JPH0620714A - Fuel cell and electrolyte impregnation treatment method - Google Patents

Fuel cell and electrolyte impregnation treatment method

Info

Publication number
JPH0620714A
JPH0620714A JP4172616A JP17261692A JPH0620714A JP H0620714 A JPH0620714 A JP H0620714A JP 4172616 A JP4172616 A JP 4172616A JP 17261692 A JP17261692 A JP 17261692A JP H0620714 A JPH0620714 A JP H0620714A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
electrolyte
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4172616A
Other languages
Japanese (ja)
Other versions
JPH081809B2 (en
Inventor
Shoji Ito
昌治 伊藤
Hidekazu Fujimura
秀和 藤村
Shozo Nakamura
昭三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4172616A priority Critical patent/JPH081809B2/en
Publication of JPH0620714A publication Critical patent/JPH0620714A/en
Publication of JPH081809B2 publication Critical patent/JPH081809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To effectively remove the residual organic solvent and binder inside an electrolytic substrate at initial temperature rise of a fuel cell. CONSTITUTION:Branch pipes 22 and 23 are provided in the middles of exhaust pipes 18 and 19 for anode gas 12 and cathode gas 13 of a fuel battery, and gas suction mechanisms 26 and 27 for sucking and exhausting gas are provided through valves. Furthermore, a branch pipe 36 is also provided in the middle of a purge gas exhaust pipe 30, a gas suction mechanism 38 for sucking and exhausting gas is added through a valve 37 so as to increase the influence. So, since it is so arranged as to suck and remove the gas inside the exhaust pipe through exhaust pipes, the residual organic solvent generated from an electrolytic substrate and a binder can be removed. As a result, the deterioration of electrolyte accompanying the abnormal heating by an organic solvent or the drop of the battery capacity by the inequality in impregnation can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池に係り、特に
電池の初期昇温時に電解質担体である基板に電解質を含
浸する内部含浸型の燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to an internal impregnation type fuel cell in which a substrate, which is an electrolyte carrier, is impregnated with an electrolyte at the initial temperature rise of the cell.

【0002】[0002]

【従来の技術】燃料電池の運転システムとしては、例え
ば日本工業新聞社刊行の「エネルギー」第24巻第4号
(1990年)30頁第4図「MW級MCFC発電プラ
ント」が知られている。この例によれば、燃料電池本体
から排出されるアノード排気ガスとカソード排気ガス
は、それぞれ気水分離器とタービンを介して最終的には
燃料電池発電システムの系外に排出される。
2. Description of the Related Art As an operating system of a fuel cell, for example, "Energy" Vol. 24, No. 4 (1990), p. 30, FIG. 4, "MW-class MCFC power plant" is known. . According to this example, the anode exhaust gas and the cathode exhaust gas discharged from the fuel cell main body are finally discharged to the outside of the fuel cell power generation system via the steam separator and the turbine, respectively.

【0003】燃料電池は、一般に、電解質を含浸した電
解質板を挾んで通気性を有するアノード電極とカソード
電極を配し、それらの電極の各々の外側にそれぞれアノ
ードガスとカソードガスの流路を設けたセパレータを配
して形成される。このように形成された単位燃料電池
を、通常、複数個積層して燃料電池スタックを形成して
用いられる。燃料電池スタックの周縁部には、下部ヘッ
ダーを介して外部から供給されるアノードガスとカソー
ドガスそれぞれを各燃料電池に供給するためのマニホー
ルドと、アノードガス流路とカソードガス流路を通過し
たガス排出用のそれぞれのマニホールドが設けられる。
アノード排ガスとカソード排ガスはそれぞれのマニホー
ルドと下部ヘッダーを経てアノードガス排気管とカソー
ドガス排気管それぞれに排出される。また、燃料電池ス
タックはパージガス補給機構を備えた容器内に収納して
用いられる。
In general, a fuel cell has an electrolyte plate impregnated with an electrolyte, and an air-permeable anode electrode and a cathode electrode disposed between them. Anode gas and cathode gas passages are provided outside each of these electrodes. Formed by arranging a separator. A plurality of unit fuel cells thus formed are usually stacked to form a fuel cell stack for use. At the periphery of the fuel cell stack, a manifold for supplying each fuel cell with anode gas and cathode gas supplied from the outside through the lower header, and gas that has passed through the anode gas passage and the cathode gas passage A respective manifold for discharge is provided.
The anode exhaust gas and the cathode exhaust gas are exhausted to the anode gas exhaust pipe and the cathode gas exhaust pipe, respectively, through the respective manifolds and the lower header. The fuel cell stack is used by being housed in a container equipped with a purge gas replenishment mechanism.

【0004】ところで、電解質板に電解質を含浸させる
方法として、燃料電池を組み立てた後に行う、いわゆる
内部含浸型が知られている。内部含浸型の場合、バイン
ダーを混入したセラミック系の基板を用い、これに例え
ば電解質としての炭酸塩を塗布した状態で燃料電池スタ
ックを組立てる。そして、電池昇温の初期にバインダー
を蒸発させ、これにより形成された空隙に炭酸塩を含浸
させる。したがって、バインダーとしては、炭酸塩が溶
融する約500℃までに溶融蒸発する材料が用いられ
る。なお、電池の初期昇温は収納容器内に設けられたヒ
ータにより電池の運転温度である650℃に加熱するこ
とで行う。
By the way, as a method of impregnating an electrolyte plate with an electrolyte, there is known a so-called internal impregnation type which is performed after a fuel cell is assembled. In the case of the internal impregnation type, a fuel cell stack is assembled by using a ceramic-based substrate mixed with a binder and coating a carbonate as an electrolyte on the substrate. Then, the binder is evaporated at the initial stage of temperature rise of the battery, and the voids thus formed are impregnated with carbonate. Therefore, as the binder, a material that melts and evaporates up to about 500 ° C. at which the carbonate melts is used. The initial temperature rise of the battery is performed by heating it to 650 ° C., which is the operating temperature of the battery, by a heater provided in the container.

【0005】ここで、バインダーの除去が不十分である
と、電解質の含浸が不均一になり、電池の性能が低下す
るという問題がある。また、基板の形成時に用い有機溶
剤が焼結後も基板に残留している場合があり、この残留
有機溶剤の除去が不十分であると、運転時に電池が異常
発熱して劣化するという問題がある。
Here, if the removal of the binder is insufficient, the impregnation of the electrolyte becomes non-uniform and the performance of the battery deteriorates. In addition, the organic solvent used during the formation of the substrate may remain on the substrate even after sintering. If the residual organic solvent is not sufficiently removed, the battery may abnormally generate heat during operation and deteriorate. is there.

【0006】しかし、上記のような初期の加熱だけで
は、残留有機溶剤とバインダーの除去が不十分で、上記
のような問題がある。
However, the removal of the residual organic solvent and the binder is insufficient only by the above-mentioned initial heating, which causes the above-mentioned problems.

【0007】そこで、従来、上記の問題を解決するため
に、初期昇温時にアノードガスとカソードガスの両方の
ラインに、空気又は二酸化炭素等を含む不活性ガス(以
下、不活性ガス等という)を供給し、これにより残存有
機溶剤とバインダーを排気ラインに追い出して除去する
ことが行われている。また、通常の排気ラインの他に、
専用の排気ラインを設けて効率よく追い出すことも試み
られている。
Therefore, in order to solve the above problems, an inert gas containing air, carbon dioxide, or the like (hereinafter, referred to as an inert gas or the like) in both lines of the anode gas and the cathode gas at the time of initial temperature rise. The residual organic solvent and the binder are expelled to the exhaust line to be removed. In addition to the normal exhaust line,
Efforts have also been made to squeeze out efficiently by installing a dedicated exhaust line.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の技術によっても、次ぎに述べる理由により、残存有
機溶剤とバインダーの除去が不十分な場合があるという
問題がある。
However, even with the above-mentioned conventional technique, there is a problem that the residual organic solvent and the binder may be insufficiently removed for the reasons described below.

【0009】すなわち、単位燃料電池の構造は、前述の
ようにセパレータと電解質板とを交互に積層して燃料ス
タックを形成する構造になっており、セパレータに形成
されたアノードガスとカソードガスの各流路(特に、各
単位燃料電池間を連通させて設けられマニホールド部
分)は、セパレータの周縁部と電解質板の積層部によっ
て外部とシールされる構造となっている。つまり、溶融
した炭酸塩によるいわゆるウエットシールを期待するシ
ール構造になっている。そのため、炭酸塩が溶融する約
500℃未満の初期昇温時はシール効果が発揮されず、
残留有機溶剤とバインダーを排出除去すべく、上述のよ
うに燃料電池の初期昇温時にアノードガス流路とカソー
ドガス流路に不活性ガス等を送り込もうとしても、シー
ル部から不活性ガス等が外部に漏洩してしまうことにな
る。したがって、電池内部のアノードガス流路とカソー
ドガス流路に通流される不活性ガス等の流量が不足し、
残存有機溶剤とバインダーの除去が不十分になるのであ
る。
That is, the structure of the unit fuel cell is such that a separator and an electrolyte plate are alternately laminated to form a fuel stack as described above, and each of the anode gas and the cathode gas formed in the separator is formed. The flow path (particularly, the manifold portion provided so as to connect the unit fuel cells to each other) is sealed from the outside by the peripheral portion of the separator and the laminated portion of the electrolyte plate. In other words, it has a sealing structure that expects a so-called wet seal by molten carbonate. Therefore, the sealing effect is not exhibited at the initial temperature rise below about 500 ° C. at which the carbonate melts,
In order to discharge and remove the residual organic solvent and binder, even if an inert gas or the like is fed into the anode gas flow path and the cathode gas flow path during the initial temperature rise of the fuel cell as described above, the inert gas, etc. from the seal part Will be leaked to the outside. Therefore, the flow rate of the inert gas or the like flowing through the anode gas flow path and the cathode gas flow path inside the battery becomes insufficient,
The removal of the residual organic solvent and binder is insufficient.

【0010】また、給気側マニホールド部分、アノード
ガス流路部分、カソードガス流路部分、排気側マニホー
ルド部分で残留有機溶剤とバインダーを糾合した不活性
ガスが上記シール部から漏洩すると、通常運転時にはパ
ージガスが充満している収納容器内に溜まることにな
る。この場合、特に有機溶剤は燃料電池の昇温時に異常
発熱をして燃料電池スタックの外側から燃料電池に劣化
作用を及ぼすという問題が生ずる。
Further, if the inert gas obtained by mixing the residual organic solvent and the binder leaks from the seal portion in the air supply side manifold portion, the anode gas flow passage portion, the cathode gas flow passage portion, and the exhaust side manifold portion, during normal operation The purge gas will accumulate in the storage container that is full. In this case, in particular, the organic solvent causes abnormal heat generation when the temperature of the fuel cell rises, and causes a problem of deteriorating the fuel cell from the outside of the fuel cell stack.

【0011】本発明の第1の目的は、燃料電池の電解質
含浸処理に拘る初期昇温時において、電解質基板内に残
留している有機溶剤とバインダーとを効果的に除去して
その残存率を極めて低いものにすることができる燃料電
池を提供しようとするものである。
The first object of the present invention is to effectively remove the organic solvent and the binder remaining in the electrolyte substrate during the initial temperature rise associated with the electrolyte impregnation treatment of the fuel cell, and to reduce the residual rate. It is an attempt to provide a fuel cell that can be extremely low.

【0012】本発明の第2の目的は、燃料電池の電解質
含浸処理に拘る初期昇温時において、電解質基板内に残
留している有機溶剤とバインダーとを効果的に除去した
後、電解質を含浸させることができる電解質含浸処理方
法を提供しようとするものである。
A second object of the present invention is to effectively remove the organic solvent and the binder remaining in the electrolyte substrate during the initial temperature rise in the electrolyte impregnation treatment of the fuel cell, and then impregnate the electrolyte. It is intended to provide an electrolyte impregnation treatment method that can be performed.

【0013】[0013]

【課題を解決するための手段】上記第1の目的を達成す
るため、本発明の第1の発明は、電解質板を挾んでアノ
ード電極とカソード電極を配し、さらにその各電極に接
するアノードガス流路とカソードガス流路とをそれぞれ
設けたセパレータを外側に配して各流路にアノードガス
とカソードガスの供給管と排気管とをそれぞれ連通した
単位燃料電池を有する燃料電池において、アノードガス
とカソードガスのそれぞれの排気管にバルブを介してガ
ス吸引機構を分岐して設けたことを特徴とする。
In order to achieve the above-mentioned first object, the first invention of the present invention is to dispose an anode electrode and a cathode electrode with an electrolyte plate sandwiched therebetween, and further to arrange an anode gas in contact with each electrode. In a fuel cell having a unit fuel cell in which a separator provided with a flow passage and a cathode gas flow passage are arranged outside and a supply pipe and an exhaust pipe for the anode gas and the cathode gas are respectively connected to each flow passage, A gas suction mechanism is branched and provided via a valve in each of the exhaust pipes for cathode gas and cathode gas.

【0014】また、燃料電池が収納容器内に設置される
場合は、この収納容器のパージガスの排気管にバルブを
介してガス吸引機構を分岐して設けることが好ましい。
Further, when the fuel cell is installed in a storage container, it is preferable that a gas suction mechanism is branched from the purge gas exhaust pipe of the storage container via a valve.

【0015】上記第2の目的を達成するため、本発明の
第2の発明は、電解質板を挾んでアノード電極とカソー
ド電極を配し、該各電極に接するアノードガス流路とカ
ソードガス流路とをそれぞれ設けたセパレータを外側に
配し、該各流路にアノードガスとカソードガスの供給管
と排気管とをそれぞれ連通して構成された単位燃料電池
を有してなる燃料電池の電解質含浸処理方法において、
前記アノードガスとカソードガスのそれぞれの排気管に
設けた分岐管を介して前記単位燃料電池内部のガスを吸
引し、該ガス吸引により前記電解質板の基板に残留して
いる有機溶剤とバインダーを除去してから電解質を含浸
することを特徴とする。
In order to achieve the above-mentioned second object, a second invention of the present invention is to dispose an anode electrode and a cathode electrode with an electrolyte plate sandwiched between them, and an anode gas channel and a cathode gas channel which are in contact with the respective electrodes. An electrolyte impregnation of a fuel cell having a unit fuel cell configured by arranging separators respectively provided on the outside and communicating a supply pipe and an exhaust pipe for anode gas and cathode gas to the respective flow paths. In the processing method,
The gas inside the unit fuel cell is sucked through the branch pipes provided in the exhaust pipes of the anode gas and the cathode gas respectively, and the organic solvent and the binder remaining on the substrate of the electrolyte plate are removed by the gas suction. And then impregnating with an electrolyte.

【0016】燃料電池が収納容器内に設置される場合
は、上記に合わせて、燃料電池収納容器のパージガスの
排気管に設けた分岐管を介して前記収納容器内のガスを
吸引することが好ましい。
When the fuel cell is installed in the storage container, in accordance with the above, it is preferable to suck the gas in the storage container through the branch pipe provided in the exhaust pipe of the purge gas of the fuel cell storage container. .

【0017】[0017]

【作用】本発明によれば、次の作用により上記各目的が
達成される。本発明の第1と第2の発明によれば、燃料
電池の初期昇温過程において、アノードガスのラインと
カソードガスのラインに空気又は二酸化炭素等を含む不
活性ガスを供給するとともに、アノードガス排気管とカ
ソードガス排気管に分岐して設けた吸引機構により燃料
電池内のガスを強制的に吸引排出する。これにより、電
解質板から発生した残留有機溶剤とバインダーの蒸気
は、アノードガスとカソードガスの両ラインに送り込ま
れた不活性ガス等と共に効果的に吸引排出され、残存量
を十分に低減できる。その後に電解質の含浸作業を行な
うことにより、電解質を均一に含浸させることができる
とともに、残存有機溶剤による異常発熱を低減できる。
According to the present invention, the above objects are achieved by the following operations. According to the first and second aspects of the present invention, in the initial temperature rising process of the fuel cell, an inert gas containing air or carbon dioxide is supplied to the anode gas line and the cathode gas line and the anode gas is supplied. The gas in the fuel cell is forcibly sucked and discharged by a suction mechanism provided by being branched into an exhaust pipe and a cathode gas exhaust pipe. Thereby, the residual organic solvent and the binder vapor generated from the electrolyte plate are effectively sucked and discharged together with the inert gas and the like fed to both the anode gas and cathode gas lines, and the residual amount can be sufficiently reduced. By performing the electrolyte impregnation operation thereafter, the electrolyte can be uniformly impregnated and abnormal heat generation due to the residual organic solvent can be reduced.

【0018】また、電解質が溶融する温度よりも低温の
時にはウエットシール効果が作用しないので燃料電池ス
タック周縁部から不活性ガスと共に、有機溶剤とバイン
ダーが燃料電池収納容器内に漏出する。この有機溶剤と
バインダーは電解質の含浸作業に際して供給されるパー
ジガスと漏洩不活性ガスと一緒に、パージガス排気管に
分岐して設けた吸引機構により強制的に吸引排出され
る。
Further, when the temperature is lower than the temperature at which the electrolyte melts, the wet sealing effect does not work, so that the organic solvent and the binder leak from the peripheral portion of the fuel cell stack together with the inert gas into the fuel cell container. The organic solvent and the binder are forcibly sucked and discharged together with the purge gas and the leaking inert gas supplied during the impregnation of the electrolyte by the suction mechanism provided branching to the purge gas exhaust pipe.

