JPH06207180A - Production of fuel for electricity generation and method for generating electricity - Google Patents

Production of fuel for electricity generation and method for generating electricity

Info

Publication number
JPH06207180A
JPH06207180A JP28750492A JP28750492A JPH06207180A JP H06207180 A JPH06207180 A JP H06207180A JP 28750492 A JP28750492 A JP 28750492A JP 28750492 A JP28750492 A JP 28750492A JP H06207180 A JPH06207180 A JP H06207180A
Authority
JP
Japan
Prior art keywords
fuel
crude oil
low
boiler
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28750492A
Other languages
Japanese (ja)
Other versions
JP2576006B2 (en
Inventor
Akiyoshi Mizoguchi
明義 溝口
Mutsunori Karasaki
睦範 唐崎
Masaki Iijima
正樹 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4287504A priority Critical patent/JP2576006B2/en
Publication of JPH06207180A publication Critical patent/JPH06207180A/en
Application granted granted Critical
Publication of JP2576006B2 publication Critical patent/JP2576006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain fuel of high thermal efficiency for electricity generation by distillation of low-sulfur crude oil containing A specific amount of salts to separate it into repowering gas turbine fuel comprising a low-boiling fraction of specific sulfur content and boiler fuel comprising a high-boiling fraction. CONSTITUTION:Low-sulfur crude oil is subjected to such desalination 1 as to add water thereto to wash it followed by separating the resultant aqueous layer to regulate the salt content of the crude oil to <=0.5ppm, and the resultant crude oil is subjected to normal pressure distillation 2 or vacuum distillation 3 to separate the crude oil into (A) repowering gas turbine fuel for boilers comprising a low-boiling fraction <=0.05wt.% in sulfur content and (B) boiler fuel comprising a high-boiling fraction >0.05wt.% in sulfur content. In case the proportion of the fraction B is relatively high, the fraction B is put to established supercritical solvent extraction-separation 4 using a high-temperature and high-pressure solvent. Thus, the objective fuel for electricity generation can be obtained. This fuel meets the repowering gas turbine standards for boilers, having high thermal efficiency and being highly advantageous from the viewpoint of energy saving and preventing global warming due to CO2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低硫黄原油からボイラ
のリパワリングガスタービン用燃料とボイラ用燃料を製
造する方法、及び、該燃料を用いてリパワリングガスタ
ービン及びボイラのスチームタービンを駆動して発電す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fuel for a repowering gas turbine of a boiler and a fuel for a boiler from low-sulfur crude oil, and a method for driving a repowering gas turbine and a steam turbine of a boiler using the fuel. Regarding how to generate electricity.

【0002】[0002]

【従来の技術】現在、日本の火力発電は、ボイラで生じ
た高温高圧のスチームでタービンを回転する発電方法が
スチームタービンによる方法が主なものである。そのボ
イラ用油燃料としては、主に重油や原油が使用されてい
る。それらの中で、原油焚きの場合はワックス分が多
く、かつ、SOX の発生量の少ない低硫黄原油、例えば
ミナス産原油や大慶産原油が公害防止の観点から好んで
使用されている。また、最近では良質燃料であるLNG
を用いたコンバインド・サイクル発電が採用されてい
る。
2. Description of the Related Art At present, in thermal power generation in Japan, a steam turbine is mainly used as a power generation method in which a turbine is rotated by high-temperature and high-pressure steam generated in a boiler. Heavy oil and crude oil are mainly used as the oil fuel for the boiler. Among them, in the case of crude oil burning, low-sulfur crude oil, which has a large amount of wax and a small amount of SO X , such as crude oil from Minas and crude oil from Daqing is preferably used from the viewpoint of pollution prevention. Recently, LNG, which is a good fuel
Combined cycle power generation using is used.

【0003】上記の原油や重油をボイラで焚いてスチー
ムタービンで発電する方法は、熱効率が約40%/HH
V基準(HHV:高位発熱量)と比較的低い。これに対
し、LNG焚きで採用されているコンバインド・サイク
ル発電は、圧縮機で圧縮した空気で燃料を燃焼するか、
あるいは、圧縮空気を燃焼熱で加熱して高温高圧ガスを
発生し、タービンを回転して発電すると共に、その燃焼
排ガスの有する高温熱エネルギーをボイラで回収してス
チームタービンを回転し、再度発電する方法であり、熱
効率は約48%/HHV基準と高いことが特徴である。
The above-described method of burning crude oil or heavy oil with a boiler and generating power with a steam turbine has a thermal efficiency of about 40% / HH.
It is relatively low as V standard (HHV: Higher heating value). On the other hand, in the combined cycle power generation adopted in LNG-fired, the fuel compressed by the air compressed by the compressor,
Alternatively, the compressed air is heated by combustion heat to generate high-temperature high-pressure gas, the turbine is rotated to generate electricity, and the high-temperature thermal energy of the combustion exhaust gas is recovered by the boiler to rotate the steam turbine to generate electricity again. The method is characterized by high thermal efficiency of about 48% / HHV standard.

【0004】さらに最近、既設のボイラの発電量を簡便
な方法で向上させるために、ボイラの傍らにガスタービ
ンを追加設置し、ガスタービンで発電するとともに、ガ
スタービンの高温燃焼排ガスを空気の代わりボイラに送
り込み、ボイラ燃料を燃焼させる、所謂ボイラのリパワ
リングと称される方法が知られるようになった。このコ
ンバインド・サイクル発電に類似したボイラのリパワリ
ング方法によれば、約13vol%以上の酸素が残って
いるガスタービンの燃焼排ガスを用いてボイラ燃料を焚
くので、ボイラの燃焼には特に支障はない上、ガスター
ビンの燃焼排ガスの有する580℃程度の高温熱エネル
ギーをボイラで有効利用できるので、ボイラの燃料が節
約でき、全体として発電量を増すとともに、燃料当たり
の発電効率(熱効率)も向上させることができる。
More recently, in order to improve the power generation amount of an existing boiler by a simple method, a gas turbine is additionally installed beside the boiler to generate electric power with the gas turbine, and the high temperature combustion exhaust gas of the gas turbine is replaced with air. A method known as so-called boiler repowering, in which boiler fuel is burned to burn the boiler fuel, has become known. According to the boiler repowering method similar to this combined cycle power generation, since the boiler fuel is burned by using the combustion exhaust gas of the gas turbine in which about 13 vol% or more of oxygen remains, there is no particular problem in the combustion of the boiler. Since the high temperature thermal energy of about 580 ° C that the combustion exhaust gas of the gas turbine has can be effectively used in the boiler, the fuel of the boiler can be saved, the power generation amount as a whole can be increased, and the power generation efficiency (thermal efficiency) per fuel can be improved. You can

【0005】ボイラの燃料には、上記のように原油や重
油が使用されるので、通常ボイラの周囲にはこれらの燃
料用タンクなどの貯蔵設備が既に備わっている。しか
し、これに上記のリパワリングのガスタービンを新たに
設置しようとすると、その燃料は通常天然ガスであるた
め、その貯蔵設備も新たに設置しなければならない。天
然ガスの輸送や貯蔵には極低温が必要であり、新たに多
大な設備費が必要となる上、都市部において天然ガスを
扱うことは防災上の観点からも制約が多い。また、LN
G貯蔵設備から気化した天然ガスをパイプラインにより
石油火力発電所に輸送する場合も、膨大な費用がかか
る。したがって、リパワリングのガスタービンにも天然
ガスに代えて原油や重油を使用することができればその
メリットは多大である。
Since crude oil or heavy oil is used as the fuel for the boiler as described above, a storage facility such as a fuel tank is usually provided around the boiler. However, if an attempt is made to newly install the above-mentioned repowering gas turbine, the fuel is usually natural gas, and therefore the storage facility must be newly installed. Cryogenic temperatures are required for the transportation and storage of natural gas, which necessitates a large amount of new equipment costs, and handling natural gas in urban areas has many restrictions from the viewpoint of disaster prevention. Also, LN
Even if the natural gas vaporized from the G storage facility is transported to the oil-fired power plant by a pipeline, enormous cost is required. Therefore, if crude oil or heavy oil can be used instead of natural gas for a gas turbine for repowering, the merit will be great.

【0006】欧米では、既に原油や残渣油をガスタービ
ンの燃料に使用する試みがなされているが、それらに含
まれる不純物のため、トラブルが多く発生し、軽油やL
NGを使用する場合に比べて保守費用が嵩むという問題
が指摘されている。そして、ガスタービンに使用する油
燃料の不純物含有量として、塩分を0.5ppm以下、
硫黄分を0.05重量%以下、バナジウムを0.5pp
m以下に制限することが望ましいとされている。特に、
塩分とバナジウムは相互に影響してガスタービンのブレ
ード金属の溶融点を低下させたり、灰分のブレードへの
粘着の原因となる。また、硫黄分の上記基準も同様にブ
レードの保護の観点から設定されたものである。しか
し、ボイラ焚き燃料として使用される前記のミナス産原
油や大慶産原油のような低硫黄原油でも、これらの基準
を満足できず、ガスタービン燃料としてそのまま使用す
ることができないという問題がある。
In Europe and the United States, attempts have already been made to use crude oil or residual oil as fuel for gas turbines, but impurities contained in these fuels often cause troubles, such as diesel oil and L oil.
It has been pointed out that the maintenance cost is higher than that when NG is used. And, as the impurity content of the oil fuel used for the gas turbine, the salt content is 0.5 ppm or less,
Sulfur content is 0.05 wt% or less, vanadium is 0.5 pp
It is said that it is desirable to limit it to m or less. In particular,
Salt and vanadium interact with each other to lower the melting point of gas turbine blade metal and cause ash to stick to the blade. Further, the above-mentioned standard of the sulfur content is similarly set from the viewpoint of blade protection. However, even low-sulfur crude oil such as the above-mentioned Minas crude oil or Daqing crude oil used as a boiler-burning fuel does not satisfy these criteria, and there is a problem that it cannot be used as it is as a gas turbine fuel.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
点を解消し、天然ガスに代えて低硫黄原油から、既設ボ
イラに設置されるリパワリングガスタービン用燃料及び
ボイラ用燃料を製造する方法、並びに、該燃料を用いて
発電する方法を提供しようとするものである。
The present invention solves the above problems and a method for producing a fuel for a repowering gas turbine installed in an existing boiler and a fuel for a boiler from low-sulfur crude oil instead of natural gas. And a method for generating power using the fuel.

【0008】[0008]

【問題点を解決するための手段】本発明は、塩分含有量
を0.5ppm以下に調整した低硫黄原油を常圧蒸留及
び又は減圧蒸留で分離し、硫黄含有量0.5重量%以下
の低沸点留分からなるボイラのリパワリングガスタービ
ン用燃料と、硫黄含有量0.5重量%を超える高沸点留
分からなるボイラ用燃料を製造することを特徴とする発
電用燃料の製造方法、及び、上記の低沸点留分をボイラ
のリパワリングガスタービン用燃料として用い、上記の
高沸点留分をボイラ用燃料として用い、ガスタービン及
びスチームタービンを駆動して発電することを特徴とす
る発電方法である。
According to the present invention, low-sulfur crude oil having a salt content adjusted to 0.5 ppm or less is separated by atmospheric distillation and / or vacuum distillation to obtain a sulfur content of 0.5% by weight or less. A method for producing a fuel for power generation, which comprises producing a fuel for a repowering gas turbine of a boiler made of a low boiling point fraction and a fuel for a boiler made of a high boiling point fraction having a sulfur content of more than 0.5% by weight, and the above. The low boiling point fraction is used as a fuel for a repowering gas turbine of a boiler, and the high boiling point fraction is used as a fuel for a boiler to drive a gas turbine and a steam turbine to generate electricity.

【0009】[0009]

【作用】本発明者等は、天然ガスに代わりに低硫黄原油
を既設ボイラに設置されるリパワリングガスタービンの
燃料に使用する方法について鋭意検討した結果、ガスタ
ービンで使用する燃料としては上記基準のように不純物
含有量の少ない燃料が望ましいものの、既設ボイラにお
いては不純物含有量の制限が比較的緩やかであること、
低硫黄原油を簡単な脱塩処理と簡単な蒸留により低沸点
留分と高沸点留分に分離するだけで必要な全ての基準を
満たすガスタービン用燃料と、不純物含有量の制限が比
較的ゆるやかなボイラ用燃料を同時に得られることに注
目し、本発明を完成させることができた。
The present inventors have diligently studied a method of using low-sulfur crude oil instead of natural gas as a fuel for a repowering gas turbine installed in an existing boiler, and as a result, as a fuel used in a gas turbine, the above standard Although it is desirable to use fuel with a low content of impurities, the restrictions on the content of impurities in existing boilers are relatively lenient.
Gas turbine fuels that meet all the necessary criteria by simply separating low-sulfur crude oil into low-boiling fractions and high-boiling fractions by simple desalination and simple distillation, and relatively mild restrictions on impurity content The present invention has been completed, paying attention to the fact that various boiler fuels can be obtained at the same time.

【0010】[0010]

【実施例】図1は、本発明の1実施例であるボイラのリ
パワリング発電用燃料の製造方法を説明するための図で
ある。図1では主要工程のみ示し、付属設備等は省略し
てある。本発明で用いる低硫黄原油は、燃焼排ガスの脱
硫工程を簡略化できることからできるだけ硫黄含有量の
少ないものが好ましい。通常硫黄含有量が1重量%以
下、さらに好ましくは0.9重量%以下の原油が用いら
れる。このような原油としては前記のワックス分の多い
ミナス産原油や大慶産原油等を挙げることができる。こ
れらの原油に含まれるバナジウム量は通常0.4〜0.
5ppmである。これらの中で、ミナス産原油は硫黄含
有量が約0.1重量%以下と少なく、特に好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining a method of manufacturing a fuel for repowering power generation in a boiler which is an embodiment of the present invention. In FIG. 1, only main steps are shown, and auxiliary equipment and the like are omitted. The low-sulfur crude oil used in the present invention preferably has a low sulfur content because it can simplify the desulfurization process of combustion exhaust gas. Usually, crude oil having a sulfur content of 1% by weight or less, more preferably 0.9% by weight or less is used. Examples of such crude oil include crude oil produced in Minas and crude oil produced in Daqing mentioned above, which have a large amount of wax. The amount of vanadium contained in these crude oils is usually 0.4-0.
It is 5 ppm. Of these, Minas crude oil has a low sulfur content of about 0.1% by weight or less, and is particularly preferable.

【0011】本発明においては、このような低硫黄原油
を脱塩処理工程1で塩分含有量を0.5ppm以下に調
整する。脱塩方法としては、通常原油に水を加えて洗浄
し、例えば2万ボルト程度の静電圧を印加して水層を分
離することにより塩分含有量を低下させることができ
る。通常の石油精製では塩分含有量が3ppm以下とし
ているが、上記水洗脱塩方法を繰り返すことにより容易
に塩分含有量を0.5ppm以下とすることができる。
In the present invention, the salt content of such low sulfur crude oil is adjusted to 0.5 ppm or less in the desalting step 1. As a desalting method, usually, water is added to the crude oil for washing, and a static voltage of, for example, about 20,000 V is applied to separate the aqueous layer to reduce the salt content. In ordinary petroleum refining, the salt content is set to 3 ppm or less, but the salt content can be easily set to 0.5 ppm or less by repeating the above water washing desalting method.

【0012】塩分含有量を0.5ppm以下に調整され
た低硫黄原油は、常圧蒸留工程2または減圧蒸留工程3
において、硫黄含有量が0.05重量%以下の低沸点留
分と硫黄含有量が0.05重量%を超える高沸点留分に
分離することができる。上記の蒸留はどちらか一方のみ
でも良いし、常圧蒸留工程2で分離された沸点の高い留
分をさらに減圧蒸留工程3で分離してもよい。使用原油
により硫黄含有量が境界値0.05重量%を超える沸点
留分か、留分割合が異なるが上記のミナス産原油の場合
は軽油留分(常圧沸点に換算して約340〜460 O
以下)乃至ガス油留分(同460〜650 OF)以下の
沸点留分とそれを超える沸点留分に分離することによ
り、硫黄含有量0.05重量%の低沸点留分を約4割
と、硫黄含有量0.05重量%を超える高沸点留分を約
6割の割合で得ることができる。しかも、該低沸点留分
には、バナジウムなどの重金属はほとんど検出されず、
リパワリングのガスタービン用燃料に適したものであ
る。
The low-sulfur crude oil whose salt content is adjusted to 0.5 ppm or less is obtained by the atmospheric distillation step 2 or the vacuum distillation step 3.
In the above, it is possible to separate into a low-boiling fraction having a sulfur content of 0.05% by weight or less and a high-boiling fraction having a sulfur content of more than 0.05% by weight. Only one of the above distillations may be performed, or the fraction having a high boiling point separated in the atmospheric distillation step 2 may be further separated in the vacuum distillation step 3. Depending on the crude oil used, the boiling point fraction in which the sulfur content exceeds the boundary value of 0.05% by weight, or the fraction of the fraction differs, but in the case of the above-mentioned Minas crude oil, the gas oil fraction (converted to a normal pressure boiling point of about 340 to 460 OF
Below) to by separating the gas oil fraction (the four hundred sixty to six hundred and fifty O F) below boiling fraction and boiling fraction greater than, about 40% of the low-boiling fraction of the sulfur content of 0.05 wt% And a high boiling fraction having a sulfur content of more than 0.05% by weight can be obtained at a ratio of about 60%. Moreover, heavy metals such as vanadium are hardly detected in the low boiling fraction,
It is suitable as a fuel for repowering gas turbines.

【0013】上記のミナス産原油の例では、脱塩処理に
より塩分含有量を0.5ppm以下に調整した原油を沸
点650 OF以下の留分と、それを超える留分とに分離
する場合には、650 OF以下の留分割合は43.2体
積%であり、硫黄含有量は0.033重量%、バナジウ
ムは検出されず、リパワリングのガスタービン用燃料と
して最適の燃料を得ることができる。この低沸点留分を
採取した後の残渣油(REDUCED−CRUDE、沸
点650 OF以上、比重26.5 OAPI、流動点10
OF)は硫黄含有量が約0.15重量%と良質重油並
に低く、バナジウム/ニッケル/鉄分の各含有量は約1
/15/10ppmであり、ボイラ用燃料としては、何
等支障なく使用できるものである。
[0013] In the above example of Minas crude oil, in the case of separating the crude oil by adjusting the salt content to below 0.5ppm by desalting on a following fraction boiling 650 O F, a fraction beyond that is, 650 O F following fraction ratio is 43.2% by volume, a sulfur content of 0.033 wt%, vanadium is not detected, it is possible to obtain optimum fuel as a gas turbine fuel for repowering . Residual oil (REDUCED-CRUDE, boiling point 650 O F or higher, specific gravity 26.5 O API, pour point 10 after collecting this low boiling fraction
6 OF ) has a sulfur content of about 0.15% by weight, which is as low as that of high-quality heavy oil, and the vanadium / nickel / iron content is about 1 each.
/ 15/10 ppm, which can be used as a boiler fuel without any trouble.

【0014】本発明において、使用する低硫黄原油によ
り硫黄含有量が0.05重量%を超える高沸点留分(あ
るいは残渣油)の割合が多い場合は、これをさらに分離
して上記ガスタービン用基準を満たす燃料を採取するこ
とも可能である。このような残渣油をさらに分離する方
法としては、高温・高圧の溶剤を用いる公知の超臨界溶
剤抽出・分離法(例えば、特開昭57─31989号公
報、特開昭59─170191号公報)を用いることが
できる。
In the present invention, when the proportion of the high boiling point fraction (or residual oil) having a sulfur content of more than 0.05% by weight is large depending on the low sulfur crude oil used, it is further separated and used for the gas turbine. It is also possible to collect fuel that meets the criteria. As a method for further separating such residual oil, a known supercritical solvent extraction / separation method using a high temperature / high pressure solvent (for example, JP-A-57-31989 and JP-A-59-170191). Can be used.

【0015】[0015]

【発明の効果】本発明は、上記の構成を採用することに
より、脱塩処理した低硫黄原油から常圧蒸留又は減圧蒸
留で低沸点留分と高沸点留分に分離することにより、必
要な全ての基準を満たすガスタービン用燃料及びボイラ
用燃料を得ることができる。これらの燃料をボイラのリ
パワリングガスタービン及びそのボイラに各々使用する
ことで、ガスタービンの保守費用を抑えながら発電量を
増し、しかも全量をボイラで焚いてスチームタービンに
より発電する場合の熱効率約40%よりも高い熱効率で
発電することができ、省エネルギー及び二酸化炭素によ
る地球温暖化防止やSOX などの有害物質の発生抑制の
観点から極めて有利である。また、既設のボイラの付近
にガスタービンに焚く天然ガスのための貯蔵設備も不要
であり、簡便にリパワリングを導入できる経済的利点も
非常に大きい。
EFFECTS OF THE INVENTION The present invention employs the above-mentioned constitution to separate the desulfurized low-sulfur crude oil into a low-boiling fraction and a high-boiling fraction by atmospheric distillation or vacuum distillation. Fuels for gas turbines and boilers that meet all the criteria can be obtained. By using these fuels for the boiler repowering gas turbine and its boiler, respectively, the power generation amount is increased while suppressing the maintenance cost of the gas turbine, and moreover, the thermal efficiency is about 40% when the steam turbine is used to generate all the power. Power can be generated with higher thermal efficiency than that, and it is extremely advantageous from the viewpoint of energy saving, prevention of global warming by carbon dioxide, and suppression of generation of harmful substances such as SO X. In addition, there is no need for a storage facility for natural gas that is fired in the gas turbine near the existing boiler, and the economic advantage of simply introducing repowering is very great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例である、低硫黄原油からボイ
ラのリパワリング発電用燃料及びそのボイラ用燃料を製
造するプロセスの説明図である。
FIG. 1 is an explanatory view of a process for producing a fuel for repowering a boiler and a fuel for the boiler from low-sulfur crude oil, which is one embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 塩分含有量を0.5ppm以下に調整し
た低硫黄原油を常圧蒸留及び又は減圧蒸留で分離し、硫
黄含有量0.5重量%以下の低沸点留分からなるボイラ
のリパワリングガスタービン用燃料と、硫黄含有量0.
5重量%を超える高沸点留分からなるボイラ用燃料を製
造することを特徴とする発電用燃料の製造方法。
1. A boiler repowering gas comprising a low-sulfur crude oil having a salt content adjusted to 0.5 ppm or less, which is separated by atmospheric distillation and / or vacuum distillation, and which comprises a low-boiling fraction having a sulfur content of 0.5% by weight or less. Turbine fuel and sulfur content of 0.
A method for producing a fuel for power generation, which comprises producing a fuel for a boiler which comprises a high boiling point fraction exceeding 5% by weight.
【請求項2】 塩分含有量を0.5ppm以下に調整し
た低硫黄原油を常圧蒸留及び又は減圧蒸留により、硫黄
含有量0.5重量%以下の低沸点留分と、硫黄含有量
0.5重量%を超える高沸点留分に分離し、該低沸点留
分をボイラのリパワリングガスタービン用燃料として用
い、該高沸点留分をボイラ用燃料として用いてガスター
ビン及びスチームタービンを駆動して発電することを特
徴とする発電方法。
2. A low-sulfur crude oil having a salt content adjusted to 0.5 ppm or less is subjected to atmospheric distillation and / or vacuum distillation to obtain a low-boiling fraction having a sulfur content of 0.5% by weight or less and a sulfur content of 0. Separating into a high boiling point fraction exceeding 5% by weight, using the low boiling point fraction as a fuel for a repowering gas turbine of a boiler, and using the high boiling point fraction as a fuel for a boiler to drive a gas turbine and a steam turbine. A power generation method characterized by generating power.
JP4287504A 1992-10-26 1992-10-26 Power generation method Expired - Lifetime JP2576006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4287504A JP2576006B2 (en) 1992-10-26 1992-10-26 Power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4287504A JP2576006B2 (en) 1992-10-26 1992-10-26 Power generation method

Publications (2)

Publication Number Publication Date
JPH06207180A true JPH06207180A (en) 1994-07-26
JP2576006B2 JP2576006B2 (en) 1997-01-29

Family

ID=17718199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4287504A Expired - Lifetime JP2576006B2 (en) 1992-10-26 1992-10-26 Power generation method

Country Status (1)

Country Link
JP (1) JP2576006B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029653A1 (en) * 1996-12-26 1998-07-09 Mitsubishi Heavy Industries, Ltd. Power generation method and power generating apparatus
WO2002034865A1 (en) * 2000-10-24 2002-05-02 Jgc Corpopation Refined oil and process for producing the same
WO2011149079A1 (en) * 2010-05-27 2011-12-01 住友商事株式会社 Hybrid thermal power generation system and method for constructing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225806A (en) * 1975-08-21 1977-02-26 Idemitsu Kosan Co Ltd Method and appapatus for the desalting of crude oil
JPS55165992A (en) * 1979-06-12 1980-12-24 Masuji Takizawa Production of high-speed diesel fuel and lubricating oil from paraffinic heavy oil
JPS57177089A (en) * 1981-04-24 1982-10-30 Hitachi Ltd Device for treating fuel oil
JPS5974185A (en) * 1982-09-14 1984-04-26 コンパニ−・フランセ−ズ・ド・ラフイナ−ジユ Treatment of crude oil prior to atomospheric distillation
JPS60106883A (en) * 1983-11-16 1985-06-12 Chiyoda Chem Eng & Constr Co Ltd Method for removing salt in heavy hydrocarbon oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225806A (en) * 1975-08-21 1977-02-26 Idemitsu Kosan Co Ltd Method and appapatus for the desalting of crude oil
JPS55165992A (en) * 1979-06-12 1980-12-24 Masuji Takizawa Production of high-speed diesel fuel and lubricating oil from paraffinic heavy oil
JPS57177089A (en) * 1981-04-24 1982-10-30 Hitachi Ltd Device for treating fuel oil
JPS5974185A (en) * 1982-09-14 1984-04-26 コンパニ−・フランセ−ズ・ド・ラフイナ−ジユ Treatment of crude oil prior to atomospheric distillation
JPS60106883A (en) * 1983-11-16 1985-06-12 Chiyoda Chem Eng & Constr Co Ltd Method for removing salt in heavy hydrocarbon oil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029653A1 (en) * 1996-12-26 1998-07-09 Mitsubishi Heavy Industries, Ltd. Power generation method and power generating apparatus
AU726473B2 (en) * 1996-12-26 2000-11-09 Mitsubishi Heavy Industries, Ltd. Power generation method and power generating apparatus
US6298651B1 (en) * 1996-12-26 2001-10-09 Mitsubishi Heavy Industries, Ltd. Power generation method and power generating apparatus
WO2002034865A1 (en) * 2000-10-24 2002-05-02 Jgc Corpopation Refined oil and process for producing the same
US7384537B2 (en) 2000-10-24 2008-06-10 Jgc Corporation Refined oil and process for producing the same
WO2011149079A1 (en) * 2010-05-27 2011-12-01 住友商事株式会社 Hybrid thermal power generation system and method for constructing same
US8850787B2 (en) 2010-05-27 2014-10-07 Sumitomo Corporation Hybrid thermal power generation system and method of constructing same

Also Published As

Publication number Publication date
JP2576006B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JP6289698B2 (en) System and method for high-efficiency power generation using carbon dioxide circulating working fluid
JP6741725B2 (en) High efficiency power generation system and method using carbon dioxide circulating working fluid
CA2576896C (en) Carbon dioxide enriched flue gas injection for hydrocarbon recovery
US5261225A (en) Pressurized wet combustion at increased temperature
JP4495791B2 (en) Combined cycle power generation system
JPH11515037A (en) Emulsion fuel and its use in gas turbines
JP2005298825A (en) Method for rearranging and blending liquid fuel
JPH06207180A (en) Production of fuel for electricity generation and method for generating electricity
JP2511227B2 (en) Method for producing power generation fuel and power generation method
JP2554229B2 (en) Combined cycle power generation method
US4095954A (en) Method for removal of last traces of soluble ash and elements from solvent refined coal
JP2001527615A (en) Power generation method and apparatus using residual fuel oil
Fraas Survey of turbine bucket erosion, deposits, and corrosion
JP2862118B2 (en) Power generation method
JP2554228B2 (en) Combined cycle power generation method
US3793181A (en) Fuel for gas turbine
JPH06272515A (en) Power generating method
JP4153448B2 (en) Power generation method using low-grade coal as fuel
AU2013205480A1 (en) Carbon Dioxide Enriched Flue Gas Injection for Hydrocarbon Recovery
JPH10331609A (en) Combined cycle power generation and device thereof
JPH06172762A (en) Gas turbine fuel
JPH09189206A (en) Combined cycle power generation facilities
Bomelburg Efficiency evaluation of oxygen enrichment in energy conversion processes
JPH11270354A (en) Thermal electric power plant
JP2016014643A (en) Non-renewable energy power generation facility without condenser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 16

EXPY Cancellation because of completion of term