JPH0620529B2 - Powder feeder - Google Patents

Powder feeder

Info

Publication number
JPH0620529B2
JPH0620529B2 JP61141693A JP14169386A JPH0620529B2 JP H0620529 B2 JPH0620529 B2 JP H0620529B2 JP 61141693 A JP61141693 A JP 61141693A JP 14169386 A JP14169386 A JP 14169386A JP H0620529 B2 JPH0620529 B2 JP H0620529B2
Authority
JP
Japan
Prior art keywords
powder
pipe
gas
flow rate
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61141693A
Other languages
Japanese (ja)
Other versions
JPS62298440A (en
Inventor
祐一 藤岡
昌純 田浦
寛 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61141693A priority Critical patent/JPH0620529B2/en
Publication of JPS62298440A publication Critical patent/JPS62298440A/en
Publication of JPH0620529B2 publication Critical patent/JPH0620529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0025Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by an ascending fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Air Transport Of Granular Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は粉体を定量的にかつ連続的に供給する装置に
関する。
The present invention relates to an apparatus for quantitatively and continuously supplying powder.

(従来の技術) 従来の粉体定量供給装置は、第4図に示すようなもので
あった。
(Prior Art) A conventional powder quantitative supply device is as shown in FIG.

即ち、粉体a1がホッパーb内に供され枠cに保持され
ている。このホッパーbと枠cとは、ホッパーbの上下
端に取り付けられたエキスパンションd1,d2により互
いに力を及ぼさず自由に動くように保持されている。ま
た、ホッパーb内の粉体a2の重量の増減は、ロードセ
ルeで計量される。粉体a2の重量減少が一定となるよ
うに、ロードセルeで計量された重量をもとに、これと
連結された制御装置fによりロータリーフィーダーgの
回転が制御され、定量的に粉体a2が粉体搬送装置hに
送られる構造となっていた。
That is, the powder a 1 is provided in the hopper b and held in the frame c. The hopper b and the frame c are held by the expansions d 1 and d 2 attached to the upper and lower ends of the hopper b so as to move freely without exerting any force on each other. The increase or decrease in the weight of the powder a 2 in the hopper b is measured by the load cell e. Based on the weight measured by the load cell e, the rotation of the rotary feeder g is controlled based on the weight measured by the load cell e so that the weight reduction of the powder a 2 becomes constant, and the powder a 2 is quantitatively measured. 2 was sent to the powder transfer device h.

上記従来の粉体定量供給装置は、ホッパーb内の粉体a
2が減少すると新たに粉体a1がホッパーbに供給され
る。しかしこの装置では、粉体a1がホッパーbに供給
されている間は、ホッパーbの重量変動のためロードセ
ルeにより粉体a2の増減が検出できないという問題が
あった。このために、粉体a1をホッパーb内へ供給し
ている間は、粉体a2から粉体搬送装置hへの粉体a3
送り出し量を一定に制御することができないという問題
があった。
The above-mentioned conventional powder quantitative supply device is provided with the powder a in the hopper b.
When 2 decreases, powder a 1 is newly supplied to the hopper b. However, this device has a problem that while the powder a 1 is being supplied to the hopper b, the load cell e cannot detect the increase or decrease of the powder a 2 due to the weight change of the hopper b. Therefore, while the powder a 1 is being supplied into the hopper b, the amount of the powder a 3 delivered from the powder a 2 to the powder transfer device h cannot be controlled to be constant. there were.

また、粉体搬送装置hの形式によっては、例えばインゼ
クターを使用した場合、搬送先の圧力変動がホッパーb
内に伝播しロードセルeの重量指示を変動させ、粉体a
3の払い出し量の定量精度に悪影響を与えるという問題
もあった。
Further, depending on the type of the powder transfer device h, when an injector is used, for example, the pressure fluctuation at the transfer destination may be hopper b
And the weight instruction of the load cell e is changed and the powder a
There was also a problem that the quantitative accuracy of the payout amount of 3 was adversely affected.

(発明が解決しようとする問題点) この発明は、上記の従来の粉体供給装置の問題点を解消
し、ホッパーbの中の粉体a2が減少して、新たに粉体
1をホッパーbに追加供給している間でも、粉体搬送
装置hへの粉体a3の送り出し量を一定に制御すること
が出来るような装置を得ようとするものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of the conventional powder supply device, reduces the powder a 2 in the hopper b, and newly replaces the powder a 1 . It is intended to obtain an apparatus capable of controlling the amount of the powder a 3 delivered to the powder transfer apparatus h to be constant even while the powder is being additionally supplied to the hopper b.

(問題点を解決するための手段) この発明は、粉体を入れるホッパーと、このホッパーの
下端に接続された移行管と、この移行管の下方側壁でこ
れと連結された逆V字形管と、この移行管と逆V字形管
との連結部よりもさらに下方の上記移行管内部に移行管
の底部から導入されたガスを分散させるために設けたガ
ス分散板と、上記移行管に間隔を設けて取付けた光送信
装置および光受信装置と、この光送信装置および光受信
装置と連結された流量制御器と、この流量制御器と連結
された気体流量調整弁と、この気体流量調整弁と上記移
行管の底部を連結する気体供給管とからなる粉体供給装
置である。
(Means for Solving Problems) The present invention relates to a hopper for containing powder, a transition pipe connected to a lower end of the hopper, and an inverted V-shaped pipe connected to the transition pipe at a lower side wall of the transition pipe. , A gas dispersion plate provided to disperse the gas introduced from the bottom of the transition pipe inside the transition pipe further below the connecting portion between the transition pipe and the inverted V-shaped pipe, and a gap between the transition pipe. An optical transmitter and an optical receiver installed and attached, a flow rate controller connected to the optical transmitter and the optical receiver, a gas flow rate adjusting valve connected to the flow rate controller, and a gas flow rate adjusting valve. The powder supply device comprises a gas supply pipe that connects the bottom of the transfer pipe.

(作用) この発明は、移行管に間隔をあけて設けた光送信装置お
よび光受信装置で粉体の移動速度を求め、この粉体の移
動速度から粉体の移動量を求め、この粉体移動量により
気体流量調整弁を作動し、これによって移行管の底部か
ら供給する気体圧力を調節して粉体の供給量を連続的に
制御するものである。
(Operation) The present invention obtains the moving speed of the powder by the optical transmitting device and the optical receiving device provided in the transition pipe at intervals, and obtains the moving amount of the powder from the moving speed of the powder. The gas flow rate adjusting valve is operated according to the moving amount, and thereby the gas pressure supplied from the bottom of the transition pipe is adjusted to continuously control the powder supplying amount.

(実施例) 第1図に示すように、ホッパー1の上端部に粉体供給管
2、また下端に移行管3がそれぞれ取り付けられてい
る。移行管3の下端は気体供給管4が連結されている。
さらに移行管3の下方途中にはガス分散板5が嵌装され
ている。
(Example) As shown in FIG. 1, a powder supply pipe 2 is attached to an upper end portion of a hopper 1 and a transfer pipe 3 is attached to a lower end thereof. A gas supply pipe 4 is connected to the lower end of the transition pipe 3.
Further, a gas dispersion plate 5 is fitted midway below the transition pipe 3.

また、移行管3の下方で上記にガス分散板5の上部側壁
には開口部が設けられ、この開口部に上方に逆V字形管
6の一端が取り付けられている。この逆V字形管6の他
端は、粉体搬送装置7に向けて開口している。
An opening is provided in the upper side wall of the gas dispersion plate 5 below the transition pipe 3, and one end of an inverted V-shaped pipe 6 is attached to the opening above. The other end of the inverted V-shaped tube 6 opens toward the powder transfer device 7.

移行管3の逆V字形管6の一端が取り付けられている部
分の上方には、上下に所定の間隔を設けて光送信装置8
a(8c,8e)および光受信装置8b(8d,8f)
が移行管3の外周に取り付けられている。この光送信装
置8a(8c,8e)および光受信装置8b(8d,8
f)にはリード線9a,9bの一端が結線されている。
Above the portion of the transition tube 3 where one end of the inverted V-shaped tube 6 is attached, a predetermined space is provided above and below the optical transmitter 8.
a (8c, 8e) and optical receiver 8b (8d, 8f)
Are attached to the outer circumference of the transition pipe 3. The optical transmitter 8a (8c, 8e) and the optical receiver 8b (8d, 8e)
In f), one ends of the lead wires 9a and 9b are connected.

リード線9a,9bの他端は流量制御器10と連結され
ている。この流量制御器10は別のリード線11で、気
体供給管4の管路に介装されている流量調整弁12と連
結されている。
The other ends of the lead wires 9a and 9b are connected to the flow rate controller 10. The flow rate controller 10 is connected by another lead wire 11 to a flow rate adjusting valve 12 provided in the conduit of the gas supply pipe 4.

なお、気体供給管4には図示しない気体供給装置から気
体が送給されており、この気体供給量を上記の流量調整
弁12が調整するようになっている。
Gas is supplied to the gas supply pipe 4 from a gas supply device (not shown), and the flow rate adjusting valve 12 adjusts the amount of gas supplied.

第2図は光送信装置8a(8c,8e)、光受信装置8
b(8d,8f)のさらに具体的な内容を示したもので
ある。即ち、移行管3の内壁面の位置まで光ファイバー
14a(14b)、14c(14d)の一端が嵌入され
ており、これらの光ファイバーの他端はそれぞれ発光装
置15a(15b)、受光装置16a(16b)に接続
されている。さらに、受光装置16a(16b)は別の
リード線9a(9b)で流量制御器10と接続されてい
る。
FIG. 2 shows an optical transmitter 8a (8c, 8e) and an optical receiver 8.
This shows more specific contents of b (8d, 8f). That is, one ends of the optical fibers 14a (14b) and 14c (14d) are fitted to the position of the inner wall surface of the transition tube 3, and the other ends of these optical fibers are the light emitting device 15a (15b) and the light receiving device 16a (16b), respectively. It is connected to the. Further, the light receiving device 16a (16b) is connected to the flow rate controller 10 by another lead wire 9a (9b).

上記装置で、ホッパー1に粉体13aが連続的或いは断
続的に供給される(第1図参照)。一方、気体供給管4
から矢印方向に気体が送られ移行管3の底部のガス分散
板5から気体が供給されているので、移行管3底部内の
粉体13cと逆V字形管内にある粉体13dはともに流
動化される。
With the above apparatus, the powder 13a is continuously or intermittently supplied to the hopper 1 (see FIG. 1). On the other hand, gas supply pipe 4
Since the gas is sent in the direction of the arrow from and the gas is supplied from the gas dispersion plate 5 at the bottom of the transfer tube 3, the powder 13c in the bottom of the transfer tube 3 and the powder 13d in the inverted V-shaped tube are both fluidized. To be done.

その結果、粉体3bは移行管3内を流下して逆V字形管
6を経て粉体搬送装置7へ移送される。
As a result, the powder 3b flows down in the transfer pipe 3 and is transferred to the powder transfer device 7 through the inverted V-shaped pipe 6.

即ち、移行管3の底部から気体が導入され、移行管3の
底部と逆V字形管6内の粉体13c、13dが流動化さ
れると、移行管3の底部および逆V字形管6内の粒子と
管壁との摩擦力が小さくなり、ここに生じる摩擦力より
も、粉体13bのもつ重力ヘッドが大きくなるため粉体
13cが移行管3内をピストンフローで容易に流下する
ことになる。
That is, when gas is introduced from the bottom of the transfer pipe 3 and the powders 13c and 13d in the bottom of the transfer pipe 3 and the inverted V-shaped pipe 6 are fluidized, the bottom of the transfer pipe 3 and the inverted V-shaped pipe 6 are The frictional force between the particles and the tube wall becomes smaller, and the gravity head of the powder 13b becomes larger than the frictional force generated here, so that the powder 13c easily flows down in the transition pipe 3 by the piston flow. Become.

移行管3の底部に導入する気体量と、移行管3を流下し
て粉体搬送装置7へ移送される粉体量とは第3図に示す
ような関係があり、この発明は気体の流量と粉体の移送
量が比例する区域を粉体の送り出し量の制御範囲として
用いるものである。
The amount of gas introduced to the bottom of the transfer pipe 3 and the amount of powder transferred to the powder transfer device 7 flowing down the transfer pipe 3 have a relationship as shown in FIG. The area in which the powder transfer amount is proportional to the powder transfer amount is used as a control range of the powder transfer amount.

こうした状態にしておき、移行管3を流下する粉体13
cに光波を照射し、粉体13cから反射される光波のエ
ネルギー変動を検知する。
In such a state, the powder 13 flowing down the transfer pipe 3
c is irradiated with a light wave, and the energy fluctuation of the light wave reflected from the powder 13c is detected.

即ち、第2図に示す発光装置15a(15b)から光フ
ァイバー14a(14b)で導かれた光波は、移行管3
壁から粉体13cへ照射される。粉体13cの表面で反
射された反射光は光ファイバー14c(14d)で受光
し、光波のエネルギー変動を受光装置16a(16b)
で信号化する。粉体13cの表面から反射して光ファイ
バー14c(14d)に検出される光波のエネルギー
は、粉体13cの表面の複雑な形状に応じて変動する。
That is, the light wave guided by the optical fiber 14a (14b) from the light emitting device 15a (15b) shown in FIG.
The powder 13c is irradiated from the wall. The reflected light reflected on the surface of the powder 13c is received by the optical fiber 14c (14d) and the energy fluctuation of the light wave is received by the light receiving device 16a (16b).
Signal with. The energy of the light wave reflected from the surface of the powder 13c and detected by the optical fiber 14c (14d) varies depending on the complicated shape of the surface of the powder 13c.

この光発信装置8a、光受信装置8bを第1図に示すよ
うに上下に所定の間隔を設けて取付け、この両装置から
の同形信号のずれ時間から、下記式(1)、(2)によ
り粉体13cの移動速度と粉体の移動した量を求めるも
のである。
As shown in FIG. 1, the optical transmitter 8a and the optical receiver 8b are attached at a predetermined interval in the vertical direction, and the following equations (1) and (2) are used from the time difference between the same-shaped signals from the two devices. The moving speed of the powder 13c and the moved amount of the powder are obtained.

粉体の移動速度=光送信装置,光受信装置間の距離/同
形の信号の遅れ時間……(1) 粉体の移動量=移行管の管内断面積×粉体の移動速度×
粉体のかさ比重……(2) 上記の光送信装置8aおよび光受信装置8bで測定され
た粉体13cの移動量が、予め定めた設定値から外れて
いる場合は、流量制御器10の作用で流量調整弁12を
調整して、気体供給管で送られてくる気体量を制御して
移行管3内の粉体13cの移動量を増減させ、これによ
って粉体13dを定量的に粉体搬送装置7に移送するこ
とができる。
Moving speed of powder = distance between optical transmitter and optical receiver / delay time of signal of the same shape ... (1) Moving amount of powder = cross-sectional area of transition pipe × moving speed of powder ×
Bulk specific gravity of powder (2) If the amount of movement of the powder 13c measured by the optical transmitter 8a and the optical receiver 8b is out of a preset set value, the flow controller 10 The flow rate adjusting valve 12 is adjusted by the action to control the amount of gas sent through the gas supply pipe to increase or decrease the moving amount of the powder 13c in the transfer pipe 3, thereby quantitatively powdering the powder 13d. It can be transferred to the body transport device 7.

(発明の効果) この発明によれば、ホッパー内に連続的或いは断続的に
供給された粉体を、連続的にかつピストンフローで、し
かも粉体搬送装置から伝わる圧力変動の影響を受けるこ
となく定量的に供給することが出来る。
(Effect of the Invention) According to the present invention, the powder continuously or intermittently supplied into the hopper is continuously and piston-flowed without being affected by the pressure fluctuation transmitted from the powder conveying device. It can be supplied quantitatively.

さらにこの場合の粉体供給量は、移行管を流下する粉体
に光を照射しその光波エネルギーの変動を検知する方式
を用いたので、ホッパーに粉体を新しく追加している間
でも粉体の排出量を常に測定でき粉体の送り出し量を常
時適正に制御することが出来るようになった。
In addition, the powder supply amount in this case was determined by irradiating the powder flowing down the transfer tube with light and detecting the fluctuation of the light wave energy, so even while the powder was newly added to the hopper. The amount of powder discharged can be constantly measured, and the amount of powder delivered can be controlled properly at all times.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の粉体供給装置の構成を示
す説明図、第2図はこの発明の粉体供給装置に用いられ
る光送信装置および光受信装置の構成を示す説明図、第
3図は気体の流量と粉体の移送量の関係を示す線図、第
4図は従来の粉体供給装置の構成を示す説明図である。 1……ホッパー、2……粉体供給管、3……移行管、4
……気体供給管、5……ガス分散板、6……逆V字形
管、7……粉体搬送装置、8a,8b……光送信装置,
光受信装置、9a,9b……リード線、10……流量制
御器、11……リード線、12……流量調整弁、13
a,13b,13d……粉体、14a,14b,14
c,14d……光ファイバー、15a,15b……発光
装置、16a,16b……受光装置。
FIG. 1 is an explanatory view showing the structure of a powder supply device according to an embodiment of the present invention, and FIG. 2 is an explanatory view showing the structure of an optical transmitter and an optical receiver used in the powder supply device of the present invention. FIG. 3 is a diagram showing the relationship between the flow rate of gas and the transfer amount of powder, and FIG. 4 is an explanatory diagram showing the configuration of a conventional powder supply device. 1 ... Hopper, 2 ... Powder supply pipe, 3 ... Transition pipe, 4
...... Gas supply pipe, 5 ...... Gas dispersion plate, 6 ...... Inverted V-shaped pipe, 7 ...... Powder transfer device, 8a, 8b ...... Optical transmission device,
Optical receiver, 9a, 9b ... Lead wire, 10 ... Flow rate controller, 11 ... Lead wire, 12 ... Flow rate adjusting valve, 13
a, 13b, 13d ... powder, 14a, 14b, 14
c, 14d ... Optical fiber, 15a, 15b ... Light emitting device, 16a, 16b ... Light receiving device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粉体を入れるホッパーと、このホッパーの
下端に接続された移行管と、この移行管の下方側壁でこ
れと連結された逆V字形管と、この移行管と逆V字形管
との連結部よりもさらに下方の上記移行管内部に移行管
の底部から導入されたガスを分散させるために設けたガ
ス分散板と、上記移行管に間隔を設けて取付けた光送信
装置および光受信装置と、この光送信装置および光受信
装置と連結された流量制御器と、この流量制御器と連結
された気体流量調整弁と、この気体流量調整弁と上記移
行管の底部を連結する気体供給管とからなる粉体供給装
置。
1. A hopper for containing powder, a transition pipe connected to a lower end of the hopper, an inverted V-shaped pipe connected to the lower pipe of the transition pipe at a lower side wall thereof, and the inverted V-shaped pipe. A gas dispersion plate provided to disperse the gas introduced from the bottom of the transition pipe inside the transition pipe further below the connection part with the optical transmission device and the light installed at a distance from the transition pipe. A receiver, a flow rate controller connected to the optical transmitter and the optical receiver, a gas flow rate adjusting valve connected to the flow rate controller, and a gas connecting the gas flow rate adjusting valve and the bottom of the transition pipe. Powder supply device consisting of a supply pipe.
JP61141693A 1986-06-18 1986-06-18 Powder feeder Expired - Lifetime JPH0620529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141693A JPH0620529B2 (en) 1986-06-18 1986-06-18 Powder feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141693A JPH0620529B2 (en) 1986-06-18 1986-06-18 Powder feeder

Publications (2)

Publication Number Publication Date
JPS62298440A JPS62298440A (en) 1987-12-25
JPH0620529B2 true JPH0620529B2 (en) 1994-03-23

Family

ID=15298015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141693A Expired - Lifetime JPH0620529B2 (en) 1986-06-18 1986-06-18 Powder feeder

Country Status (1)

Country Link
JP (1) JPH0620529B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129683A (en) * 1976-04-26 1977-10-31 Hitachi Ltd Particle flow controller
JPS60258021A (en) * 1984-06-01 1985-12-19 Ube Ind Ltd Device for feeding fixed quantity of powder

Also Published As

Publication number Publication date
JPS62298440A (en) 1987-12-25

Similar Documents

Publication Publication Date Title
US7878428B2 (en) Device and method for loading a chamber with a divided solid
US6588988B2 (en) Apparatus for conveying bulk material with vacuum-responsive controlled introduction of a conveying gas
EP0864849A1 (en) Instrument for measuring mass flow rate of powder, and electrostatic powder coating apparatus utilizing the same
US4198860A (en) Method and apparatus for measuring particulate matter flow rate
IE42005B1 (en) A method of regulating the gravimetric throughput of powder-form material
CA2076552A1 (en) Automatic particle transport system
JPS606528A (en) Distributor for powder
US20080216918A1 (en) Methods and apparatus for dense particle loading
CN100348955C (en) Device for effecting continuous gravimetric dosing
JPH0620529B2 (en) Powder feeder
US5007561A (en) Non-flooding set rate feeder
JPS5826953B2 (en) Conveyor equipment for cigarettes and similar stick articles
AU618246B2 (en) Non-flooding set rate feeder
JPH07163857A (en) Apparatus and method for supplying solid existing in flow of gas and solid from fluidized bed
US8059264B2 (en) Monitoring velocities in a polymerization process
US6474398B1 (en) Apparatus for introducing granular mold flux onto the top of a slab being cast within a continuous casting mold
US5967704A (en) Pneumatic apparatus for conveying a dry granular material
JPS6052724A (en) Discharge weighing device of pulverulent material
JP2007322143A (en) Weighing feeding device for powder granular material
JPS62298766A (en) Transfer speed measuring apparatus for bulk material
SU883663A1 (en) Device for obtaining loose material flow with preset filling mass
JPH01206221A (en) Uniform speed feeder for mobile packed floor
GB2184853A (en) Flow rate determination
SU679811A1 (en) Continuous action gravity-type batching unit for loose andliquid materials
SU1347008A1 (en) Method and device for determining average size of particles of loose materials