【0019】なお、有機溶剤とバインダーの排出除去作
業が完了した後は、アノードガス排気管用、カソードガ
ス排気管用、およびパージガス排気管用それぞれの吸引
機構の上流側に備えられたバルブを用いてそれぞれにガ
ス吸引機構を閉鎖し、それぞれの排気バルブを開放して
通常の排気運転に移行する。
After the work of discharging and removing the organic solvent and the binder is completed, the valves provided on the upstream side of the suction mechanisms for the anode gas exhaust pipe, the cathode gas exhaust pipe, and the purge gas exhaust pipe are used respectively. The gas suction mechanism is closed, each exhaust valve is opened, and normal exhaust operation is started.

【0020】[0020]

【実施例】本発明による実施例を図1、図2によって説
明する。図1は本発明の燃料電池周辺の基本構成を模式
的に示した図である。燃料電池収納容器1内に設けられ
た燃料電池スタック2は、中央部に通気性を有するアノ
ード電極3とカソード電極4とをその外側の片面ずつに
備える電解質板5と、前記アノード電極3とカソード電
極4にそれぞれ接するような形で両面中央部に設けられ
たアノードガス流路6とカソードガス流路7とを備える
セパレータ8とを積層して形成されている。そして、そ
の積層体の上下両端に、上部ヘッダー9と下部ヘッダー
10を配し、この各ヘッダーに連通させて燃料電池スタ
ック2の周縁部11にマニホールドが設けてある。外部
からアノードガス12とカソードガス13を下部ヘッダ
ー10に導入するためのアノードガス給気管14とカソ
ードガス給気管15とは、このマニホールドによって前
記アノードガス流路6とカソードガス流路7とにそれぞ
れ連通されている。また、周縁部11に設けてある別の
マニホールドは、アノード排ガス16とカソード排ガス
17とを前記ガス流路から、それぞれ下部ヘッダー10
を経てアノードガス排気管18とカソードガス排気管1
9とに連通されている。アノードガス排気管18とカソ
ードガス排気管19にはそれぞれ排気バルブ20と21
が取付られている。この排気バルブと燃料電池との間に
は分岐管22と23が設けられている。これはそれぞれ
強制排気用バルブ24と25を介してガス吸引機構26
と27に接続され、ガスを系外に排出できるようになっ
ている。パージガス補給機構(図示せず)から供給され
るパージガス28はパージガス給気管29を通して燃料
電池収納容器1の中に導入され、パージガス排気管30
により排気バルブ31を介して系外に放出される。
Embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a diagram schematically showing the basic structure around the fuel cell of the present invention. The fuel cell stack 2 provided in the fuel cell storage container 1 includes an electrolyte plate 5 having an air permeable anode electrode 3 and a cathode electrode 4 on one side each on the outside, and the anode electrode 3 and the cathode. It is formed by stacking a separator 8 including an anode gas flow channel 6 and a cathode gas flow channel 7 provided in the center of both surfaces so as to be in contact with the electrodes 4, respectively. Then, an upper header 9 and a lower header 10 are arranged at both upper and lower ends of the stack, and a manifold is provided at a peripheral portion 11 of the fuel cell stack 2 so as to communicate with each header. An anode gas air supply pipe 14 and a cathode gas air supply pipe 15 for introducing the anode gas 12 and the cathode gas 13 from the outside into the lower header 10 are provided in the anode gas flow passage 6 and the cathode gas flow passage 7 by the manifold, respectively. It is in communication. Further, another manifold provided in the peripheral portion 11 is arranged so that the anode exhaust gas 16 and the cathode exhaust gas 17 are respectively discharged from the gas flow path to the lower header 10
Through the anode gas exhaust pipe 18 and the cathode gas exhaust pipe 1
It is in communication with 9. Exhaust valves 20 and 21 are provided on the anode gas exhaust pipe 18 and the cathode gas exhaust pipe 19, respectively.
Is attached. Branch pipes 22 and 23 are provided between the exhaust valve and the fuel cell. This is a gas suction mechanism 26 through the forced exhaust valves 24 and 25, respectively.
And 27 are connected so that the gas can be discharged to the outside of the system. The purge gas 28 supplied from a purge gas supply mechanism (not shown) is introduced into the fuel cell storage container 1 through the purge gas supply pipe 29, and the purge gas exhaust pipe 30
Is released to the outside of the system via the exhaust valve 31.

【0021】ここで、燃料電池スタック2の構造を図2
により説明する。燃料電池スタックの外側からは、電解
質板5とセパレータ8の積層構造が見え、断面を採った
最上部にはアノードガス流路6が見えている。下部ヘッ
ダー10にはアノードガス12を導入するアノードガス
給気管14と、カソードガス13を導入するカソードガ
ス給気管15とがそれぞれ取付けられている。また、ア
ノード排ガス16を排出するアノードガス排気管18
と、カソード排ガス17を排出するカソードガス排気管
19もそれぞれ下部ヘッダー10に取付けられている。
燃料電池スタックの周縁部11には下部ヘッダー10で
前記それぞれのガスの給排気管と連通するアノードガス
用マニホールド32、カソードガス用マニホールド3
3、アノード排ガス用マニホールド34、およびカソー
ド排ガス用マニホールド35が設けられている。それぞ
れのマニホールドはそれぞれアノードガス流路6または
カソードガス流路7に連通している。構造上それぞれの
アノードガス流路6とカソードガス流路7とはほぼ直交
している。
Here, the structure of the fuel cell stack 2 is shown in FIG.
Will be described. From the outside of the fuel cell stack, the laminated structure of the electrolyte plate 5 and the separator 8 can be seen, and the anode gas flow channel 6 can be seen at the top of the section. An anode gas supply pipe 14 for introducing the anode gas 12 and a cathode gas supply pipe 15 for introducing the cathode gas 13 are attached to the lower header 10, respectively. Further, an anode gas exhaust pipe 18 for discharging the anode exhaust gas 16
A cathode gas exhaust pipe 19 for exhausting the cathode exhaust gas 17 is also attached to the lower header 10.
An anode gas manifold 32 and a cathode gas manifold 3 that communicate with the respective gas supply / exhaust pipes in the lower header 10 at the peripheral portion 11 of the fuel cell stack.
3, an anode exhaust gas manifold 34, and a cathode exhaust gas manifold 35 are provided. Each manifold communicates with the anode gas flow channel 6 or the cathode gas flow channel 7, respectively. Due to the structure, the anode gas flow channel 6 and the cathode gas flow channel 7 are substantially orthogonal to each other.

