JPH0620673A - Separator for battery - Google Patents

Separator for battery

Info

Publication number
JPH0620673A
JPH0620673A JP4179832A JP17983292A JPH0620673A JP H0620673 A JPH0620673 A JP H0620673A JP 4179832 A JP4179832 A JP 4179832A JP 17983292 A JP17983292 A JP 17983292A JP H0620673 A JPH0620673 A JP H0620673A
Authority
JP
Japan
Prior art keywords
separator
battery
electrolyte
electrode
opposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4179832A
Other languages
Japanese (ja)
Other versions
JP3438901B2 (en
Inventor
Shinya Inoue
伸也 井上
Fusago Mizutaki
房吾 水瀧
Masao Takee
正夫 武江
Mamoru Kimoto
衛 木本
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17983292A priority Critical patent/JP3438901B2/en
Publication of JPH0620673A publication Critical patent/JPH0620673A/en
Application granted granted Critical
Publication of JP3438901B2 publication Critical patent/JP3438901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PURPOSE:To suppress a rise of battery internal resistance and improve battery characteristic by subjecting the part never opposed to an electrode to water repellent treatment, and the part opposed thereto to hydrophilic treatment. CONSTITUTION:A separator 3 consisting of a hydrophilic nylon nonwoven fabric having alkali resistance is formed of separator narrow parts 3a opposed to a positive electrode 1 and a negative electrode and a separator margin part 3b never opposed thereto, and the margin part 3b is subjected to water repellent treatment. When this separator 3 is installed to a battery, thus, electrolyte can be reserved in the margin part 3b. Namely, when the electrolyte in the narrowed part 3a is lacked according to the lapse of a cycle, the electrolyte can be supplied from the reserving margin part 3b by capillary phenomenon. Consequently, a rise in battery internal resistance can be suppressed to improve battery characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池のセパレータに関
する。
FIELD OF THE INVENTION The present invention relates to a battery separator.

【0002】[0002]

【従来の技術】近年、電池の高性能,安全性,長期の貯
蔵性の向上等の高品質化の追求が進むにつれて、セパレ
ータに対する技術的要求も高度化している。セパレータ
は正極物質と負極物質との間に介在して電解液を保持
し、両電極を隔離する役割を果たすが、一般的に次のよ
うな要求を満足させる機能を持合わせていることが必要
である。 負極活物質及び負極生成物と正極活物質の粒子が相
互に対極へ移動せず完全に分離されること,負極生成物
をセパレータ内に生成させないことによって電池の内部
短絡や自己放電を防止すること。 電解液の保液性に優れ、イオン導電性が良好であ
り、電気抵抗が低いこと。 電解液に対し高温下においても物理的,化学的に安
定であること。 負極,正極の活物質に悪影響を与える不純物や重金
属を含まないこと。 電解液の吸液速度が電池の種類や組立方法に応じて
適当な速さであること。 機械的強度があり、柔軟性,耐熱性,切断性が良好
で電池内への組込みが容易であること。
2. Description of the Related Art In recent years, as the pursuit of higher quality of batteries such as high performance, safety and improvement of long-term storability, technical requirements for separators have become more sophisticated. The separator is interposed between the positive electrode material and the negative electrode material to hold the electrolytic solution and to separate the two electrodes, but generally it is necessary to have a function that satisfies the following requirements. Is. The negative electrode active material and particles of the negative electrode product and the positive electrode active material do not move to the counter electrode and are completely separated, and the internal short circuit and self-discharge of the battery are prevented by not forming the negative electrode product in the separator. . Excellent electrolyte retention, good ionic conductivity, and low electrical resistance. Must be physically and chemically stable to the electrolyte even at high temperatures. Do not contain impurities or heavy metals that adversely affect the active material of the negative and positive electrodes. The electrolyte absorption rate should be appropriate according to the battery type and assembly method. It has mechanical strength, good flexibility, heat resistance and cuttability, and can be easily incorporated into a battery.

【0003】ところで、上記セパレータとしては、耐ア
ルカリ性の優れた合成繊維に乾式不織布か湿式不織布,
又はこれらの合成繊維に吸液性,保液性の優れた耐アル
カリ性の天然繊維か再生繊維を混ぜた不織布が使用され
る。これらの不織布は単独で多層に重ねる場合と隔離機
能性に優れたセロハンと組み合わせて使用される場合と
がある。不織布の材料として代表的な合成繊維は、ビニ
ヨン(塩化ビニルと酢酸ビニルとの共重合物)繊維,ポ
リアミド(ナイロン66)繊維,ビニロン(アセタール
化ポリビニルアルコール)繊維,ポリオレフィン(ポリ
プロピレンとポリエチレンとの溶融複合)繊維である。
天然繊維はα−セルロース成分の含有が98%以上のリ
ンターパルプ(コットン),マーセル化木材パルプであ
る。再生繊維としてはレーヨン繊維が主なものである。
By the way, as the separator, a synthetic non-woven fabric having excellent alkali resistance, a dry non-woven fabric or a wet non-woven fabric,
Alternatively, a non-woven fabric is used in which these synthetic fibers are mixed with alkali-resistant natural fibers or regenerated fibers having excellent liquid absorption and liquid retention properties. These non-woven fabrics may be used alone in multiple layers or may be used in combination with cellophane having excellent isolation functionality. Typical synthetic fibers as non-woven fabric materials are vinylon (copolymer of vinyl chloride and vinyl acetate) fiber, polyamide (nylon 66) fiber, vinylon (acetalized polyvinyl alcohol) fiber, polyolefin (melt of polypropylene and polyethylene). Composite) fiber.
Natural fibers are linter pulp (cotton) and mercerized wood pulp containing 98% or more of α-cellulose component. Rayon fiber is the main recycled fiber.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記セパレ
ータを用いて作製した電池は、サイクルの経過に伴って
正極が膨化したり,電解液が外部へ飛散したりするた
め、正負両極と対向しているセパレータ部分の電解液が
不足する。その結果、電池内部抵抗が上昇するため、電
池特性が低下するという課題を有していた。
However, the battery produced using the above separator faces the positive and negative electrodes because the positive electrode swells and the electrolytic solution scatters to the outside as the cycle progresses. Insufficient electrolyte in the separator. As a result, the internal resistance of the battery rises, and there is a problem that the battery characteristics deteriorate.

【0005】本発明は上記課題に鑑みてなされたもので
あり、電池内部抵抗の上昇を抑制して、電池特性を向上
させることができる電池のセパレータを提供することを
目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery separator capable of suppressing an increase in battery internal resistance and improving battery characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するため、電極と対向しない部分には撥水性処理が施さ
れ、或いは電極と対向する部分には親水性処理が施され
ていることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides that a portion which does not face an electrode is subjected to a water repellent treatment, or a portion which faces an electrode is subjected to a hydrophilic treatment. Is characterized by.

【0007】[0007]

【作用】上記構成の如く、セパレータの電極と対向しな
い部分(以下、「セパレータ余白部」と称する)に撥水
性処理が施され、或いはセパレータの電極と対向する部
分(以下、「セパレータ狭部」と称する)に親水性処理
が施されていれば、セパレータ余白部に電解質をリザー
ブすることができる。したがって、サイクルの経過に伴
ってセパレータ狭部の電解液が不足した場合には、いわ
ゆる毛細管現象によって、電解質をリザーブしているセ
パレータ余白部から、電解液の不足しているセパレータ
余白部に電解液を補給することができる。その結果、電
池内部抵抗の上昇を抑制することができるので、電池特
性が向上する。
As described above, the portion of the separator that does not face the electrode (hereinafter, referred to as "separator blank portion") is subjected to water repellent treatment, or the portion that faces the electrode of the separator (hereinafter, "separator narrow portion"). If a hydrophilic treatment is applied to the separator), the electrolyte can be reserved in the blank area of the separator. Therefore, when the electrolyte solution in the narrow portion of the separator is insufficient with the progress of the cycle, by the so-called capillary phenomenon, from the separator blank area that reserves the electrolyte, the electrolyte solution to the separator blank area where the electrolyte solution is insufficient. Can be replenished. As a result, an increase in internal resistance of the battery can be suppressed, so that battery characteristics are improved.

【0008】[0008]

【実施例】図1は本発明の一実施例に係るセパレータを
用いた円筒型ニッケル−水素アルカリ蓄電池の断面図で
あり、焼結式ニッケルから成る正極1と,水素吸蔵合金
を含む負極2と、これら正負両極1・2間に介挿された
セパレータ3とから成る電極群4は渦巻状に巻回されて
いる。この電極群4は負極端子兼用の外装罐6内に配置
されており、この外装罐6の上部開口にはパッキング7
を介して封口体8が装着されており、この封口体8の内
部にはコイルスプリング9が設けられている。このコイ
ルスプリング9は電池内部の内圧が異常上昇したときに
矢印A方向に押圧されて内部のガスが大気中に放出され
るように構成されている。また、上記封口体8と前記正
極1とは正極用導電タブ10にて接続されている。
1 is a sectional view of a cylindrical nickel-hydrogen alkaline storage battery using a separator according to an embodiment of the present invention. A positive electrode 1 made of sintered nickel and a negative electrode 2 containing a hydrogen storage alloy are shown. An electrode group 4 including a separator 3 inserted between the positive and negative electrodes 1 and 2 is wound in a spiral shape. The electrode group 4 is arranged in an exterior canister 6 which also serves as a negative electrode terminal, and a packing 7 is provided in an upper opening of the exterior canister 6.
The sealing body 8 is attached via the, and a coil spring 9 is provided inside the sealing body 8. The coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery is abnormally increased, and the gas inside is released into the atmosphere. The sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0009】ここで、上記構造の円筒型ニッケル−水素
アルカリ蓄電池を、以下のようにして作製した。先ず、
市販のMm(ミッシュメタルであって、希土類元素の混
合物),Ni,Co,Al,及びMnを元素比で1:3.
1:0.9:0.2:0.5の割合となるようにそれぞれ秤量
した後、アルゴン不活性雰囲気のアーク炉内で溶解して
溶湯を作成した。次に、上記溶湯を冷却することによ
り、MmNi3.1 Co0.9 Al0.2Mn0.5 で示される
水素吸蔵合金鋳塊を作成した。続いて、この水素吸蔵合
金鋳塊の粒径が100μm以下となるように機械的に粗
粉砕して水素吸蔵合金粉末を作製した。その後、この水
素吸蔵合金粉末を30μm以下となるように粉砕した
後、この合金粉末1.2gと,導電剤としてのニッケル粉
末1.0gと,結着剤としてのPTFE(ポリテトラフル
オロエチレン)0.2gとを混合してペーストを作製す
る。しかる後、このペーストを、ニッケルメッキが施さ
れたパンチングメタル芯体の両面に塗着し、室温で乾燥
させ、更に所定の寸法に切断することより負極2を作製
した。
Here, a cylindrical nickel-hydrogen alkaline storage battery having the above structure was manufactured as follows. First,
Commercially available Mm (mixture of rare earth elements, which is a misch metal), Ni, Co, Al, and Mn in an element ratio of 1: 3.
Each of them was weighed so as to have a ratio of 1: 0.9: 0.2: 0.5 and then melted in an arc furnace in an argon inert atmosphere to prepare a molten metal. Next, the molten metal was cooled to prepare a hydrogen storage alloy ingot represented by MmNi 3.1 Co 0.9 Al 0.2 Mn 0.5 . Subsequently, the hydrogen-absorbing alloy ingot was mechanically coarsely pulverized so that the particle diameter of the hydrogen-absorbing alloy ingot was 100 μm or less, and hydrogen-absorbing alloy powder was produced. Then, this hydrogen storage alloy powder was pulverized to 30 μm or less, and then 1.2 g of this alloy powder, 1.0 g of nickel powder as a conductive agent, and PTFE (polytetrafluoroethylene) as a binder 0 0.2g is mixed to make a paste. Thereafter, this paste was applied to both surfaces of a nickel-plated punched metal core, dried at room temperature, and further cut into a predetermined size to prepare a negative electrode 2.

【0010】上記セパレータ3は耐アルカリ性を有し、
図2の電極群4の要部拡大図に示すように、セパレータ
3の正負両極1・2と対向するセパレータ狭部3aは、
親水性のナイロン系不織布から構成されており、セパレ
ータの正負両極1・2と対向しないセパレータ余白部3
bには撥水性処理が施されている。ここで、上記セパレ
ータ3を以下のように作製した。
The separator 3 has alkali resistance,
As shown in the enlarged view of the main part of the electrode group 4 in FIG. 2, the separator narrow part 3a facing the positive and negative electrodes 1 and 2 of the separator 3 is
Made of hydrophilic nylon non-woven fabric, separator blank 3 that does not face the positive and negative electrodes 1 and 2 of the separator
Water repellent treatment is applied to b. Here, the separator 3 was manufactured as follows.

【0011】先ず、フロン系溶剤に市販のフッ素含有シ
リコンオイルを均一に溶解させた撥水性溶液中に、セパ
レータ余白部3bのみを浸積させる。その後、前記溶剤
のみを乾燥除去することにより、セパレータ余白部3b
にのみ撥水性処理が施されたセパレータ3を作製した。
次に、上記処理が施されたセパレータ3を介して上記負
極2と,公知の焼結式ニッケル正極1とから成る電極群
4を作成した後、この電極群4を電池缶6内に挿入し
た。次いで、この電池缶6内に30重量%のKOH水溶
液を注液した後、更に電池缶6を封口して、公称容量1
000mAhの円筒型ニッケル−水素アルカリ蓄電池を
作製した。
First, only the separator blank portion 3b is immersed in a water repellent solution in which a commercially available fluorine-containing silicon oil is uniformly dissolved in a chlorofluorocarbon solvent. Then, only the solvent is dried and removed, whereby the separator blank portion 3b is removed.
A separator 3 having a water-repellent treatment only was manufactured.
Next, after the electrode group 4 including the negative electrode 2 and the known sintered nickel positive electrode 1 was created through the separator 3 having been subjected to the above treatment, the electrode group 4 was inserted into the battery can 6. . Next, after injecting a 30 wt% KOH aqueous solution into the battery can 6, the battery can 6 is further sealed to obtain a nominal capacity of 1
A cylindrical nickel-hydrogen alkaline storage battery of 000 mAh was produced.

【0012】このようにして作製したセパレータ,及び
電池を以下、それぞれ(a)セパレータ,及び(A)電
池と称する。 〔比較例〕撥水性処理を全く施していない、市販の親水
性のナイロン系不織布をセパレータとして用いる他は、
上記実施例と同様にして電池を作製した。
The separator and the battery thus produced are hereinafter referred to as (a) separator and (A) battery, respectively. [Comparative Example] Water-repellent treatment is not performed at all, except that a commercially available hydrophilic nylon-based nonwoven fabric is used as a separator,
A battery was produced in the same manner as in the above example.

【0013】このようにして作製したセパレータ,及び
電池を以下、それぞれ(x)セパレータ,及び(X)電
池と称する。 〔実験1〕上記本発明の(a)セパレータを用いた
(A)電池,及び比較例の(x)セパレータを用いた
(X)電池を用いて、サイクル初期,及び300サイク
ル経過後における正極,セパレータ(狭部),負極のそ
れぞれの液分担率を調べたので、その結果を図3,及び
図4に示す。
The separator and the battery thus produced are hereinafter referred to as (x) separator and (X) battery, respectively. [Experiment 1] Using the battery (A) using the separator (a) of the present invention and the battery (X) using the separator (x) of the comparative example, the positive electrode after the initial cycle and after 300 cycles, The liquid distribution ratios of the separator (narrow portion) and the negative electrode were examined, and the results are shown in FIGS. 3 and 4.

【0014】図3から明らかなように、サイクル初期で
は、本発明の(a)セパレータを用いた(A)電池,及
び比較例の(x)セパレータを用いた(X)電池は、正
極,セパレータ(狭部),負極の液分担率はいずれも違
いが認められなかった。しかしながら、300サイクル
経過後では、図4から明らかなように、比較例の(x)
セパレータの液分担率が著しく減少しているのに対し
て、本発明の(a)セパレータの液分担率はそれほど低
下していないことが認められる。これは、本発明の
(a)セパレータの場合は、サイクルの経過に伴ってセ
パレータ狭部の電解液が不足した場合には、毛細管現象
によって、電解質をリザーブしているセパレータ余白部
から、電解液の不足しているセパレータ余白部に電解液
が補給されるからであると思われる。 〔実験2〕本発明の(a)セパレータを用いた(A)電
池,及び比較例の(x)セパレータを用いた(X)電池
を用いて、サイクルの経過に伴う電池内部抵抗を調べた
ので、その結果を図5に示す。
As is apparent from FIG. 3, at the beginning of the cycle, the battery (A) using the separator (a) of the present invention and the battery (X) using the separator (x) of the comparative example were positive electrodes and separators. (Narrow part), no difference was observed in the liquid share of the negative electrode. However, after 300 cycles, as is clear from FIG. 4, (x) of the comparative example
It is recognized that the liquid share of the separator is remarkably reduced, whereas the liquid share of the separator (a) of the present invention is not so lowered. This is because in the case of the separator (a) of the present invention, when the electrolyte solution in the separator narrow part becomes insufficient with the progress of the cycle, the electrolyte solution is discharged from the separator blank part which reserves the electrolyte by the capillary phenomenon. It is considered that this is because the electrolytic solution is replenished to the separator marginal area where there is a shortage. [Experiment 2] Since the battery (A) using the separator (a) of the present invention and the battery (X) using the separator (x) of the comparative example were used, the internal resistance of the battery with the passage of cycle was examined. The results are shown in FIG.

【0015】図5から明らかなように、本発明の(a)
セパレータを用いた(A)電池は比較例の(x)セパレ
ータを用いた(X)電池に比べて、電池内部抵抗の上昇
が抑制されていることが認められる。これは、上記実験
1の結果からも明らかなように、本発明の(a)セパレ
ータは、サイクルの経過に伴ってセパレータ狭部の電解
液が不足した場合には、毛細管現象によって、電解質を
リザーブしているセパレータ余白部から、電解液の不足
しているセパレータ余白部に電解液が補給されるからで
ある思われる。
As is apparent from FIG. 5, (a) of the present invention.
It can be seen that the battery (A) using the separator has a suppressed increase in the internal resistance of the battery as compared with the battery (X) using the separator (x) of the comparative example. As is clear from the results of Experiment 1 described above, the (a) separator of the present invention reserves the electrolyte by the capillary phenomenon when the electrolyte solution in the narrow portion of the separator becomes insufficient as the cycle progresses. It is considered that this is because the electrolytic solution is replenished from the existing separator blank area to the separator blank area where the electrolytic solution is insufficient.

【0016】上記実施例によれば、撥水性処理が施され
たセパレータ余白部にぬれが発生しないので、ガス透過
性を向上させることができる。 〔その他の事項〕 本発明におけるセパレータ3は、親水性の材料に限
定されるものではなく、撥水性の材料、例えば、ポリプ
ロピレン製不織布等を用いることも可能である。この場
合、セパレータ狭部3aを親水性処理する必要があり、
この親水性処理の方法としては、例えば、濃硫酸溶液中
に撥水性のポリプロピレン製不織布を浸積した後、加熱
処理を行うことによってセパレータ狭部3aに親水性の
スルフォン基(−SOC3 H)を導入させる等の方法が
挙げられる。 セパレータ3の撥水性処理方法については、上記実
施例に何ら限定されるものではなく、例えば、CVDプ
ラズマ重合法によって処理することも勿論可能である。
According to the above-mentioned embodiment, since the wetting of the blank portion of the separator which has been subjected to the water-repellent treatment does not occur, the gas permeability can be improved. [Other Matters] The separator 3 in the present invention is not limited to a hydrophilic material, and a water repellent material such as a polypropylene nonwoven fabric may be used. In this case, it is necessary to perform hydrophilic treatment on the separator narrow portion 3a,
As a method of this hydrophilic treatment, for example, a hydrophilic sulfone group (—SOC 3 H) is added to the separator narrow portion 3a by immersing a water-repellent polypropylene nonwoven fabric in a concentrated sulfuric acid solution and then performing heat treatment. And the like. The method for treating the water repellency of the separator 3 is not limited to the above embodiment, and it is of course possible to perform the treatment by, for example, the CVD plasma polymerization method.

【0017】[0017]

【発明の効果】以上の本発明によれば、サイクルの経過
に伴ってセパレータ狭部の電解液が不足した場合には、
いわゆる毛細管現象によって、電解質をリザーブしてい
るセパレータ余白部から、電解液の不足しているセパレ
ータ余白部に電解液を補給することができる。その結
果、電池内部抵抗の上昇を抑制することができるので、
電池特性が向上するといった優れた効果を奏する。
According to the present invention described above, when the electrolyte in the narrow portion of the separator becomes insufficient as the cycle progresses,
By the so-called capillary phenomenon, the electrolytic solution can be replenished from the separator blank area where the electrolyte is reserved to the separator blank area where the electrolytic solution is insufficient. As a result, the increase in internal resistance of the battery can be suppressed,
It has an excellent effect of improving battery characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るセパレータを用いた円
筒型ニッケル−水素アルカリ蓄電池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical nickel-hydrogen alkaline storage battery using a separator according to an embodiment of the present invention.

【図2】図1の電池における電極群の要部拡大図であ
る。
FIG. 2 is an enlarged view of a main part of an electrode group in the battery of FIG.

【図3】本発明の(a)セパレータを用いた(A)電
池,及び比較例の(x)セパレータを用いた(X)電池
を用いた場合における、サイクル初期での正極,セパレ
ータ(狭部),負極のそれぞれの液分担率を示すグラフ
である。
FIG. 3 shows a positive electrode and a separator (narrow portion) at the beginning of a cycle in the case of using the battery (A) using the separator (a) of the present invention and the battery (X) using the separator (x) of the comparative example. ), And a graph showing the liquid share of each of the negative electrodes.

【図4】本発明の(a)セパレータを用いた(A)電
池,及び比較例の(x)セパレータを用いた(X)電池
を用いた場合における、300サイクル経過後における
正極,セパレータ(狭部),負極のそれぞれの液分担率
を示すグラフである。
FIG. 4 shows the positive electrode and the separator (narrow) after 300 cycles when using the battery (A) using the separator (a) of the present invention and the battery (X) using the separator (x) of the comparative example. (Part) and a negative electrode.

【図5】本発明の(a)セパレータを用いた(A)電
池,及び比較例の(x)セパレータを用いた(X)電池
を用いた場合における、サイクルの経過に伴う電池内部
抵抗を示すグラフである。
FIG. 5 shows the internal resistance of a battery with the progress of cycles in the case of using the battery (A) using the separator (a) of the present invention and the battery (X) using the separator (x) of the comparative example. It is a graph.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 3a セパレータ狭部 3b セパレータ余白部 1 Positive electrode 2 Negative electrode 3 Separator 3a Separator narrow part 3b Separator margin part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木本 衛 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 西尾 晃治 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mamoru Kimoto 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. In the company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電極と対向しない部分には撥水性処理
が施され、或いは電極と対向する部分には親水性処理が
施されていることを特徴とする電池のセパレータ。
1. A battery separator, wherein a portion which does not face the electrode is subjected to a water-repellent treatment, or a portion which faces the electrode is subjected to a hydrophilic treatment.
JP17983292A 1992-07-07 1992-07-07 Battery separator Expired - Fee Related JP3438901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17983292A JP3438901B2 (en) 1992-07-07 1992-07-07 Battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17983292A JP3438901B2 (en) 1992-07-07 1992-07-07 Battery separator

Publications (2)

Publication Number Publication Date
JPH0620673A true JPH0620673A (en) 1994-01-28
JP3438901B2 JP3438901B2 (en) 2003-08-18

Family

ID=16072679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17983292A Expired - Fee Related JP3438901B2 (en) 1992-07-07 1992-07-07 Battery separator

Country Status (1)

Country Link
JP (1) JP3438901B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955216A (en) * 1996-09-26 1999-09-21 Matsushita Electric Industrial Co., Ltd. Sealed alkaline storage battery
JP2017183186A (en) * 2016-03-31 2017-10-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US9899653B2 (en) 2013-09-30 2018-02-20 Gs Yuasa International Ltd. Alkaline storage battery, and method for producing alkaline storage battery
CN111900428A (en) * 2020-06-22 2020-11-06 浙江高成绿能科技有限公司 Fuel cell stack with high water drainage capacity and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955216A (en) * 1996-09-26 1999-09-21 Matsushita Electric Industrial Co., Ltd. Sealed alkaline storage battery
US9899653B2 (en) 2013-09-30 2018-02-20 Gs Yuasa International Ltd. Alkaline storage battery, and method for producing alkaline storage battery
JP2017183186A (en) * 2016-03-31 2017-10-05 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN111900428A (en) * 2020-06-22 2020-11-06 浙江高成绿能科技有限公司 Fuel cell stack with high water drainage capacity and preparation method thereof

Also Published As

Publication number Publication date
JP3438901B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
KR100262778B1 (en) Metal hydride cells having improved cycle life and charge retention
JP5046539B2 (en) Nickel metal hydride storage battery
US5558682A (en) Process for producing a wind-type alkaline secondary battery
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
US20050019657A1 (en) Nickel-hydrogen cell
JPH0620673A (en) Separator for battery
JP3102002B2 (en) Hydrogen storage electrode and method for producing the same
JP2001118597A (en) Alkaline secondary cell
JP2966697B2 (en) Alkaline secondary battery
JP3568356B2 (en) Method of manufacturing prismatic battery and prismatic battery
JP3966607B2 (en) Sealed hydride secondary battery
JPH06101322B2 (en) Organic electrolyte battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP2013122862A (en) Cylindrical alkaline storage battery
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3349579B2 (en) Nickel hydride rechargeable battery
JPH05283071A (en) Activation of metal hydride storage battery
JP2848467B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3148409B2 (en) Stationary batteries
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH10284117A (en) Alkaline storage battery
JPH04349349A (en) Nickel-hydrogen battery and its manufacture
JPH1126011A (en) Layer-built storage battery
JPH10284116A (en) Alkaline storage battery
JP2000164246A (en) Alkali storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees