JPH06206719A - Purification of metal silicon - Google Patents

Purification of metal silicon

Info

Publication number
JPH06206719A
JPH06206719A JP5002495A JP249593A JPH06206719A JP H06206719 A JPH06206719 A JP H06206719A JP 5002495 A JP5002495 A JP 5002495A JP 249593 A JP249593 A JP 249593A JP H06206719 A JPH06206719 A JP H06206719A
Authority
JP
Japan
Prior art keywords
silicon
electrodes
electrode
phosphorus
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5002495A
Other languages
Japanese (ja)
Other versions
JP3386163B2 (en
Inventor
Hiroyuki Baba
裕幸 馬場
Kenkichi Yushimo
憲吉 湯下
Yasuhiko Sakaguchi
泰彦 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP00249593A priority Critical patent/JP3386163B2/en
Publication of JPH06206719A publication Critical patent/JPH06206719A/en
Application granted granted Critical
Publication of JP3386163B2 publication Critical patent/JP3386163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To simultaneously remove boron and phosphorus in the same process and provide pure metal silicon at a low purification cost by melting metal silicon containing impurities, inserting electrodes in the molten metallic silicon bath, and subsequently applying a direct electric current to the electrodes. CONSTITUTION:Silicon for producing solar batteries is purified by the below- described method. Namely, metallic silicon 1 containing impurities is melted, and electrodes 4 are inserted into the molten metallic silicon 1. A direct electric current is applied to the electrodes from a direct current electric source 6. Thereby, the impurities are electrically deposited and removed. It is preferable to coat the surfaces of the electrodes 4 with the powder of an oxide [e.g. silica (SiO2)], because the impurities gathered by their electrophoresis are reacted with the oxide and the formed compounds are evaporated off from the surface of the molten silicon to further improve the purification effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池の製造に用い
る高純度シリコンの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity silicon used for producing solar cells.

【0002】[0002]

【従来の技術】太陽電池製造に用いるシリコン中の不純
物の元素は、太陽電池としての所要の半導体特性を確保
するため、1ppm以下の低い濃度にする必要がある。
このため、現在太陽電池製造用原料には、過度に精製し
た半導体製造用のシリコンが用いられている。しかし、
LSIやICなどの半導体に比べ単体当たりのシリコン
所要量の多い太陽電池では、このようなシリコン原料は
高価すぎるため、太陽電池製造コストを引きあげてお
り、一般への普及の妨げとなっている。
2. Description of the Related Art Impurity elements in silicon used for the production of solar cells need to have a low concentration of 1 ppm or less in order to ensure the required semiconductor characteristics for solar cells.
For this reason, currently excessively refined silicon for semiconductor production is used as a raw material for solar cell production. But,
In a solar cell that requires a large amount of silicon per unit as compared with a semiconductor such as an LSI or an IC, such a silicon raw material is too expensive, which increases the manufacturing cost of the solar cell and hinders its widespread use.

【0003】太陽電池用のシリコンを安価に製造するた
め、冶金用の安価な金属シリコンを原料としてこれを精
製する方法が提案されているが、シリコン中のリンやボ
ロンは最も除去しにくい元素であると共に、含有量によ
ってシリコンの導電型を決定する最も重要な元素であ
る。ボロンについては、例えば特開平4−228414
号公報に開示されているように、シリカあるいはシリカ
を主成分とする容器内に溶融シリコンを保持しこれにプ
ラズマガスジェットを噴射する方法によって、ボロンを
効率よく除去する技術がある。
In order to inexpensively manufacture silicon for solar cells, a method of refining inexpensive metal silicon for metallurgy as a raw material has been proposed, but phosphorus and boron in silicon are the most difficult elements to remove. In addition, it is the most important element that determines the conductivity type of silicon depending on the content. Regarding boron, for example, JP-A-4-228414
As disclosed in the publication, there is a technique for efficiently removing boron by a method of holding molten silicon in a container containing silica or silica as a main component and injecting a plasma gas jet to the molten silicon.

【0004】リンについては、酸抽出法、フラックス溶
解法、真空溶解法などが報告されているが、また実用的
な技術として方策が定まっていない。
Regarding phosphorus, an acid extraction method, a flux melting method, a vacuum melting method and the like have been reported, but no measures have been established as a practical technique.

【0005】[0005]

【発明が解決しようとする課題】特開平4−22841
4号公報に開示された方法では、ボロンの除去反応がシ
リコン浴表面のプラズマジェット照射部だけで進行する
ため、1ppmw以下という低レベルまで除去するに
は、処理時間の短縮に限度がある。このため、一層短時
間で処理できるボロン除去方法の開発が望まれている。
[Patent Document 1] Japanese Patent Application Laid-Open No. 4-22841
In the method disclosed in Japanese Patent Publication No. 4, the removal reaction of boron proceeds only at the plasma jet irradiation part on the surface of the silicon bath, and therefore there is a limit to the reduction of processing time to remove it to a low level of 1 ppmw or less. Therefore, it is desired to develop a method for removing boron that can be treated in a shorter time.

【0006】リンについては、酸抽出法では、シリコン
溶解後の凝固時にリンを結晶粒界に析出させてから粒界
で粉砕し、これを酸で抽出洗浄するもので、工程が多く
また大量の酸が必要となり、コスト高となる問題があ
る。フラックス溶解法では、リンを1ppmw以下まで
除去するのに精製するシリコンと同量の高純度フラック
スを必要とするため、非常にコストがかかる。また、真
空溶解法では、比較的蒸気圧の高いリンを真空雰囲気で
蒸発除去するが、リンと共にシリコンも気化して減少す
るため歩留りが低く、この結果精製コストが高くなって
いる。
Regarding the phosphorus, in the acid extraction method, phosphorus is precipitated at the crystal grain boundaries at the time of solidification after melting of silicon, and then crushed at the grain boundaries, and this is extracted and washed with an acid. There is a problem that an acid is required and the cost becomes high. In the flux melting method, a high-purity flux of the same amount as that of silicon to be purified is required to remove phosphorus to 1 ppmw or less, which is very expensive. Further, in the vacuum melting method, phosphorus having a relatively high vapor pressure is removed by evaporation in a vacuum atmosphere. However, since silicon is vaporized and reduced together with phosphorus, the yield is low, resulting in high purification cost.

【0007】本発明は、上記問題点を解決し、さらに同
一工程でボロンとリンを同時に除去することで、精製コ
ストの低い金属シリコンの製造方法を提供することを目
的とする。
An object of the present invention is to solve the above problems and to provide a method for producing metallic silicon at a low refining cost by simultaneously removing boron and phosphorus in the same step.

【0008】[0008]

【課題を解決するための手段】本発明は、太陽電池シリ
コンの精製方法において、不純物元素を含む金属シリコ
ンを溶融した後、溶湯内に電極を挿入して直流電流を流
し、不純物を電析、除去することを特徴とする金属シリ
コンの精製方法である。この方法において、電極の表面
に酸化物の粉末を塗布すると、不純物と化合して不純物
除去が容易となるので、好適である。
Means for Solving the Problems The present invention relates to a method for purifying solar cell silicon, in which metallic silicon containing an impurity element is melted, an electrode is inserted into the molten metal and a direct current is passed to deposit the impurities. It is a method for refining metallic silicon, which is characterized in that it is removed. In this method, it is preferable to apply an oxide powder to the surface of the electrode because it combines with impurities to facilitate the removal of impurities.

【0009】[0009]

【作用】純粋なシリコンは、電流的な絶縁元素である
が、ボロンやリンなどのドーピング元素を加えることに
より、その濃度に比例して電流が流れる半導体という特
性を示す。冶金的方法で製造された金属シリコンには、
その原料及び製造過程に起因してさまざまな不純物元素
を含んでいるため、比抵抗値で0.1Ωcm以下という
電気抵抗を示すほど金属に近い電気伝導度をもつ。本発
明によれば、この金属シリコンを加熱溶解して容器内に
保持し、陽極及び陰極となる電極を互いに距離をおいて
溶湯内に装入して直流電流を流すようにしたから、溶融
シリコン中のボロンやリンなどのシリコンに電気伝導を
持たせるドーピング元素は、陽極と陰極間に生ずる電流
により電気泳動して電極近傍に引き寄せられる。このよ
うにしてシリコン中の不純物元素が電極近傍に十分集ま
って、シリコン中の不純物濃度が低下するため、シリコ
ンの導電率が低下して電流が流れにくくなる。この時点
で電極を冷却して電極近傍のシリコンを凝固させ、電極
を溶融シリコンから引き出すと、不純物を濃縮したシリ
コンを除去することができる。従って、溶融シリコンを
精製することができる。
Operation Pure silicon is an electrically insulating element, but it has the characteristic of being a semiconductor in which a current flows in proportion to its concentration when a doping element such as boron or phosphorus is added. Metallic silicon produced by metallurgical methods includes
Since it contains various impurity elements due to its raw material and manufacturing process, it has an electric conductivity close to that of a metal so as to show an electric resistance of 0.1 Ωcm or less in a specific resistance value. According to the present invention, the metallic silicon is heated and melted and held in the container, and the electrodes serving as the anode and the cathode are charged at a distance from each other into the molten metal so that a direct current is caused to flow. A doping element such as boron or phosphorus that makes silicon electrically conductive is electrophoresed by a current generated between the anode and the cathode and attracted to the vicinity of the electrode. In this way, the impurity element in silicon is sufficiently gathered in the vicinity of the electrode and the impurity concentration in silicon is lowered, so that the conductivity of silicon is lowered and it becomes difficult for current to flow. At this point, the electrode is cooled to solidify the silicon in the vicinity of the electrode, and the electrode is pulled out of the molten silicon, whereby the silicon enriched with impurities can be removed. Therefore, the molten silicon can be refined.

【0010】また、上記電極表面に酸化物粉末を塗布し
ておくと、電気泳動で集まった不純物が酸化物と反応し
て化合物を形成し、溶融シリコン表面から蒸発除去する
ため、精製効果はさらに改善される。ここで、酸化物と
はSiO2 、SiO、C6126 、Na2 CO3 等の
珪素、炭素、水素あるいはナトリウムと酸素の化合物
で、シリコン中に溶解してもその除去が可能な元素で構
成されるものが望ましい。
If oxide powder is applied to the surface of the electrode, the impurities collected by electrophoresis react with the oxide to form a compound, which is evaporated and removed from the surface of the molten silicon, further improving the purification effect. Be improved. Here, the oxide is silicon such as SiO 2 , SiO, C 6 H 12 O 6 , Na 2 CO 3 or the like, carbon, hydrogen or a compound of sodium and oxygen, which can be removed even if dissolved in silicon. Those composed of elements are desirable.

【0011】[0011]

【実施例】図1に示す装置を用いて本発明を実施した。
石英るつぼ3内にシリコンを入れ、加熱ヒータ2で加熱
溶融する。次いで電極4を溶融シリコン1中に挿入し、
直流電源6から直流電圧を印加する。電気抵抗が高まっ
たら電極冷却器7によって電極4を急速冷却し、電極の
周囲を部分的に固定させ、電極を引き抜く。電極の表面
にシリカ(SiO2 )5等を塗布しておくと一層好まし
い。
EXAMPLES The present invention was carried out using the apparatus shown in FIG.
Silicon is put in the quartz crucible 3 and heated and melted by the heater 2. Then the electrode 4 is inserted into the molten silicon 1,
A DC voltage is applied from the DC power supply 6. When the electric resistance increases, the electrode cooler 7 rapidly cools the electrode 4 to partially fix the periphery of the electrode and pull out the electrode. It is more preferable to coat silica (SiO 2 ) 5 or the like on the surface of the electrode.

【0012】使用した金属シリコンは、B:30pp
m、P:30ppmを含んでおり、このシリコン500
gを内径70mmの石英るつぼ3内に入れてAr雰囲気
中で溶解し、1500℃で黒鉛電極4を30mmの間隔
で平行に挿入して電極間に100mAの電流を流して1
時間保持した。その後電極4を電極冷却器7により急速
冷却し電極を引き抜いた。
The metallic silicon used is B: 30 pp
m, P: containing 30 ppm, this silicon 500
g was placed in a quartz crucible 3 having an inner diameter of 70 mm, melted in an Ar atmosphere, graphite electrodes 4 were inserted in parallel at intervals of 30 mm at 1500 ° C., and a current of 100 mA was applied between the electrodes to produce 1 g.
Held for hours. After that, the electrode 4 was rapidly cooled by the electrode cooler 7 and the electrode was pulled out.

【0013】実施例1では電極として高純度処理を施し
たラバープレスの黒鉛棒(φ15mm×挿入深さ30m
m)を用いた。図2にボロン、リンの含有量の変化を示
した。実施例1では、ボロン、リンともに5ppm程度
まで除去されており、歩留りは90%と高いものであっ
た。実施例2は実施例1の黒鉛棒と同一の電極の表面
に、SiO2 :C6126:H2 Oの比が20:2:
1である酸化物を厚さ2mm塗布した電極を用いたもの
で、図3に結果を示した。実施例2では実施例1よりも
ボロンの除去が速くなっており、黒鉛電極へのシリカ粉
末の塗布が有効であることがわかる。しかし、歩留りは
85%と実施例1よりも低くなっている。
In Example 1, a graphite rod made of a rubber press which has been subjected to high-purity treatment as an electrode (φ15 mm × insertion depth 30 m)
m) was used. FIG. 2 shows changes in the boron and phosphorus contents. In Example 1, both boron and phosphorus were removed to about 5 ppm, and the yield was as high as 90%. In Example 2, the ratio of SiO 2 : C 6 H 12 O 6 : H 2 O was 20: 2: on the surface of the same electrode as the graphite rod of Example 1.
The result is shown in FIG. 3 using an electrode coated with the oxide of No. 1 having a thickness of 2 mm. In Example 2, the removal of boron is faster than in Example 1, and it can be seen that application of silica powder to the graphite electrode is effective. However, the yield was 85%, which is lower than that in Example 1.

【0014】比較例1は内径70mmの石英るつぼに上
述の金属シリコン500gを溶解保持し、この溶融シリ
コン表面に5%の水蒸気を添加したプラズマジェットガ
スを噴射して1時間保持したもので、結果を図4に示し
た。比較例2は内径70mmの高純度処理を施したラバ
ープレス成形の黒鉛るつぼに上述の金属シリコン500
gを1500℃で溶解保持し、雰囲気圧力を10-4To
rrまで減圧して1時間保持したもので、結果を図5に
示した。従来法によるシリコン生成では、比較例1では
ボロンは除去できているが、リンの除去はほとんど認め
られず、また、比較例2では、リンは除去されているが
ボロンが除去されていない。また、シリコンの歩留りに
ついては比較例1が80%、比較例2が72%と低いも
のであった。このように、比較例1はボロンだけ、比較
例2はリンだけが除去されているのに対し、上述のよう
に、実施例では両方ともに除去できている。
In Comparative Example 1, 500 g of the above-mentioned metallic silicon was melted and held in a quartz crucible having an inner diameter of 70 mm, and a plasma jet gas containing 5% of water vapor was jetted to the surface of the molten silicon and held for 1 hour. Is shown in FIG. Comparative Example 2 is a rubber press-molded graphite crucible having an inner diameter of 70 mm, which has been subjected to high-purity treatment, and the above-mentioned metallic silicon 500.
g was melted and held at 1500 ° C and the atmospheric pressure was set to 10 -4 To.
The pressure was reduced to rr and held for 1 hour. The results are shown in FIG. In the silicon production by the conventional method, boron was removed in Comparative Example 1, but phosphorus was hardly removed. In Comparative Example 2, phosphorus was removed but boron was not removed. Further, the yield of silicon was as low as 80% in Comparative Example 1 and 72% in Comparative Example 2. As described above, in Comparative Example 1, only boron is removed, and in Comparative Example 2, only phosphorus is removed, but as described above, both can be removed in Examples.

【0015】実施例3、4、5として実施例1と同じ黒
鉛棒の表面に電極塗布酸化物を種々変更して実施例1と
同条件で実施した。それらの酸化物及び処理後のボロ
ン、リンの濃度を表1に示した。実施例3、4、5もそ
れぞれ優れた好成績を得た。
As Examples 3, 4, and 5, the same graphite rods as in Example 1 were subjected to the same conditions as in Example 1, except that various oxides coated with electrodes were used. The concentrations of these oxides and boron and phosphorus after the treatment are shown in Table 1. Also in Examples 3, 4, and 5, excellent results were obtained.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明により、安価な冶金用の金属シリ
コンを出発原料として特に除去が難しいボロンとリンを
簡素な方法で除去できるようになったため、従来のシリ
コン中のFe、Al、Ti、Caの除去方法と組合せる
ことにより、低コストで太陽電池用シリコンを製造する
ことができる。
Industrial Applicability According to the present invention, it becomes possible to remove boron and phosphorus, which are particularly difficult to remove, by using inexpensive metal silicon for metallurgy as a starting material by a simple method. Therefore, Fe, Al, Ti, and By combining with a method for removing Ca, silicon for solar cells can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に用いたシリコン生成装置の
縦断面図である。
FIG. 1 is a vertical cross-sectional view of a silicon generator used for carrying out the method of the present invention.

【図2】比較例1のシリコン中のボロンとリン濃度の経
時変化を示すグラフである。
FIG. 2 is a graph showing changes over time in boron and phosphorus concentrations in silicon of Comparative Example 1.

【図3】比較例2のシリコン中のボロンとリン濃度の経
時変化を示すグラフである。
FIG. 3 is a graph showing changes over time in boron and phosphorus concentrations in silicon of Comparative Example 2.

【図4】実施例1のシリコン中のボロンとリン濃度の経
時変化を示すグラフである。
FIG. 4 is a graph showing changes over time in boron and phosphorus concentrations in silicon of Example 1.

【図5】実施例2のシリコン中のボロンとリン濃度の経
時変化を示すグラフである。
5 is a graph showing changes over time in boron and phosphorus concentrations in silicon in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 溶融シリコン 2 加熱ヒータ 3 るつぼ 4 電極 5 シリカ 6 直流電源 7 電極冷却器 1 Molten Silicon 2 Heater 3 Crucible 4 Electrode 5 Silica 6 DC Power Supply 7 Electrode Cooler

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池シリコンの精製方法において、
不純物元素を含む金属シリコンを溶融した後、溶湯内に
電極を挿入して直流電流を流し、不純物を電析、除去す
ることを特徴とする金属シリコンの精製方法。
1. A method for purifying solar cell silicon, comprising:
A method for purifying metallic silicon, characterized in that, after melting metallic silicon containing an impurity element, an electrode is inserted into the molten metal and a direct current is passed to deposit and remove impurities.
【請求項2】 請求項1記載の方法において、前記電極
の表面に酸化物の粉末を塗布することを特徴とする金属
シリコンの精製方法。
2. The method for purifying metal silicon according to claim 1, wherein the surface of the electrode is coated with oxide powder.
JP00249593A 1993-01-11 1993-01-11 Purification method of metallic silicon Expired - Fee Related JP3386163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00249593A JP3386163B2 (en) 1993-01-11 1993-01-11 Purification method of metallic silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00249593A JP3386163B2 (en) 1993-01-11 1993-01-11 Purification method of metallic silicon

Publications (2)

Publication Number Publication Date
JPH06206719A true JPH06206719A (en) 1994-07-26
JP3386163B2 JP3386163B2 (en) 2003-03-17

Family

ID=11530944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00249593A Expired - Fee Related JP3386163B2 (en) 1993-01-11 1993-01-11 Purification method of metallic silicon

Country Status (1)

Country Link
JP (1) JP3386163B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099110A1 (en) * 2010-02-09 2011-08-18 Kaneko Kyojiro Silicon vacuum melting method
CN102703985A (en) * 2012-06-26 2012-10-03 上海太阳能电池研究与发展中心 Method for preparing high-purity polycrystalline silicon under action of electric field and fused salt

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824650B (en) * 2010-05-20 2012-06-06 上海太阳能电池研究与发展中心 Purifying system of high purity polysilicon and purifying method
CN109360784A (en) * 2018-09-13 2019-02-19 安徽钜芯半导体科技有限公司 A method of removal chip surface Pyrex

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099110A1 (en) * 2010-02-09 2011-08-18 Kaneko Kyojiro Silicon vacuum melting method
WO2011099208A1 (en) * 2010-02-09 2011-08-18 Kaneko Kyojiro Silicon vacuum melting method
CN102703985A (en) * 2012-06-26 2012-10-03 上海太阳能电池研究与发展中心 Method for preparing high-purity polycrystalline silicon under action of electric field and fused salt

Also Published As

Publication number Publication date
JP3386163B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
Yasuda et al. Direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar grade silicon
US4612179A (en) Process for purification of solid silicon
KR101275768B1 (en) system for refining UMG Si using a steam plasma torch
JP2004307222A (en) High purity quartz crucible by electrolytic purifying, method of manufacturing the same and pulling up method
US4294811A (en) Process for manufacturing Si useful for semiconductor components from quartz sand
JP3386163B2 (en) Purification method of metallic silicon
KR20140037277A (en) Method for producing calcium of high purity
CN101812727B (en) Method for directionally solidifying and purifying polycrystalline silicon under DC electric field
CN113247905A (en) Method for refining and purifying industrial silicon by utilizing microalloying
JP2905353B2 (en) Purification method of metallic silicon
JPH05262512A (en) Purification of silicon
CN101775650A (en) Preparation method of solar polycrystalline silicon cast ingot and device thereof
JP4544414B2 (en) High purity metallic indium and its production method and application
JPH04191340A (en) Production of high purity tin
US9783898B2 (en) System and method for purification of electrolytic salt
CN110616338B (en) Impurity removal method for copper melt and preparation method for high-purity high-conductivity copper
CN104495853B (en) A kind of industrial silicon refining method
JP4190678B2 (en) Purification method of gallium
CN108128778B (en) Method for removing boron in silicon by steam-assisted electron beam melting
CN219117585U (en) Rare earth deoxidizing device
JPH10203812A (en) Refining of metallic silicon
JPH09142823A (en) Purification of metal silicon and device for purifying the same
JP2013036075A (en) Method of refining indium or indium alloy
CN102392297A (en) Zinc electrolyzing and recycling device and processing method
CN114875484A (en) Method for preparing high-purity silicon by recovering diamond wire cutting silicon powder through electric field coupling directional solidification technology

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees