク加熱炉において、上記炉用変圧
器から上記ケーブルを介して上記アーク電極に電力を供
給するに当っては、各アーク電極に与えられる電力が均
等となるよう、上記三つの電極支腕のうち両外側に夫々
位置する電極支腕に連なっている夫々複数のケーブル相
互の間隔を、中間に位置する電極支腕に連なっている複
数のケーブル相互の間隔よりも広くした状態で電力供給
するものである。
In order to achieve the above object, a method of supplying power to an arc electrode in an AC arc heating furnace according to the present invention is such that three electrode support arms are arranged in parallel above the furnace and each electrode is At the front end of the supporting arm, the arc electrodes inserted toward the inside of the furnace are respectively supported, and at the rear side of each electrode supporting arm, there is a cable terminal electrically connected to the arc electrode at each front end. In each of the AC arc heating furnaces, each of the cable terminals is connected to the furnace transformer via a plurality of cables, and power is supplied from the furnace transformer to the arc electrode via the cable. In doing so, in order to equalize the electric power applied to each arc electrode, the intervals between the plurality of cables connected to the electrode support arms respectively located on both outer sides of the above three electrode support arms are set to the intermediate value. On top While wider than the plurality of cables mutual spacing are continuous to the electrode support arm which is intended to power at.

【0006】[0006]

【作用】炉用変圧器からの電力は夫々複数本のケーブル
を介して各電極支腕のケーブル端子に向け供給され、更
にそのケーブル端子から各アーク電極に供給される。上
記ケーブルのうち中間に位置する電極支腕に連なる複数
ケーブルのリアクタンスに比べ、両外側に位置する電極
支腕に連なる各複数ケーブルのリアクタンスは小さい。
一方、中間に位置する電極支腕のケーブル端子からその
電極支腕によって支えられたアーク電極までのリアクタ
ンスは、両外側に位置する電極支腕のケーブル端子から
その電極支腕によって支えられたアーク電極までのリア
クタンスに比べ小さい。従って炉用変圧器から各アーク
電極までのリアクタンスをどのアーク電極についても同
等にすることができる。その結果、各アーク電極に供給
される電力を均等化することができる。
The electric power from the furnace transformer is supplied to the cable terminals of the respective electrode supporting arms via a plurality of cables, and further supplied from the cable terminals to the arc electrodes. The reactance of each of the plurality of cables connected to the electrode support arms located on both outer sides is smaller than the reactance of the plurality of cables connected to the electrode support arms located in the middle of the above cables.
On the other hand, the reactance from the cable terminal of the electrode support arm located in the middle to the arc electrode supported by the electrode support arm is the arc electrode supported by the electrode support arm from the cable terminals of the electrode support arms located on both outer sides. Is smaller than the reactance up to. Therefore, the reactance from the furnace transformer to each arc electrode can be made equal for all arc electrodes. As a result, the power supplied to each arc electrode can be equalized.

【0007】[0007]

【実施例】以下本願の実施例を示す図面について説明す
る。図1において、1〜14は通常のアーク溶解装置の各
部材を示すもので、1はアーク加熱炉の一例として示す
アーク炉、2はその本体、3は炉蓋、4はアーク電極、
5は炉蓋上昇旋回装置、6は電極支柱、7は電極支腕、
8は支腕7の前端部に備えた電極把持器、9は支腕7の
後部側に備えたケーブル端子、11は変圧器室で、その内
部には炉用変圧器が納められている。12は変圧器室11か
ら突設された変圧器の2次母線、13は該2次母線に備え
られたケーブル端子、14はケーブル端子9,13間を繋ぐ
ケーブルを夫々示す。上記アーク炉1は3相交流アーク
炉であって、図2に示されるように3本の電極4,4,
4を備え、それらを支える3本の支腕7は図示の如く並
べて設けられている。支腕7は一例として導体支腕と称
されるものが用いられ、後端部のケーブル端子9から電
極4に向けて該支腕7を通してアーク発生用の電力を供
給できるようになっている。この導電支腕はリアクタン
スが小さい為に電力のロスが少なく、同じ炉用変圧器で
多くの電力をアーク電極4に投入できるという利点から
利用される。前記2次母線12も支腕7と同様に3つが並
設され、各々にケーブル端子13が備わっている。ケーブ
ル14も同様に3組が並設されていると共に、各組は夫々
2本のケーブルを有しており、各々がケーブル端子9,
13間を接続している。尚本件明細書中においては並んだ
状態にある三つの相をその一方の側から順にA相、B
相、C相と呼び、それらを符号A、B、Cで夫々示す。
従ってB相は中間に位置する相となり、A相とC相が外
側に位置する相となる。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, 1 to 14 represent respective members of a normal arc melting apparatus, 1 is an arc furnace shown as an example of an arc heating furnace, 2 is its body, 3 is a furnace lid, 4 is an arc electrode,
5 is a furnace lid rising and turning device, 6 is an electrode column, 7 is an electrode supporting arm,
Reference numeral 8 is an electrode gripper provided at the front end of the support arm 7, 9 is a cable terminal provided at the rear side of the support arm 7, 11 is a transformer chamber, and a transformer for a furnace is housed therein. Reference numeral 12 denotes a secondary busbar of the transformer protruding from the transformer room 11, 13 denotes a cable terminal provided on the secondary busbar, and 14 denotes a cable connecting the cable terminals 9 and 13, respectively. The arc furnace 1 is a three-phase AC arc furnace, and includes three electrodes 4, 4, as shown in FIG.
4, and three supporting arms 7 supporting them are arranged side by side as shown in the figure. As the supporting arm 7, what is called a conductor supporting arm is used as an example, and electric power for arc generation can be supplied from the cable terminal 9 at the rear end toward the electrode 4 through the supporting arm 7. Since this conductive support arm has a small reactance, there is little power loss, and it is used because of the advantage that a large amount of power can be input to the arc electrode 4 by the same furnace transformer. Similarly to the support arm 7, three secondary bus bars 12 are provided side by side, and each of them has a cable terminal 13. Similarly, three sets of cables 14 are arranged side by side, and each set has two cables, each of which has a cable terminal 9,
13 are connected. In this specification, the three phases in the aligned state are A phase, B phase in order from one side thereof.
Phases and C phases are referred to as reference numerals A, B and C, respectively.
Therefore, the B phase is the phase located in the middle, and the A phase and the C phase are the phases located outside.

【0008】次に電極支腕7におけるケーブル端子9に
ついて図2及び図3に基づき説明する。15,15は支腕7
の後端部に取付けた一対の端子板、16は各端子板15の一
面側において定めたケーブル接続部で、A相、C相にお
いては一対の端子板15の外面側に、B相においては一対
の端子板15の内面側において夫々定めてある。この接続
部16には図示の如くケーブル14における端部17が多数の
ボルト18でもって固く接続される。接続部16が上記のよ
うに定められている結果、外側に位置するA相及びC相
にあっては接続部16に接続されるケーブル端部相互の間
隔が中間に位置するB相に比べて大きくなっている。そ
の寸法の一例を示せばA相、C相の寸法Da、Dcが580mm
であり、B相の寸法Dbが340mm である。又各相相互の間
隔Dは800mm である。
Next, the cable terminal 9 in the electrode supporting arm 7 will be described with reference to FIGS. 2 and 3. 15 and 15 are supporting arms 7
A pair of terminal plates attached to the rear ends of the terminal plates, 16 are cable connecting portions defined on one surface side of each terminal plate 15, and are on the outer surface side of the pair of terminal plates 15 in the A phase and C phase, and in the B phase. They are defined on the inner surfaces of the pair of terminal plates 15, respectively. As shown in the drawing, the end portion 17 of the cable 14 is firmly connected to the connecting portion 16 with a large number of bolts 18. As a result of the connection part 16 being defined as described above, in the A phase and the C phase located outside, the distance between the cable ends connected to the connection part 16 is larger than that in the B phase located in the middle. It is getting bigger. To give an example of the dimensions, the dimensions Da and Dc of the A and C phases are 580 mm.
And the dimension Db of the B phase is 340 mm. The distance D between each phase is 800 mm.

【0009】次に変圧器側のケーブル端子13について図
5を参照して説明する。このケーブル端子13は前記支腕
7側のケーブル端子9と略均等に構成されている。即ち
各2次母線12には一対の端子板21, 21が夫々取付けら
れ、各々の端子板21においてケーブルの接続部22が各相
A、B、C毎に前記支腕7側のケーブル端子9の場合と
同様に定めてある。そしてその接続部22にケーブル14の
端部23がボルト24でもって固く接続してある。
Next, the cable terminal 13 on the transformer side will be described with reference to FIG. The cable terminal 13 is configured to be substantially equal to the cable terminal 9 on the supporting arm 7 side. That is, a pair of terminal plates 21 and 21 are attached to each secondary busbar 12, and a cable connecting portion 22 in each terminal plate 21 has a cable terminal 9 on the supporting arm 7 side for each phase A, B and C. The same as in the case of. The end portion 23 of the cable 14 is firmly connected to the connecting portion 22 with a bolt 24.

【0010】次にケーブル14について説明する。このケ
ーブル14としては可撓の水冷ケーブルが用いられ、各相
について夫々2本ずつが用いられている。各相における
ケーブル14は、B相にあっては図4の(A)に示される
ように、2本一対のケーブル14, 14間に絶縁材料例えば
ゴム製の間隔保持板26が介設されてワイヤー27でもって
一体に縛られている。又C相にあっては図4の(B)に
示されるように、広幅の間隔保持板28が一対のケーブル
14, 14間に介設されてワイヤー27により一体に縛ってあ
る。A相も同様の構造としてある。このような構造とす
ることにより、B相においては一対のケーブル14, 14相
互の間隔が前記ケーブル端子9に接続された端部の間隔
Dbと同一になっており、A相及びC相に関しては一対の
ケーブル14, 14相互の間隔が夫々前記間隔Da, Dcと同一
となっている。又このような構成の結果、各ケーブルに
大きな電流が流れても、電磁力によるケーブル相互の接
近を防止することができる。
Next, the cable 14 will be described. A flexible water-cooled cable is used as the cable 14, and two cables are used for each phase. As shown in FIG. 4A for the B phase, the cable 14 in each phase has a space holding plate 26 made of an insulating material such as rubber interposed between the pair of cables 14 and 14. It is tied together with wire 27. Further, in the C-phase, as shown in FIG. 4B, the wide spacing plate 28 has a pair of cables.
It is placed between 14 and 14 and is tied together by a wire 27. Phase A has the same structure. With such a structure, in the phase B, the distance between the pair of cables 14 and 14 is such that the distance between the ends connected to the cable terminal 9 is large.
It is the same as Db, and the intervals between the pair of cables 14 and 14 for the A phase and the C phase are the same as the intervals Da and Dc, respectively. Further, as a result of such a configuration, even if a large current flows through each cable, it is possible to prevent the cables from approaching each other due to electromagnetic force.

【0011】このように構成されたものにおいてアーク
炉の運転を行う場合、変圧器室11内の変圧器から出力さ
れたアーク発生用の電力は2次母線12からケーブル端子
13を通してケーブル14に送られ、更にそのケーブル14を
通して電極支腕7のケーブル端子9に至る。そしてその
ケーブル端子9から支腕7、電極把持器8を通して各電
極4に供給される。このような電力供給によりアーク炉
1内においては電極4からアークが発生され、内部に装
入された溶解原料の溶解が行われる。
When the arc furnace is operated in the above-described structure, the electric power for arc generation output from the transformer in the transformer room 11 is supplied from the secondary bus bar 12 to the cable terminal.
It is sent to the cable 14 through 13 and further reaches the cable terminal 9 of the electrode supporting arm 7 through the cable 14. Then, it is supplied to each electrode 4 from the cable terminal 9 through the supporting arm 7 and the electrode gripper 8. By such power supply, an arc is generated from the electrode 4 in the arc furnace 1, and the melting raw material charged inside is melted.

【0012】上記のように電力の供給を行う場合、電極
支腕7は三つの相のものが並設されている関係で中間に
位置するB相の電極支腕7のリアクタンスが小さく(例
えば0.375mΩ)、外側に位置するA相、C相のリアクタ
ンスが大きい(例えば0.613mΩ)。一方ケーブル14に関
しては、中間に位置するB相の一対のケーブル14相互の
間隔を小さく、外側に位置するA相及びC相の一対のケ
ーブル14相互の間隔を大きくしてある為、それらのリア
クタンスは前者が大きく(例えば1.413mΩ)、後者が小
さい(例えば1.264mΩ)。従って、ケーブル端子13から
電極4に至るまでのトータルのリアクタンスは、中間に
位置するB相と外側に位置するA相及びC相とで略同様
の値となる(例えばB相が2.421mΩ、A相及びC相が2.
51mΩ)。その結果、変圧器の2次側に出力された電力
は各相の電極4,4,4にいずれも均等に供給され、ア
ーク炉1内においては局部的なホットスポットを生じた
りすることなく内部の溶解原料の全体が均一に溶解され
る。尚、中間に位置するB相の一対のケーブル14相互の
間隔に比べ外側に位置するA相及びC相の一対のケーブ
ル14相互の間隔を大きくする度合は、変圧器から各相の
アーク電極までのリアクタンスのバランスがとれるよう
に、即ち各相のリアクタンスが均等になるように設定す
ると良い。
When the electric power is supplied as described above, the electrode support arms 7 of the three phases are arranged side by side, so that the reactance of the B phase electrode support arm 7 located in the middle is small (for example, 0.375). mΩ), and the reactances of the A and C phases located outside are large (eg, 0.613 mΩ). On the other hand, regarding the cable 14, since the distance between the pair of B-phase cables 14 located in the middle is small and the distance between the pair of A-phase and C-phase cables 14 located outside is large, their reactances are large. The former is large (eg 1.413 mΩ) and the latter is small (eg 1.264 mΩ). Therefore, the total reactance from the cable terminal 13 to the electrode 4 is substantially the same for the B phase located in the middle and the A phase and C phase located outside (for example, B phase is 2.421 mΩ, A Phase and C are 2.
51 mΩ). As a result, the electric power output to the secondary side of the transformer is evenly supplied to the electrodes 4, 4, 4 of each phase, and inside the arc furnace 1, no local hot spots are generated and The entire raw material for melting is dissolved uniformly. The distance between the pair of A-phase and C-phase cables 14 located outside is larger than the distance between the pair of B-phase cables 14 located in the middle, from the transformer to the arc electrode of each phase. It is preferable to set so that the reactances of are balanced, that is, the reactances of the respective phases are equal.

【0013】次に、上記のような方法による電力供給
は、アーク加熱炉の他の例として、レードルファーネス
即ち取鍋精錬炉と称される設備において実施しても良
い。
Next, the power supply by the above method may be carried out in a facility called a ladle furnace, that is, a ladle refining furnace as another example of the arc heating furnace.

【0014】次に図6は本願の異なる実施例を示すもの
で、各電極支腕7eが夫々支腕母線31を備えている場合の
例を示すものである。このような支腕母線31を備える場
合、B相における支腕後部側のケーブル端子9eにおいて
は、支腕母線31の後端部の間隔を図示の如く狭くして各
々の母線に端子板15eを備えさせ、A相及びC相におけ
る支腕後部側のケーブル端子9eにおいては、支腕母線31
の後端部の間隔を図示の如く広くして各々の母線に端子
板15eを備えさせる。そして各端子板15eに夫々各相の
ケーブルを接続する。すると前記実施例と同様にB相に
あってはケーブル相互の間隔が狭くなり、A相及びC相
にあってはケーブル相互の間隔が広くなる。なお、機能
上前図のものと同一又は均等構成と考えられる部分に
は、前図と同一の符号にアルファベットのeを付して重
複する説明を省略した。
Next, FIG. 6 shows a different embodiment of the present application, and shows an example in which each electrode supporting arm 7e is provided with a supporting arm busbar 31, respectively. When such a supporting arm bus bar 31 is provided, in the cable terminal 9e on the rear side of the supporting arm bus in phase B, the distance between the rear ends of the supporting arm bus bars 31 is narrowed as shown in the drawing, and a terminal board 15e is provided on each bus bar. In the cable terminals 9e on the rear side of the supporting arm in the A phase and the C phase, the supporting arm bus bar 31
The distance between the rear end portions is widened as shown in the figure, and each bus bar is provided with a terminal plate 15e. Then, the cables of the respective phases are connected to the respective terminal plates 15e. Then, similar to the above-mentioned embodiment, the mutual spacing between the cables becomes narrower in the B phase and becomes wider between the cables in the A phase and the C phase. In addition, parts that are considered to be the same or equivalent in configuration to those in the previous figure in terms of function are denoted by the same reference numerals as those in the previous figure with the letter e added to omit redundant description.

【0015】[0015]

【発明の効果】以上のように本願発明にあっては、炉用
変圧器から三つの電極支腕7によって夫々支えられてい
るアーク電極4に電力を供給する場合、それらのアーク
電極4を支える三つの電極支腕7のうち両外側に位置す
る各電極支腕に連なっている夫々複数のケーブル14,14
相互の間隔Da、Dcを、中間に位置する電極支腕7に連な
っている複数のケーブル14,14相互の間隔Dbよりも広く
した状態で電力供給するから、炉用変圧器から各アーク
電極4までのリアクタンスをどのアーク電極4について
も均等化させることができ、各アーク電極4には電力を
均等に供給できる特長がある。このことは前記従来技術
の問題点を解決して、炉における炉内耐火物に局所的な
ダメージを与えたりすることなく、しかも炉内の溶解原
料の均一溶解を可能にできる有益性を発揮する効果があ
る。
As described above, according to the present invention, when electric power is supplied from the furnace transformer to the arc electrodes 4 respectively supported by the three electrode supporting arms 7, the arc electrodes 4 are supported. Of the three electrode support arms 7, a plurality of cables 14 and 14 connected to the electrode support arms located on both outer sides, respectively.
Electric power is supplied in a state in which the mutual distances Da and Dc are made wider than the mutual distance Db between the plurality of cables 14 and 14 connected to the electrode support arm 7 located in the middle, so that each arc electrode 4 is supplied from the furnace transformer. It is possible to equalize the reactance up to any of the arc electrodes 4 and to supply electric power to each arc electrode 4 evenly. This solves the above-mentioned problems of the prior art, and exerts the advantage of enabling uniform melting of the molten raw material in the furnace without causing local damage to the furnace refractory in the furnace. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】アーク溶解装置を略示する側面図。FIG. 1 is a side view schematically showing an arc melting device.

【図2】電極支腕の並設状態を示す平面図。FIG. 2 is a plan view showing a state where electrode support arms are arranged side by side.

【図3】(A)は電極支腕におけるケーブル端子の拡大
平面図、(B)はケーブル端子の正面図。
FIG. 3A is an enlarged plan view of a cable terminal on an electrode supporting arm, and FIG. 3B is a front view of the cable terminal.

【図4】(A)は中間に位置する相における一対のケー
ブル相互の結合状態を示す断面図(図1におけるIV−IV
線位置での断面図)、(B)は外側に位置する相におけ
る同様の状態を示す断面図。
FIG. 4A is a cross-sectional view showing a coupling state of a pair of cables in the intermediate phase (IV-IV in FIG. 1).
(Cross-sectional view at line position), (B) is a cross-sectional view showing a similar state in a phase positioned outside.

【図5】(A)は変圧器におけるケーブル端子の平面
図、(B)は同拡大平面図、(C)は同正面図。
5A is a plan view of a cable terminal in a transformer, FIG. 5B is an enlarged plan view of FIG. 5C, and FIG.

【図6】電極支腕が支腕母線を備える場合の例を示す平
面図。
FIG. 6 is a plan view showing an example in which the electrode support arm includes a support arm busbar.

【符号の説明】[Explanation of symbols]

1 アーク炉 4 アーク電極 7 電極支腕 9,13 ケーブル端子 14 ケーブル A,C 外側に位置する相 B 中間に位置する相 1 arc furnace 4 arc electrode 7 electrode support arm 9,13 cable terminal 14 cable A, C outside phase B intermediate phase

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉の上方に三つの電極支腕が並設され、
各電極支腕の前端部においては夫々上記炉内に向けて挿
入されたアーク電極が支持されていると共に、各電極支
腕の後部側には各前端部のアーク電極に電気的に接続す
るケーブル端子が備えられ、上記各ケーブル端子は、夫
々複数本のケーブルを介して炉用変圧器に接続してある
交流アーク加熱炉において、上記炉用変圧器から上記ケ
ーブルを介して上記アーク電極に電力を供給するに当っ
ては、各アーク電極に与えられる電力が均等となるよ
う、上記三つの電極支腕のうち両外側に夫々位置する電
極支腕に連なっている夫々複数のケーブル相互の間隔
を、中間に位置する電極支腕に連なっている複数のケー
ブル相互の間隔よりも広くした状態で電力供給すること
を特徴とする交流アーク加熱炉におけるアーク電極への
電力供給方法。
1. The three electrode support arms are arranged side by side above the furnace,
At the front end of each electrode support arm, an arc electrode inserted toward the inside of the furnace is supported, and on the rear side of each electrode support arm, a cable electrically connected to the arc electrode at each front end is provided. In an AC arc heating furnace in which a terminal is provided and each of the cable terminals is connected to a furnace transformer via a plurality of cables, power is supplied from the furnace transformer to the arc electrode via the cable. In order to supply the electric power to each arc electrode evenly, the distance between the plurality of cables connected to the electrode support arms located on both outer sides of the three electrode support arms is set to be equal to each other. , A method for supplying power to an arc electrode in an AC arc heating furnace, characterized in that power is supplied in a state in which it is wider than a distance between a plurality of cables connected to an electrode supporting arm located in the middle.
JP4197902A 1992-07-01 1992-07-01 Power supply method to arc electrode in ac arc heating furnace Pending JPH0620772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4197902A JPH0620772A (en) 1992-07-01 1992-07-01 Power supply method to arc electrode in ac arc heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4197902A JPH0620772A (en) 1992-07-01 1992-07-01 Power supply method to arc electrode in ac arc heating furnace

Publications (1)

Publication Number Publication Date
JPH0620772A true JPH0620772A (en) 1994-01-28

Family

ID=16382185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4197902A Pending JPH0620772A (en) 1992-07-01 1992-07-01 Power supply method to arc electrode in ac arc heating furnace

Country Status (1)

Country Link
JP (1) JPH0620772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169565A (en) * 1993-12-13 1995-07-04 Nkk Corp Three-phase collective type arc heating furnace
US6052999A (en) * 1997-07-23 2000-04-25 Samsung Electronics Co., Ltd. Method for controlling opening/closing of cool air discharge ports of a refrigerator
CN102097155A (en) * 2009-12-14 2011-06-15 郭延武 Copper tube and electric furnace energy-saving noninductive short net

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169565A (en) * 1993-12-13 1995-07-04 Nkk Corp Three-phase collective type arc heating furnace
US6052999A (en) * 1997-07-23 2000-04-25 Samsung Electronics Co., Ltd. Method for controlling opening/closing of cool air discharge ports of a refrigerator
CN102097155A (en) * 2009-12-14 2011-06-15 郭延武 Copper tube and electric furnace energy-saving noninductive short net

Similar Documents

Publication Publication Date Title
US4682341A (en) Electric arc furnace
JPH0620772A (en) Power supply method to arc electrode in ac arc heating furnace
CA2135496A1 (en) Dc arc furnace
ES2017511B3 (en) ELECTRIC DIRECT CURRENT OVEN FOR SCRAP MELTING.
JPH0152673B2 (en)
CA2082000A1 (en) Anode for a direct-current electric arc furnace
DE3270677D1 (en) Connection and support arrangement for the electrodes of an arc furnace
US2908736A (en) Electrode lead arrangement for three phase electric furnace
US3078325A (en) Electric arc furnace power cable arrangement
US4045307A (en) Structure for switching electrical current and cell comprising same
US3395238A (en) Power coupling and electrode arrangement for electric furnace
FR2659821B1 (en) DIRECT CURRENT ELECTRIC OVEN.
JP2940149B2 (en) DC graphitization furnace electrical equipment
US4021317A (en) Method of operating an electrolytic cell
ES8400216A1 (en) Conductor arrangement for a three-phase electric arc furnace
US4606055A (en) DC arc furnace having starting equipment
ES8308466A1 (en) Electrode arrangement for electric arc furnaces
JP2940148B2 (en) DC graphitization furnace electrical equipment
SU1330686A1 (en) Method of transferring double-circuit aerial power line to a higher voltage
US1076054A (en) Electrode-holder.
JP3066615U (en) Electrodes for incineration ash melting furnace
JPH0447919Y2 (en)
KR20100011077A (en) Bus connector for electric furnace
JPH01167575A (en) Dc arc furnace
US1214764A (en) Electric steel-furnace.