【0022】ここで、本実施例を用いて行う電解質含浸
処理を中心に動作を説明する。
Here, the operation will be described focusing on the electrolyte impregnation process performed in this embodiment.

【0023】溶融炭酸塩型燃料電池の場合には、通常の
運転中は約650℃に保たれ、アノードガスには水素リ
ッチの燃料ガスが、カソードガスには二酸化炭素を多く
含む酸化剤ガスが使用される。またパージガスには窒素
ガスが用いられる。運転時には電解質板5の基板に塗布
された炭酸塩および含浸された炭酸塩が溶融して電解質
板とセパレータの間隙を埋めてウエットシール効果を発
揮する。しかし初期昇温時や起動時には炭酸塩が溶融す
る約500℃まではシール効果は発揮しない。
In the case of a molten carbonate fuel cell, the temperature is kept at about 650 ° C. during normal operation, the hydrogen-rich fuel gas is used as the anode gas, and the oxidant gas containing a large amount of carbon dioxide is used as the cathode gas. used. Nitrogen gas is used as the purge gas. During operation, the carbonate applied to the substrate of the electrolyte plate 5 and the impregnated carbonate melt to fill the gap between the electrolyte plate and the separator and exert a wet sealing effect. However, at the time of initial temperature rise and startup, the sealing effect is not exerted up to about 500 ° C. at which the carbonate melts.

【0024】本実施例の燃料電池は、電解質を電池の運
転初期に電解質板に含浸させる内部含浸型であり、電解
質板5はバインダーを混入したセラミック系の基板を用
い、これに炭酸塩を塗布した状態で燃料電池スタックを
組立てる。そして、電池昇温の初期に、収納容器内に設
けられた図示していないヒータにより加熱してバインダ
ーを蒸発させ、これにより形成された空隙に炭酸塩を含
浸させる。バインダーとしては、炭酸塩が溶融する約5
00℃までに溶融蒸発する材料が用いられる。なお、電
池の初期昇温は収納容器内に設けられたヒータにより電
池の運転温度である650℃に加熱することで行う。
The fuel cell of this embodiment is an internal impregnation type in which an electrolyte plate is impregnated with an electrolyte at the initial stage of operation of the cell. As the electrolyte plate 5, a ceramic-based substrate mixed with a binder is used, and a carbonate is applied thereto. Assemble the fuel cell stack. Then, in the initial stage of the temperature rise of the battery, the heater (not shown) provided in the storage container is heated to evaporate the binder, and the voids formed thereby are impregnated with carbonate. As a binder, the carbonate melts about 5
Materials that melt and evaporate up to 00 ° C. are used. The initial temperature rise of the battery is performed by heating it to 650 ° C., which is the operating temperature of the battery, by a heater provided in the container.

【0025】電池の初期昇温過程で、電解質板5のバイ
ンダーや残存有機溶剤を除去するため、初期昇温時には
アノードガス給気管14とカソードガス給気管15とに
空気や二酸化炭素を大量に含む不活性ガスを供給し、こ
れにより蒸発したバインダーや残存有機溶剤を追い出
す。その際、アノードガス排気管用排気バルブ20とカ
ソードガス排気管用排気バルブ21は閉鎖し、アノード
ガス強制排気用バルブ24とカソードガス強制排気用バ
ルブ25は開放し、それぞれのガス吸引機構26と27
を用いて強制排気をしながら燃料電池の昇温作業を行な
う。炭酸塩が溶融し始める約500℃を超えてから所定
の運転温度の約650℃に至る迄の間の炭酸塩が充分に
溶融した時点で電解質基板への炭酸塩含浸を行ない、基
板を電解質板5に変換させる。
Since the binder and the residual organic solvent of the electrolyte plate 5 are removed during the initial temperature rising process of the battery, the anode gas air supply pipe 14 and the cathode gas air supply pipe 15 contain a large amount of air and carbon dioxide at the time of the initial temperature rise. An inert gas is supplied to expel the evaporated binder and residual organic solvent. At that time, the exhaust valve 20 for the anode gas exhaust pipe and the exhaust valve 21 for the cathode gas exhaust pipe are closed, the valve 24 for the anode gas forced exhaust and the valve 25 for the cathode gas forced exhaust are opened, and the respective gas suction mechanisms 26 and 27.
The fuel cell temperature raising work is performed while using the. The carbonate substrate is impregnated with carbonate at a time when the carbonate has sufficiently melted from about 500 ° C. at which the carbonate starts to melt to about 650 ° C., which is a predetermined operating temperature, and the substrate is replaced with an electrolyte plate. Convert to 5.

【0026】なお、炭酸塩が溶融し始める約500℃ま
でに有機溶剤とバインダーを排除するのが原則である
が、炭酸塩が溶融すると完全ではないけれども燃料電池
スタック周縁部のウエットシール効果が作用するように
なる。その結果、炭酸塩が溶融し始めてから含浸を行う
迄の間、残存有機溶剤と残存バインダーの除去効率は高
くなる。特に、吸引排気を行うことによって有機溶剤と
バインダーの除去効果は大いに高められる。有機溶剤の
残存率が低ければ低い程、燃料電池の劣化が少なくて済
み、またバインダーの残存率が低ければ低い程その偏在
による電解質の不均一性を少なくし燃料電池の性能は向
上する。
The principle is to remove the organic solvent and the binder by about 500 ° C. at which the carbonate starts to melt. However, when the carbonate melts, it is not perfect, but the wet sealing effect at the periphery of the fuel cell stack acts. Come to do. As a result, the efficiency of removing the residual organic solvent and the residual binder increases from the beginning of the melting of the carbonate until the impregnation. In particular, the effect of removing the organic solvent and the binder is greatly enhanced by performing suction and exhaust. The lower the residual ratio of the organic solvent is, the less the deterioration of the fuel cell is, and the lower the residual ratio of the binder is, the less the non-uniformity of the electrolyte due to the uneven distribution and the better the performance of the fuel cell.

【0027】このようにして、含浸作業が完了してから
排気バルブ20と21を開放し、強制排気用バルブ24
と25を閉鎖する。以後は燃料電池を運転に入れるため
の作業を実施する。
After the impregnation work is completed, the exhaust valves 20 and 21 are opened and the forced exhaust valve 24 is opened.
And close 25. After that, work to put the fuel cell into operation will be carried out.

【0028】なお、強制排気系統22、24、26およ
び23、25、27は恒久設備である必要はなく、強制
排気用バルブ24と25の先は何時でも、強制排気用バ
ルブ24と25は燃料電池の運転休止中に、分岐管22
と23の適当な場所から撤去して蓋をして置くことも可
能である。
It should be noted that the forced exhaust systems 22, 24, 26 and 23, 25, 27 do not have to be permanent facilities, and the forced exhaust valves 24 and 25 can always be connected to the fuel exhaust valves 24 and 25 at any point. While the battery is not operating, the branch pipe 22
It is also possible to remove it from a suitable place of 23 and 23 and put it on the lid.

【0029】次に、本発明による他の実施例について説
明する。本実施例は、図1に示す実施例の装置に対し
て、同図中に点線で示すパージガス排気管吸引系統を追
加したものである。パージガス排気管30の先に備えら
れた排気バルブ31と燃料電池収納容器1との途中から
分岐管36を設け、強制排気用バルブ37を介してガス
吸引機構38と接続する。これにより燃料電池収納容器
1内のガスを吸引排気することができる。
Next, another embodiment according to the present invention will be described. In this embodiment, a purge gas exhaust pipe suction system shown by a dotted line in the drawing is added to the device of the embodiment shown in FIG. A branch pipe 36 is provided midway between the exhaust valve 31 provided at the tip of the purge gas exhaust pipe 30 and the fuel cell storage container 1, and is connected to the gas suction mechanism 38 via the forced exhaust valve 37. Thereby, the gas in the fuel cell storage container 1 can be sucked and exhausted.

【0030】通常の燃料電池運転時には水素リッチの燃
料ガスが漏洩した場合にも異常燃焼を防止するため、燃
料電池収納容器1の中に窒素ガスをパージガス給気管2
9から供給し、パージガス排気管30から抜いている。
In order to prevent abnormal combustion even when the hydrogen-rich fuel gas leaks during normal fuel cell operation, nitrogen gas is purged into the fuel cell housing container 1 with the purge gas air supply pipe 2
9 and the purge gas is exhausted from the exhaust pipe 30.

【0031】燃料電池の初期昇温時には、第1の実施例
で説明した手順に従って炭酸塩の含浸作業を実施する。
その際燃料電池スタックから空気や二酸化炭素を大量に
含む不活性ガスと共に有機溶剤やバインダーが燃料電池
収納容器1の内部に漏洩する。また燃料電池スタック外
壁部からは有機溶剤やバインダーが放出される。この燃
料電池収納容器1内に留まった有機溶剤やバインダーを
排出除去するために、炭酸塩含浸作業中はパージガス排
気管吸引系統を運転し続ける。炭酸塩含浸作業中は水素
ガスの使用はないのでパージガス給気管29からも空気
や二酸化炭素を大量に含む不活性ガスを供給しても差支
えない。
At the initial temperature rise of the fuel cell, the carbonate impregnation work is carried out according to the procedure described in the first embodiment.
At that time, the organic solvent and the binder leak from the fuel cell stack into the fuel cell container 1 together with the inert gas containing a large amount of air and carbon dioxide. Further, the organic solvent and the binder are released from the outer wall of the fuel cell stack. In order to discharge and remove the organic solvent and binder remaining in the fuel cell storage container 1, the purge gas exhaust pipe suction system is continuously operated during the carbonate impregnation operation. Since hydrogen gas is not used during the carbonate impregnation operation, it is no problem to supply an inert gas containing a large amount of air or carbon dioxide from the purge gas supply pipe 29.

【0032】パージガス排気管吸引系統を使って強制排
気することにより通常運転時のパージガス循環量に比し
極めて大量のガスを吸引排気できる。したがって燃料電
池収納容器1内に漏出した有機溶剤とバインダーは速や
かに排出することが可能になる。これによって残存有機
溶剤の弊害効果、すなわち燃料電池スタック外側からの
異常加熱を回避することができ、燃料電池の劣化を低減
することが可能になる。またガス吸引機構を設けること
はパージガス排気ラインの大形化の防止に役立ってい
る。
By forcibly exhausting using the purge gas exhaust pipe suction system, an extremely large amount of gas can be suctioned and exhausted as compared with the purge gas circulation amount during normal operation. Therefore, the organic solvent and binder leaked into the fuel cell container 1 can be promptly discharged. As a result, the adverse effect of the residual organic solvent, that is, abnormal heating from the outside of the fuel cell stack can be avoided, and deterioration of the fuel cell can be reduced. In addition, the provision of the gas suction mechanism helps prevent the purge gas exhaust line from becoming large.

【0033】なお、この強制排気系統36、37、38
も第1の実施例の場合と同様に恒久設備である必要はな
く、前記同様のやり方で撤去することが可能である。
The forced exhaust system 36, 37, 38
Similarly to the case of the first embodiment, it does not have to be a permanent facility and can be removed in the same manner as described above.

【0034】[0034]

【発明の効果】本発明によれば、電解質としての炭酸塩
の含浸作業に際して、電解質基板からの残留有機溶剤と
バインダーの除去が良好にできる。その結果、有機溶剤
による異常発熱を防止できる。また、電解質基板内への
炭酸塩の含浸が均一化され、高性能の燃料電池を得るこ
とが可能になる。
According to the present invention, it is possible to favorably remove the residual organic solvent and the binder from the electrolyte substrate during the impregnation work of the carbonate as the electrolyte. As a result, abnormal heat generation due to the organic solvent can be prevented. Further, the impregnation of the carbonate into the electrolyte substrate is made uniform, and a high-performance fuel cell can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電池の第1の実施例の基本構
成を模式的に示す図で、図中点線で示す系統は、第2の
実施例の付加構成要素を示す。
FIG. 1 is a diagram schematically showing a basic structure of a first embodiment of a fuel cell according to the present invention, and a system shown by a dotted line in the drawing shows an additional constituent element of the second embodiment.

【図2】図1の燃料電池本体の積層構造を示す構造図で
ある。
FIG. 2 is a structural diagram showing a laminated structure of the fuel cell body of FIG.

【符号の説明】[Explanation of symbols]

1 燃料電池収納容器 2 燃料電池スタック 3 アノード電極 4 カソード電極 5 電解質板 6 アノードガス流路 7 カソードガス流路 8 セパレータ 12 アノードガス 13 カソードガス 14 アノードガス給気管 15 カソードガス給気管 18 アノードガス排気管 19 カソードガス排気管 22 分岐管 23 分岐管 24 強制排気用バルブ 25 強制排気用バルブ 26 ガス吸引機構 27 ガス吸引機構 29 パージガス給気管 30 パージガス排気管 31 排気バルブ 36 分岐管 37 強制排気用バルブ 38 ガス吸引機構 1 Fuel Cell Storage Container 2 Fuel Cell Stack 3 Anode Electrode 4 Cathode Electrode 5 Electrolyte Plate 6 Anode Gas Flow Path 7 Cathode Gas Flow Path 8 Separator 12 Anode Gas 13 Cathode Gas 14 Anode Gas Air Supply Pipe 15 Cathode Gas Air Supply Pipe 18 Anode Gas Exhaust Pipe 19 Cathode gas exhaust pipe 22 Branch pipe 23 Branch pipe 24 Forced exhaust valve 25 Forced exhaust valve 26 Gas suction mechanism 27 Gas suction mechanism 29 Purge gas supply pipe 30 Purge gas exhaust pipe 31 Exhaust valve 36 Branch pipe 37 Forced exhaust valve 38 Gas suction mechanism

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解質板を挾んでアノード電極とカソー
ド電極を配し、該各電極に接するアノードガス流路とカ
ソードガス流路とをそれぞれ設けたセパレータを外側に
配し、該各流路にアノードガスとカソードガスの供給管
と排気管とをそれぞれ連通して構成された単位燃料電池
を有する燃料電池において、前記アノードガスとカソー
ドガスの排気管にバルブを介してガス吸引機構を分岐し
て設けたことを特徴とする燃料電池。
1. An electrolyte plate is sandwiched between an anode electrode and a cathode electrode, and a separator provided with an anode gas flow path and a cathode gas flow path, which are in contact with the respective electrodes, is arranged outside, and each flow path is provided with the separator. In a fuel cell having a unit fuel cell configured by connecting a supply pipe and an exhaust pipe of anode gas and cathode gas, respectively, a gas suction mechanism is branched through a valve to the exhaust pipe of the anode gas and the cathode gas. A fuel cell characterized by being provided.
【請求項2】 請求項1において、前記単位燃料電池の
前記各ガス流路が前記セパレータの周縁部を除く領域に
形成され、該周縁部に前記電解質板の周縁部を接して積
層されてなる前記単位燃料電池を燃料電池収納容器に収
納し、該燃料電池収納容器内にパージガスを供排するパ
ージガス補給機構とパージガス排気管を設け、該パージ
ガス排気管にバルブを介してガス吸引機構を分岐して設
けたことを特徴とする燃料電池。
2. The gas flow path of the unit fuel cell according to claim 1, wherein each of the gas flow paths is formed in a region excluding a peripheral portion of the separator, and the peripheral portion of the electrolyte plate is in contact with the peripheral portion and laminated. The unit fuel cell is housed in a fuel cell storage container, and a purge gas replenishment mechanism for supplying and discharging purge gas and a purge gas exhaust pipe are provided in the fuel cell storage container, and a gas suction mechanism is branched to the purge gas exhaust pipe via a valve. A fuel cell characterized in that
【請求項3】 電解質板を挾んでアノード電極とカソー
ド電極を配し、該各電極に接するアノードガス流路とカ
ソードガス流路とをそれぞれ設けたセパレータを外側に
配し、該各流路にアノードガスとカソードガスの供給管
と排気管とをそれぞれ連通して構成された単位燃料電池
を有してなる燃料電池の電解質含浸処理方法において、
前記アノードガスとカソードガスのそれぞれの排気管に
設けた分岐管を介して前記単位燃料電池内部のガスを吸
引し、該ガス吸引により前記電解質板の基板に残留して
いる有機溶剤とバインダーを除去してから電解質を含浸
することを特徴とする燃料電池の電解質含浸処理方法。
3. An anode electrode and a cathode electrode are arranged by sandwiching an electrolyte plate, and a separator provided with an anode gas flow channel and a cathode gas flow channel in contact with each electrode is disposed outside, and each of the flow channels is provided with the separator. In an electrolyte impregnation treatment method of a fuel cell having a unit fuel cell constituted by connecting an anode gas and a cathode gas supply pipe and an exhaust pipe, respectively,
The gas inside the unit fuel cell is sucked through the branch pipes provided in the exhaust pipes of the anode gas and the cathode gas respectively, and the organic solvent and the binder remaining on the substrate of the electrolyte plate are removed by the gas suction. A method for impregnating an electrolyte in a fuel cell, comprising impregnating with an electrolyte after that.
【請求項4】 電解質板を挾んでアノード電極とカソー
ド電極を配し、該各電極に接するアノードガス流路とカ
ソードガス流路とをそれぞれ設けたセパレータを外側に
配し、該各流路にアノードガスとカソードガスの供給管
と排気管とをそれぞれ連通して構成された単位燃料電池
を、パージガスを供排するパージガス補給機構とパージ
ガス排気管が設けられた燃料電池収納容器内に設置して
なる燃料電池の電解質含浸処理方法において、前記アノ
ードガスとカソードガスのそれぞれの排気管に設けた分
岐管を介して前記単位燃料電池内部のガスを吸引すると
ともに、前記パージガス排気管に設けた分岐管を介して
前記燃料電池収納容器内のガスを吸引し、該ガス吸引に
より前記電解質板の基板に残留している有機溶剤とバイ
ンダーを除去してから電解質を含浸することを特徴とす
る燃料電池の電解質含浸処理方法。
4. An electrolyte plate is sandwiched between an anode electrode and a cathode electrode, and a separator provided with an anode gas flow channel and a cathode gas flow channel which are in contact with the respective electrodes is disposed outside, and each of the flow channels is provided with a separator. A unit fuel cell configured by connecting a supply pipe and an exhaust pipe for anode gas and cathode gas, respectively, is installed in a fuel cell storage container provided with a purge gas supply mechanism for supplying and discharging purge gas and a purge gas exhaust pipe. In the method for impregnating electrolyte of a fuel cell, the gas inside the unit fuel cell is sucked through the branch pipes provided in the exhaust pipes of the anode gas and the cathode gas, and the branch pipe provided in the purge gas exhaust pipe. The gas in the fuel cell storage container is sucked through the via, and the organic solvent and binder remaining on the substrate of the electrolyte plate are removed by the gas suction. An electrolyte impregnation treatment method for a fuel cell, which comprises impregnating the electrolyte with an electrolyte.
JP4172616A 1992-06-30 1992-06-30 Fuel cell and electrolyte impregnation treatment method Expired - Fee Related JPH081809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172616A JPH081809B2 (en) 1992-06-30 1992-06-30 Fuel cell and electrolyte impregnation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172616A JPH081809B2 (en) 1992-06-30 1992-06-30 Fuel cell and electrolyte impregnation treatment method

Publications (2)

Publication Number Publication Date
JPH0620714A true JPH0620714A (en) 1994-01-28
JPH081809B2 JPH081809B2 (en) 1996-01-10

Family

ID=15945182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172616A Expired - Fee Related JPH081809B2 (en) 1992-06-30 1992-06-30 Fuel cell and electrolyte impregnation treatment method

Country Status (1)

Country Link
JP (1) JPH081809B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109630A (en) * 2001-09-27 2003-04-11 Equos Research Co Ltd Fuel cell system
JP2009514151A (en) * 2005-10-27 2009-04-02 エアバス・ドイチュラント・ゲーエムベーハー Aircraft having a fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133774A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133774A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109630A (en) * 2001-09-27 2003-04-11 Equos Research Co Ltd Fuel cell system
JP2009514151A (en) * 2005-10-27 2009-04-02 エアバス・ドイチュラント・ゲーエムベーハー Aircraft having a fuel cell system

Also Published As

Publication number Publication date
JPH081809B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
KR100840443B1 (en) Fuel cell system, method of shutting down or starting up fuel cell system, and method of shutting down and starting up fuel cell system
CA2490877C (en) Humidity controlled solid polymer electrolyte fuel cell assembly
US7645530B2 (en) Method and apparatus for humidification of the membrane of a fuel cell
JP5791940B2 (en) Fuel cell stack with water discharge structure
CN1322619C (en) Fuel cell and its making method
US7282285B2 (en) Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
WO2007061075A1 (en) Solid polymer fuel cell
EP1216489A1 (en) Freeze tolerant fuel cell system and method
JP4921469B2 (en) PEM fuel cell with filling chamber
AU2003231755B2 (en) Membrane based electrochemical cell stacks
JPH06333583A (en) Solid polyelectrolyte fuel cell generating device
KR101755506B1 (en) Component for fuel cell and manufacturing for the same
EP1935046B1 (en) Modified fuel cells with internal humidification and/or temperature control systems
JPH0620714A (en) Fuel cell and electrolyte impregnation treatment method
US20020076584A1 (en) Method for starting an HTM fuel cell, and associated device
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP3673252B2 (en) Fuel cell stack
JP3977228B2 (en) Method and apparatus for stopping fuel cell
JP2001351666A (en) Fuel cell system using phosphoric acid and stopping method of the same
JPH0224972A (en) Gas exhaust structure for fuel cell
JP2001351648A (en) Joined body of electrolyte and electrode and phosphoric acid fuel cell
KR20100115391A (en) Wicking layer for managing moisture distribution in a fuel cell
KR101998946B1 (en) Fuel cell apparatus
JPS62180966A (en) Impregnation method for liquefied electrolyte in fuel cell
JP2005026180A (en) Fuel cell system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees