JPH01167575A - Dc arc furnace - Google Patents

Dc arc furnace

Info

Publication number
JPH01167575A
JPH01167575A JP32792387A JP32792387A JPH01167575A JP H01167575 A JPH01167575 A JP H01167575A JP 32792387 A JP32792387 A JP 32792387A JP 32792387 A JP32792387 A JP 32792387A JP H01167575 A JPH01167575 A JP H01167575A
Authority
JP
Japan
Prior art keywords
electrode
support arm
conductor
furnace
arc furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32792387A
Other languages
Japanese (ja)
Other versions
JP2590993B2 (en
Inventor
Takeji Okada
岡田 竹司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP32792387A priority Critical patent/JP2590993B2/en
Publication of JPH01167575A publication Critical patent/JPH01167575A/en
Application granted granted Critical
Publication of JP2590993B2 publication Critical patent/JP2590993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To reduce the incurring of an electric loss through reduction of the number of electric contacts, by a method wherein a conductor part extending from an electrode clamp to the bus on the stationary secondary side of a DC source through an electrode support arm is formed by a flexible cable formed by inserting a conductor in a resilient substance hose. CONSTITUTION:An upper electrode 11 is supported by an electrode clamp 12 and an electrode support arm 13, and is elevatable by means of an electrode elevating mechanism 14. A conductor part extending from the electrode clamp 12 clamping the electrode 11 to the bus 19 on the stationary secondary side of a DC source 18 through the electrode arm 13 is formed by a flexible hose 16 having water cooling structure in which a conductor 15 is inserted into a resilient substance hose 14 and cooling water is fed to the interior thereof. Therefore, as compared with a DC arc furnace having a flexible cable connected to the other end side of a support arm bus approximately in parallel to the electrode support arm 13, the number of electrical connection parts is reduced, the incurring of an electric loss can be reduced, and the dissolution efficiency can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) この発明は、主にスクラップを原料とした製鋼に利用さ
れる直流アーク炉に関するものである。 (従来の技術) 従来、製鋼に際しては、鉄鉱石を原料とする高炉−転炉
方式が、大量生産に適するものとして広く採用されてい
るが、また他方では、スクラップを原料とするアーク炉
を用いた電気炉製鋼も広く採用されている。 この電気炉製鋼においては1通常、交流アーク炉が使用
されており、次第に大型化・大電力化が進んでUHP炉
(超高電力炉)の開発にまで及び、高炉−転炉方式に対
するもうひとつの大量生産の製鋼方式として確立してき
ている。 しかし、UHP操業による交流アーク炉では、高電力エ
ネルギーの有効利用のための回路インピータンスの低減
に限界を有し、フリッカ−の問題も大きくなると共に、
交流特有の電極表皮作用による電極電流密度の限界を有
していることから、上部電極と炉底電極との間で直流を
供給する直流アーク炉の見なおしも一部においてなされ
てきている。 この直流アーク炉は1作業性の理由からこれまではあま
り進展していなかったが、近年の高電力容量のAC−D
C変換用整流設備の開発がその見なおしに大きく貢献し
ており、従来知られている直流アーク炉は、炉壁および
炉殻などから構成される炉本体の上部に被せる炉蓋を貫
通して、直流電源の例えば陰極側に接続される上部電極
を昇降可能に設けると共に、炉本体の炉底部分に、前記
直流電源の例えば陽極側に接続される炉底電極を設け、
上部電極と炉底電極と間で直流アークを発生させること
により、炉内に装入したスクラップ類をアーク加熱して
溶解させるようにしたものであった。 このような直流アーク炉では、従前の交流アーク炉に比
較して、同じ電流値での電極の細径化、この細径化によ
る電極表面酸化減量の低減ならびに交流に比べた電極先
端部の温度低下にもとづく黒鉛昇華の減少による電極原
単位の低下、フリッカ−レベルの低減およびアークノズ
ルの減少などといった利点をもたらすことが可能になる
。 (発明が解決しようとする問題点) このように、従来の直流アーク炉は、交流アーク炉に比
べていくつかの利点をもっているが、上部電極に対する
直流電源の供給は、従来の交流アーク炉の場合と同様に
、上部電極を把持する電極クランプを先端にもつ昇降可
能な電極支腕に剛性の支腕母&Ii(銅板、銅パイプ等
)をほぼ平行状態で固定し、この剛性の支腕母線の一端
側と電極クランプとを電気的に接続するとともに、剛性
支腕母線の他端側と可撓電線の一端側とを電気的に接続
し、可撓電線の他端側は直流電源に接続した固定二次側
母線に接続する構成(交流アーク炉の電源接続部分の構
成は、「鉄鋼便覧」第532頁10、電気炉製鋼法(昭
和57年12月25日日本鉄鋼協会発行)にある、)に
より行うようにしていたため、電気的な接続部分が多く
存在し、電気的な損失が多くなり、エネルギーコストの
低減、溶解効率の向上などのために、好ましくないとい
う問題点があった。 (発明の目的) この発明は、このような問題点にかんがみてなされたも
ので、電気的な接続部にもとづく電力損失を少なくし、
エネルギーコストの低減、溶解効率の向上をはかること
が可能である直流アーク炉を提供することを目的として
いる。
(Industrial Application Field) The present invention relates to a direct current arc furnace used for steel manufacturing mainly using scrap as a raw material. (Prior art) Conventionally, the blast furnace-converter method, which uses iron ore as raw material, has been widely adopted as a method suitable for mass production. Electric furnace steelmaking has also been widely adopted. In this electric furnace steelmaking, AC arc furnaces are usually used, and as they gradually become larger and more powerful, UHP furnaces (ultra-high power furnaces) are developed, which is an alternative to the blast furnace-converter method. It has become established as a steel manufacturing method for mass production. However, in AC arc furnaces operated by UHP, there is a limit to the reduction of circuit impedance for effective use of high power energy, and the problem of flicker increases.
Since there is a limit to the electrode current density due to the electrode skin effect peculiar to alternating current, there has been some reconsideration of direct current arc furnaces that supply direct current between the upper electrode and the bottom electrode. This DC arc furnace has not made much progress until now due to workability reasons, but in recent years, high power capacity AC-
The development of rectifier equipment for C conversion has greatly contributed to this reconsideration, and the conventionally known DC arc furnace has a furnace cover that covers the top of the furnace body, which consists of furnace walls and a furnace shell. , an upper electrode connected to, for example, the cathode side of the DC power source is provided so as to be movable up and down, and a hearth bottom electrode connected to, for example, the anode side of the DC power source is provided at the bottom portion of the furnace body;
By generating a direct current arc between the upper electrode and the bottom electrode, the scrap charged into the furnace was heated and melted by the arc. In such a DC arc furnace, the diameter of the electrode is smaller at the same current value than in a conventional AC arc furnace, and due to this smaller diameter, the electrode surface oxidation loss is reduced, and the temperature at the tip of the electrode is lower than in an AC furnace. It is possible to bring about advantages such as a reduction in electrode consumption due to a reduction in graphite sublimation, a reduction in flicker level, and a reduction in the number of arc nozzles. (Problems to be Solved by the Invention) As described above, conventional DC arc furnaces have several advantages over AC arc furnaces, but the supply of DC power to the upper electrode is different from that of conventional AC arc furnaces. As in the case, a rigid support arm base &Ii (copper plate, copper pipe, etc.) is fixed in a nearly parallel state to an electrode support arm that can be raised and lowered and has an electrode clamp at the tip that grips the upper electrode, and this rigid support arm base One end side is electrically connected to the electrode clamp, and the other end side of the rigid support arm busbar is electrically connected to one end side of the flexible electric wire, and the other end side of the flexible electric wire is connected to a DC power source. (The configuration of the power connection part of an AC arc furnace is described in "Steel Handbook," p. 532, p. 10, Electric Furnace Steel Manufacturing Method (published by the Japan Iron and Steel Institute on December 25, 1981). , ), there are many electrical connections, which increases electrical loss, which is undesirable for reducing energy costs and improving melting efficiency. (Object of the Invention) This invention was made in view of the above-mentioned problems, and aims to reduce power loss due to electrical connections,
The purpose of the present invention is to provide a DC arc furnace that can reduce energy costs and improve melting efficiency.

【発明の構成】[Structure of the invention]

(問題点を解決するための手段) この発明は、直流電源の一方側に接続され且つ電極クラ
ンプによって把持された上部電極と前記直流電源の他方
側に接続される炉底電極とを備えた直流アーク炉におい
て、前記電極クランプから電極支腕を経て前記直流電源
の固定二次側母線ないしは整流器までの導体部を、弾性
体ホース中に導体を入れた可撓性ケーブルで枠数したこ
とを特徴としおり、必要に応じて前記電極クランプから
電極支腕を経て直流電源の固定二次側母線ないしは整流
器までの導体部を構成する可撓性ケーブルは、弾性体ホ
ース中に冷却水を供給して導体を冷却する水冷構造であ
るようにしたことを特徴としている。 (実施例) 第1図はこの発明に係る直流アーク炉の一実施例を示し
ている。 この直流アーク炉1は、基flpZ上に設置した支柱3
.4によってその炉本体5が支持されており、この炉本
体5には炉蓋6が配設され、この炉M6は支持体7によ
り吊り下げられていて、昇降および旋回が可能となって
いる。 また、この炉蓋6に貫通して、かつ炉心Cを中心とする
同一電極ピッチサークル上に、円周方向の等間隔(12
0’間隔)で3本の例えば黒鉛電極よりなる上部電極1
1が配設しである。 これらの上部電極11は、それぞれ電極クランプ12お
よび電極支腕13などによって支持されていて、電極昇
降機構14により昇降可能となっている。 さらに、上部電極11は、その電極クランプ12側に、
第2図にも示すように、例えばゴムホースからなる弾性
体ホース14中に導体15を入れた可撓性ケーブル16
の一端側が電気的に接続しであると共に、当該可撓性ケ
ーブル16はその途中が電極支腕13に設けたブラケッ
ト17゜17により支持させてあり、前記可撓性ケーブ
ル16の他端側は直流電源18に接続した固定二次側母
線19を介して当該直流電源18の整流器20、この実
施例では整流器20の陰極側に接続しである。また、こ
の可撓性ケーブル16は、弾性体ホース14内に冷却水
を供給して導体15を冷却する水冷ケーブルとなってい
る。 さらにまた、基礎2には炉体傾動機構26が設けである
と共に、炉上部には排ガスダクト27が設けである。 さらに、炉本体5の炉底部分には、炉心Cを中心とする
同一電極ピッチサークル上に円周方向の等間隔(120
°)で3本の例えば導電性金属からなる炉底電極25が
貫通状態で配置してあり、各炉底電極25は図示しない
電極リードによって前記直流電源18の整流器20、こ
の実施例では整流器20の陽極側に接続しである。 このような構成の直流アーク炉1では、上部電極11を
把持する電極クランプ12から電極支腕13を経て直流
電源18の固定二次側母線19(他の実施例では整流器
20であってもよい。)までの導体部を、弾性体ホース
14中に導体15を入れ且つ内部に冷却水を供給する水
冷構造の水冷ケーブルよりなる可撓性ケーブル16で構
成するようにしたから、電極支腕(13)とほぼ平行に
設けた剛性の支腕母線を用いて当該支腕母線の他端側に
可撓電線を接続するようにした交流アーク炉の構造をそ
のまま採用した直流アーク炉に比べて、電気的な接続部
分が少なくなり、接続部分における電気的損失を低減す
ることができ、エネルギーコストの低減、溶解効率の向
上をはかることができるようになる。 次に、上記構造の直流アーク炉1において、容 □量2
0t onのものを用い、可撓性ケーブル16の弾性体
ホース14内に冷却水を流して導体15を冷却しながら
溶解を行ったところ、電極支腕(13)とほぼ平行にし
た剛性の支腕母線および可撓電線を用いて電源の供給を
行うようにした場合に比べて電力消費量は約5%低減さ
せることができた。 なお、上記実施例では、上部電極11および炉底電極2
5がともに3木である場合を示したが、このような本数
に限定されない、また、固定二次側母線19を廃止し、
可撓性ケーブル16を直流電源18の整流器20に直接
接続してもよい。
(Means for Solving the Problems) The present invention provides a DC power source comprising an upper electrode connected to one side of a DC power source and held by an electrode clamp, and a bottom electrode connected to the other side of the DC power source. In the arc furnace, the conductor section from the electrode clamp to the fixed secondary side bus bar or rectifier of the DC power source via the electrode support arm is formed by a flexible cable in which the conductor is placed in an elastic hose. As necessary, the flexible cable constituting the conductor section from the electrode clamp to the fixed secondary side bus bar or rectifier of the DC power supply via the electrode support arm supplies cooling water into the elastic hose. It is characterized by a water-cooled structure that cools the conductor. (Embodiment) FIG. 1 shows an embodiment of a DC arc furnace according to the present invention. This DC arc furnace 1 consists of pillars 3 installed on the base flpZ.
.. The furnace body 5 is supported by the furnace body 5, and a furnace lid 6 is disposed on the furnace body 5.The furnace M6 is suspended by a support 7, and can be moved up and down and rotated. In addition, the electrodes penetrate through the reactor lid 6 and are arranged at equal intervals (12
Upper electrode 1 consisting of three graphite electrodes, for example, with a spacing of 0'
1 is installed. These upper electrodes 11 are each supported by an electrode clamp 12, an electrode support arm 13, etc., and can be raised and lowered by an electrode lifting mechanism 14. Furthermore, the upper electrode 11 has, on its electrode clamp 12 side,
As shown in FIG. 2, a flexible cable 16 has a conductor 15 inserted into an elastic hose 14 made of, for example, a rubber hose.
One end of the flexible cable 16 is electrically connected, and the middle part of the flexible cable 16 is supported by a bracket 17° 17 provided on the electrode support arm 13, and the other end of the flexible cable 16 is It is connected to the cathode side of the rectifier 20 of the DC power source 18, in this embodiment, the rectifier 20 via a fixed secondary bus 19 connected to the DC power source 18. Further, the flexible cable 16 is a water-cooled cable that supplies cooling water into the elastic hose 14 to cool the conductor 15. Furthermore, a furnace body tilting mechanism 26 is provided on the foundation 2, and an exhaust gas duct 27 is provided on the upper portion of the furnace. Further, in the bottom part of the furnace body 5, electrodes are arranged at equal intervals in the circumferential direction on the same electrode pitch circle centered on the core C (120
Three furnace bottom electrodes 25 made of, for example, a conductive metal are arranged in a penetrating manner at the bottom electrode 25, and each furnace bottom electrode 25 is connected to a rectifier 20 of the DC power source 18, in this embodiment, a rectifier 20 by an electrode lead (not shown). It is connected to the anode side of. In the DC arc furnace 1 having such a configuration, the fixed secondary bus 19 of the DC power supply 18 (which may be a rectifier 20 in other embodiments) is connected from the electrode clamp 12 that grips the upper electrode 11 through the electrode support arm 13. Since the conductor part up to the electrode support arm (. 13) Compared to a DC arc furnace that adopts the structure of an AC arc furnace as it is, in which a flexible electric wire is connected to the other end of the support arm busbar using a rigid support arm busbar installed almost parallel to the The number of electrically connected parts is reduced, electrical loss in the connected parts can be reduced, energy costs can be reduced, and melting efficiency can be improved. Next, in the DC arc furnace 1 having the above structure, the capacity □Volume 2
When melting was carried out while cooling the conductor 15 by flowing cooling water into the elastic hose 14 of the flexible cable 16, a rigid support made almost parallel to the electrode support arm (13) was formed. Power consumption could be reduced by about 5% compared to the case where power was supplied using arm busbars and flexible electric wires. In addition, in the above embodiment, the upper electrode 11 and the hearth bottom electrode 2
5 are both 3 trees, but the number is not limited to this, and the fixed secondary side bus 19 can be abolished,
The flexible cable 16 may be connected directly to the rectifier 20 of the DC power supply 18.

【発明の効果】 以上説明してきたように、この発明では、直流電源の一
方側に接続され且つ電極クランプによって把持された上
部電極と前記直流電源の他方側に接続される炉底電極と
を備えた直流アーク炉において、前記電極クランプから
電極支腕を経て前記直流電源の固定二次側母線ないしは
整流器までの導体部を、弾性体ホース中に導体を入れた
可撓性ケーブルで構成したから、電極支腕とほぼ平行に
剛性の支腕母線を設けると共にこの支腕母線に可撓電線
を接続した場合に比べて電気的接点を少なくすることが
できるため、電気的な損失をより一層減少することが可
能であり、エネルギーコストの低減、溶解効率の向上を
はかることが可能になるという著しく優れた効果がもた
らされる。
Effects of the Invention As described above, the present invention includes an upper electrode connected to one side of a DC power source and held by an electrode clamp, and a bottom electrode connected to the other side of the DC power source. In the DC arc furnace, the conductor section from the electrode clamp to the fixed secondary side bus bar or rectifier of the DC power source via the electrode support arm is constructed of a flexible cable in which the conductor is placed in an elastic hose. In addition to providing a rigid support arm busbar approximately parallel to the electrode support arm, the number of electrical contacts can be reduced compared to when flexible electric wires are connected to the support arm busbar, thereby further reducing electrical loss. It is possible to achieve remarkable effects of reducing energy costs and improving dissolution efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る直流ア゛−り炉の一実施例を示
す説明図、第2図は可撓性ケーブルの断面図〒ある。 1・・・直流アーク炉、 11・・・上部電極 12・・・電極クランプ、 13・・・電極支腕、 14・・・弾性体ホース、 15・・・導体、 16・・・可撓性ケーブル、 18・・・直流電源、 19・・・固定二次側母線、 20・・・整流器、 25・・・炉底電極。 代理人弁理士  小  塩   豊
FIG. 1 is an explanatory view showing one embodiment of a DC air furnace according to the present invention, and FIG. 2 is a sectional view of a flexible cable. DESCRIPTION OF SYMBOLS 1... DC arc furnace, 11... Upper electrode 12... Electrode clamp, 13... Electrode support arm, 14... Elastic hose, 15... Conductor, 16... Flexibility Cable, 18... DC power supply, 19... Fixed secondary side bus bar, 20... Rectifier, 25... Hearth bottom electrode. Representative Patent Attorney Yutaka Oshio

Claims (2)

【特許請求の範囲】[Claims] (1)直流電源の一方側に接続され且つ電極クランプに
よって把持された上部電極と前記直流電源の他方側に接
続される炉底電極とを備えた直流アーク炉において、前
記電極クランプから電極支腕を経て前記直流電源の固定
二次側母線ないしは整流器までの導体部を、弾性体ホー
ス中に導体を入れた可撓性ケーブルで構成したことを特
徴とする直流アーク炉側。
(1) In a DC arc furnace equipped with an upper electrode connected to one side of a DC power source and held by an electrode clamp, and a bottom electrode connected to the other side of the DC power source, an electrode support arm is connected to the electrode clamp. The DC arc furnace side is characterized in that the conductor portion from the DC power supply to the fixed secondary side bus bar or the rectifier is constituted by a flexible cable having a conductor inserted in an elastic hose.
(2)電極クランプから電極支腕を経て直流電源の固定
二次側母線ないしは整流器までの導体部を構成する可撓
性ケーブルは、弾性体ホース中に冷却水を供給して導体
を冷却する水冷ケーブルであることを特徴とする特許請
求の範囲第(1)項に記載の直流アーク炉。
(2) The flexible cable that constitutes the conductor from the electrode clamp to the fixed secondary bus or rectifier of the DC power supply via the electrode support arm is water-cooled by supplying cooling water into the elastic hose to cool the conductor. The DC arc furnace according to claim 1, which is a cable.
JP32792387A 1987-12-24 1987-12-24 DC arc furnace Expired - Lifetime JP2590993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32792387A JP2590993B2 (en) 1987-12-24 1987-12-24 DC arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32792387A JP2590993B2 (en) 1987-12-24 1987-12-24 DC arc furnace

Publications (2)

Publication Number Publication Date
JPH01167575A true JPH01167575A (en) 1989-07-03
JP2590993B2 JP2590993B2 (en) 1997-03-19

Family

ID=18204512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32792387A Expired - Lifetime JP2590993B2 (en) 1987-12-24 1987-12-24 DC arc furnace

Country Status (1)

Country Link
JP (1) JP2590993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602294A (en) * 2016-12-15 2017-04-26 江西江钨稀有金属新材料股份有限公司 Device for rigidly connecting intermediate frequency furnace and electrode and furnace tilting and pouring method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993261A (en) * 2015-05-14 2015-10-21 江西江钨稀有金属新材料有限公司 Intermediate-frequency furnace induction coil water-cooled cable connecting method and device
DE202021003407U1 (en) 2021-11-04 2021-12-08 Christian Banzhaf Modular blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602294A (en) * 2016-12-15 2017-04-26 江西江钨稀有金属新材料股份有限公司 Device for rigidly connecting intermediate frequency furnace and electrode and furnace tilting and pouring method
CN106602294B (en) * 2016-12-15 2018-10-16 江西江钨稀有金属新材料股份有限公司 A kind of intermediate frequency furnace and rigid electrode attachment device and dumping furnace method

Also Published As

Publication number Publication date
JP2590993B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
US4228314A (en) DC Arc furnace hearth
US3949151A (en) Arc furnaces
JPH01167575A (en) Dc arc furnace
US20230175780A1 (en) Electric arc furnace
RU92004404A (en) DC ELECTRIC OVEN
JPH0152673B2 (en)
JP3332927B2 (en) Bottom electrode of metallurgical vessel heated by direct current
JPH0613177A (en) Dc arc furnace apparatus
Curr et al. The design and operation of transferred-arc plasma systems for pyrometallurgical applications
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
JPS6364486B2 (en)
CN2172558Y (en) Ore heating furnace electrode feeding implement
RU96119768A (en) BATTERY ELECTRODE FOR METALLURGICAL CAPACITY, HEATED BY DC
JP2600737B2 (en) DC arc furnace
CN213120116U (en) Energy-saving direct-current submerged arc furnace
JPH01167572A (en) Arc furnace
CN219385212U (en) Composite anode device for direct-current ladle furnace
JP3066615U (en) Electrodes for incineration ash melting furnace
CN221467935U (en) Short net energy-saving system
CN216282677U (en) Low-current arc-uninterrupted arc furnace
JPH01167571A (en) Dc arc furnace
Stenkvist et al. High-power, graphite-cathode DC arc plasma--Properties and practical applications for steelmaking and ferroalloys processing
CN211606115U (en) Energy-saving short net for submerged arc furnace
CN220339061U (en) Three-phase electrode insulating baffle
JP3170284B2 (en) DC operated furnace equipment