JPH06204605A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH06204605A
JPH06204605A JP86193A JP86193A JPH06204605A JP H06204605 A JPH06204605 A JP H06204605A JP 86193 A JP86193 A JP 86193A JP 86193 A JP86193 A JP 86193A JP H06204605 A JPH06204605 A JP H06204605A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
laser device
active layer
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP86193A
Other languages
Japanese (ja)
Inventor
Masahiko Kondo
正彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP86193A priority Critical patent/JPH06204605A/en
Publication of JPH06204605A publication Critical patent/JPH06204605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor laser device oscillated at room temperature by current infection by forming a clad layer and a guide layer, compositions of which are both kept within specific ranges. CONSTITUTION:A distortion superlattice active layer 5 and clad layers 3, 7 consisting of In1-X-YGaXAlYP1-ZAsZ (wherein the values of X, Y and Z are kept within the ranges of 0<=X<=1, 0<=Y<=1, 0.5<=X+Y<=1 and 0<=0.5) are formed onto a substrate 1. Guide layers 4, 6 composed of In1-X-YGaXAlYP1-ZAsZ (wherein the values of X, Y and Z are kept within the ranges of 0<=X<=1, 0<=Y<=1, 0<=X+Y<=1 and 0<=Z<=1) are disposed while being adjoined to the distortion superlattice active layer 5. Accordingly, a semiconductor laser device oscillated by current injection even at room temperature is acquired. The mixed- crystal compositions X, Y and Z of the guide layers 4, 6 not necessarily required to be constant, and may be changed continuously in the film thickness direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ装置に係
り、特にSi又はGaP基板結晶上に作製された半導体
レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a semiconductor laser device manufactured on a Si or GaP substrate crystal.

【0002】[0002]

【従来の技術】特開昭63−197391に記載されて
いるIn1-x-yGaxAly1-zAsz(ただしx、y、
zの値は、0≦x≦1、0≦y≦1、0.5≦x+y≦
1、0≦z≦0.5の範囲である)をクラッド層とする
半導体レーザ装置は、発振波長を広い範囲で選ぶことが
できるという特徴がある。また、基板結晶としてSi基
板を用いることが出来るので、電子素子とモノリシック
に半導体レーザを形成することが可能となり、OEIC
(光電子集積回路)への応用が期待されている。
Are described in the Related Art JP 63-197391 In 1-xy Ga x Al y P 1-z As z ( although x, y,
The value of z is 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0.5 ≦ x + y ≦
The semiconductor laser device having a cladding layer of (1, 0 ≦ z ≦ 0.5) as a cladding layer is characterized in that the oscillation wavelength can be selected in a wide range. In addition, since a Si substrate can be used as the substrate crystal, it becomes possible to form a semiconductor laser monolithically with an electronic element, and the OEIC can be formed.
Application to (optical and electronic integrated circuits) is expected.

【0003】[0003]

【発明が解決しようとする課題】上記従来の半導体レー
ザ装置では、活性層の格子定数がクラッド層の格子定数
と異なっており、活性層には歪みが生じている。活性層
に結晶欠陥が生じるとレーザ装置の特性が著しく劣化す
るので活性層の厚みは結晶欠陥が生じないように薄くし
なくてはならない。しかし、活性層の厚みが薄すぎると
電流注入により活性層にキャリアを効率良く注入するこ
とが難しくなる。このためこのレーザを電流注入により
室温で発振させることが難しいという問題があった。
In the above conventional semiconductor laser device, the lattice constant of the active layer is different from the lattice constant of the cladding layer, and the active layer is distorted. When crystal defects occur in the active layer, the characteristics of the laser device are significantly deteriorated. Therefore, the thickness of the active layer must be thin so that crystal defects do not occur. However, if the active layer is too thin, it becomes difficult to efficiently inject carriers into the active layer due to current injection. Therefore, there is a problem that it is difficult to oscillate this laser at room temperature by injecting current.

【0004】本発明の目的は、In1-x-yGaxAly
1-zAsz(ただしx、y、zの値は、0≦x≦1、0≦
y≦1、0.5≦x+y≦1、0≦z≦0.5の範囲で
ある)をクラッド層とし、電流注入により室温で発振す
る半導体レーザ装置を提供することにある。
An object of the present invention is In 1-xy Ga x Al y P.
1-z As z (where x, y, and z are 0 ≦ x ≦ 1, 0 ≦
It is intended to provide a semiconductor laser device which oscillates at room temperature by current injection, with a cladding layer of y ≦ 1, 0.5 ≦ x + y ≦ 1, 0 ≦ z ≦ 0.5).

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体レーザ装置は、基板上に、歪活性層
と、In1-x-yGaxAly1-zAsz(ただしx、y、
zの値は、0≦x≦1、0≦y≦1、0.5≦x+y≦
1、0≦z≦0.5の範囲である)からなるクラッド層
とを有し、この歪活性層に隣接して、In1-x-yGax
y1-zAsz(ただしx、y、zの値は、0≦x≦
1、0≦y≦1、0≦x+y≦1、0≦z≦1の範囲で
ある)からなるガイド層を配置したものである。
In order to achieve the above object, a semiconductor laser device of the present invention comprises a strained active layer, an In 1-xy Ga x Al y P 1-z As z (provided that x, y,
The value of z is 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0.5 ≦ x + y ≦
1, 0 ≦ z ≦ 0.5) and adjacent to the strained active layer, In 1-xy Ga x A
l y P 1-z As z (where x, y, and z are 0 ≦ x ≦
1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1, and 0 ≦ z ≦ 1)).

【0006】なお、上記ガイド層の混晶組成x、y、z
は必ずしも一定である必要はなく、膜厚方向に連続的に
変化させてもよい。
The mixed crystal composition x, y, z of the guide layer
Does not necessarily have to be constant, and may be continuously changed in the film thickness direction.

【0007】[0007]

【作用】一例として、AlPをクラッド層、GaAsを
活性層、AlyGa1-yPをガイド層とするレーザについ
て、図1に示す活性層付近のバンドダイアグラムを用い
て説明する。
As an example, a laser using AlP as a cladding layer, GaAs as an active layer and Al y Ga 1-y P as a guide layer will be described with reference to the band diagram near the active layer shown in FIG.

【0008】クラッド層であるAlPと活性層であるG
aAsとは格子定数が約4%異なるので、活性層の膜厚
は約3nm以下でなければならない。活性層に隣接する
ガイド層の厚みは約30nmであるが、ガイド層である
AlyGa1-yPはクラッド層のAlPとほぼ同じ格子定
数を有するので結晶欠陥は生じない。ガイド層であるA
yGa1-yPのバンドギャップが図1に示す様にパラボ
リックに変化する様に混層組成yを1から0或いは0か
ら1まで膜厚方向に変化させると、室温においても電流
注入されたキャリアを活性層であるGaAs層で再結合
つまり発光させることが可能となる。
AlP which is the clad layer and G which is the active layer
Since the lattice constant differs from that of aAs by about 4%, the thickness of the active layer must be about 3 nm or less. The thickness of the guide layer adjacent to the active layer is about 30nm, Al y Ga 1-y P a guide layer does not occur crystal defects because they have substantially the same lattice constant as AlP cladding layer. Guide layer A
When the mixed layer composition y was changed from 1 to 0 or from 0 to 1 in the film thickness direction so that the band gap of l y Ga 1 -y P changed parabolically as shown in FIG. 1, current was injected even at room temperature. Carriers can be recombined or emitted in the GaAs layer, which is an active layer.

【0009】なお、ガイド層のバンドギャップをパラボ
リックに変化さるのはキャリアをより効率良く活性層に
注入するためであるが、ガイド層のバンドギャップの変
化が連続的にでなく、ステップ状であったとしても注入
効率改善の効果が有る。
The bandgap of the guide layer is parabolically changed in order to more efficiently inject carriers into the active layer, but the bandgap of the guide layer is not continuous but stepwise. Even if it does, it has the effect of improving the injection efficiency.

【0010】[0010]

【実施例】〈実施例1〉図2に本発明を適用した半導体
レーザ装置の一実施例の構造断面図を示す。図2におい
て、1はn型Si基板、2はn型GaPバッファー層
(100nm)、3はn型AlPクラッド層(1μ
m)、4はn型AlyGa1-yPガイド層(30nm)、
5はノンドープGaAs層(2nm)とノンドープGa
P層(1nm)が交互に3回積層された歪超格子活性
層、6はP型AlyGa1-yPガイド層(30nm)、7
はp型AlPクラッド層(1μm)、8はp型GaPキ
ャップ層(100nm)である。上記各層は、有機金属
化学気相成長法により、連続してn型Si基板1上に結
晶成長させた。AlyGa1-yPガイド層の混晶組成y
は、図1に示すように、バンドギャップがパラボリック
に変化するように1から0及び0から1の範囲で膜厚方
向に変化させた。
EXAMPLE 1 FIG. 2 is a structural sectional view of an example of a semiconductor laser device to which the present invention is applied. In FIG. 2, 1 is an n-type Si substrate, 2 is an n-type GaP buffer layer (100 nm), 3 is an n-type AlP clad layer (1 μm).
m) and 4 are n-type Al y Ga 1-y P guide layers (30 nm),
5 is a non-doped GaAs layer (2 nm) and a non-doped Ga
A strained superlattice active layer in which P layers (1 nm) are alternately laminated three times, 6 is a P-type Al y Ga 1-y P guide layer (30 nm), 7
Is a p-type AlP clad layer (1 μm), and 8 is a p-type GaP cap layer (100 nm). Each of the above layers was continuously crystal-grown on the n-type Si substrate 1 by a metal organic chemical vapor deposition method. Al y Ga 1-y P guide layer mixed crystal composition y
1 was changed in the film thickness direction in the range of 1 to 0 and 0 to 1 so that the band gap changed parabolic as shown in FIG.

【0011】成長を終えたウエハは、シリコン窒化膜に
よる電流狭窄層9、p型電極10、n型電極11を施
し、300μm角に劈開しチップ化した。劈開面にはク
ラッド層のp型AlPが露出しているので、潮解を防ぐ
ために、シリコン窒化膜でコートした。このようにして
作製した半導体レーザ装置に電流を注入すると、室温に
おいて赤色のレーザ光を発振した。
The grown wafer was provided with a current confinement layer 9 made of a silicon nitride film, a p-type electrode 10 and an n-type electrode 11 and cleaved into 300 μm square chips to form chips. Since the p-type AlP of the clad layer is exposed on the cleavage surface, it was coated with a silicon nitride film in order to prevent deliquescence. When a current was injected into the semiconductor laser device thus manufactured, a red laser beam was oscillated at room temperature.

【0012】本実施例ではガイド層をAlyGa1-yPと
したが、ガイド層をAlP1-zAszとして、バンドギャ
ップがパラボリックに変化するように混晶組成zを0か
ら0.5の範囲で膜厚方向に変化させてもい。
In this embodiment, the guide layer is Al y Ga 1-y P, but the guide layer is AlP 1-z As z and the mixed crystal composition z is 0 to 0. It may be changed in the film thickness direction within the range of 5.

【0013】〈実施例2〉本実施例では、クラッド層を
In0.01Ga0.01Al0.980.98As0.02、ガイド層を
In0.1Ga0.90.8As0.2とした。両者の間には約1
%の格子不整合がある。また、活性層には格子不整合が
約4%のIn0.5Ga0.5Pを用い、単一量子井戸とし
た。実施例1と同様に有機金属化学気相成長法を用い
て、n型GaP基板の上に、n型GaPバッファー層
(100nm)、n型In0.01Ga0.01Al0.980.98
As0.02クラッド層(1μm)、n型In0.1Ga0.9
0.8As0.2ガイド層(30nm)、ノンドープIn0.5
Ga0.5P歪単一量子井戸活性層(3nm)、P型In
0.1Ga0.90.8As0.2ガイド層(30nm)、p型I
0.01Ga0.01Al0.980.98As0.02クラッド層(1
μm)、p型GaPキャップ層(100nm)を連続し
て結晶成長させた。ガイド層と活性層の厚みは結晶欠陥
が生じないように設計した。
Example 2 In this example, the cladding layer was In 0.01 Ga 0.01 Al 0.98 P 0.98 As 0.02 and the guide layer was In 0.1 Ga 0.9 P 0.8 As 0.2 . About 1 between the two
There is a% lattice mismatch. In addition, In 0.5 Ga 0.5 P having a lattice mismatch of about 4% was used for the active layer to form a single quantum well. As in Example 1, the n-type GaP buffer layer (100 nm) and the n-type In 0.01 Ga 0.01 Al 0.98 P 0.98 were formed on the n-type GaP substrate by using the metal organic chemical vapor deposition method.
As 0.02 clad layer (1 μm), n-type In 0.1 Ga 0.9 P
0.8 As 0.2 guide layer (30 nm), undoped In 0.5
Ga 0.5 P strained single quantum well active layer (3 nm), P-type In
0.1 Ga 0.9 P 0.8 As 0.2 Guide layer (30 nm), p-type I
n 0.01 Ga 0.01 Al 0.98 P 0.98 As 0.02 Cladding layer (1
μm) and a p-type GaP cap layer (100 nm) were continuously grown. The thicknesses of the guide layer and the active layer were designed so that crystal defects would not occur.

【0014】成長を終えたウエハは、シリコン窒化膜に
よる電流狭窄層、p型電極、n型電極を施し、300μ
m角に劈開しチップ化した。劈開面にはクラッド層が露
出しているので潮解を防ぐためにシリコン窒化膜でコー
トした。このようにして作製した半導体レーザ装置に電
流を注入すると、室温において黄色のレーザ光を発振し
た。
The grown wafer is provided with a current confinement layer made of a silicon nitride film, a p-type electrode and an n-type electrode, and is then grown to 300 μm.
It was cleaved into m squares and made into chips. Since the clad layer was exposed on the cleavage plane, it was coated with a silicon nitride film in order to prevent deliquescence. When a current was injected into the semiconductor laser device manufactured in this manner, yellow laser light was oscillated at room temperature.

【0015】[0015]

【発明の効果】本発明によれば、In1-x-yGaxAly
1-zAsz(ただしx、y、zの値は、0≦x≦1、0
≦y≦1、0.5≦x+y≦1、0≦z≦0.5の範囲
である)をクラッド層とし、In1-x-yGaxAly1-z
Asz(ただしx、y、zの値は、0≦x≦1、0≦y
≦1、0≦x+y≦1、0≦z≦1の範囲である)より
なるガイド層を歪活性層に隣接して設けることにより、
室温においても電流注入により発振する半導体レーザ装
置が得られた。
According to the present invention, In 1-xy Ga x Al y
P 1-z As z (where x, y, and z are 0 ≦ x ≦ 1, 0
≦ y ≦ 1,0.5 ≦ x + is in the range of y ≦ 1,0 ≦ z ≦ 0.5) was used as a clad layer, In 1-xy Ga x Al y P 1-z
As z (where x, y, and z are 0 ≦ x ≦ 1, 0 ≦ y
≦ 1, 0 ≦ x + y ≦ 1, 0 ≦ z ≦ 1) is provided adjacent to the strained active layer.
A semiconductor laser device was obtained which oscillated by current injection even at room temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の歪活性層付近の一例のバンドギャップ
ダイアグラム。
FIG. 1 is a bandgap diagram of an example near the strained active layer of the present invention.

【図2】本発明の実施例1の半導体レーザ装置の構造断
面図。
FIG. 2 is a structural cross-sectional view of the semiconductor laser device according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板 2…バッファー層 3、7…クラッド層 4、6…ガイド層 5…歪超格子活性層 8…キャップ層 9…電流狭窄層 10…p型電極 11…n型電極 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Buffer layer 3, 7 ... Cladding layer 4, 6 ... Guide layer 5 ... Strained superlattice active layer 8 ... Cap layer 9 ... Current constriction layer 10 ... P-type electrode 11 ... N-type electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板上に、歪活性層と、In1-x-yGax
y1-zAsz(ただしx、y、zの値は、0≦x≦
1、0≦y≦1、0.5≦x+y≦1、0≦z≦0.5
の範囲である)からなるクラッド層とを有する半導体レ
ーザ装置において、上記歪活性層に隣接して、In
1-x-yGaxAly1-zAsz(ただしx、y、zの値
は、0≦x≦1、0≦y≦1、0≦x+y≦1、0≦z
≦1の範囲である)からなるガイド層を配置したことを
特徴とする半導体レーザ装置。
1. A strained active layer and In 1-xy Ga x A on a substrate.
l y P 1-z As z (where x, y, and z are 0 ≦ x ≦
1, 0 ≦ y ≦ 1, 0.5 ≦ x + y ≦ 1, 0 ≦ z ≦ 0.5
In the semiconductor laser device having a clad layer composed of
1-xy Ga x Al y P 1-z As z ( although values of x, y, z are, 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ x + y ≦ 1,0 ≦ z
The semiconductor laser device is characterized in that a guide layer made of (≦ 1) is arranged.
【請求項2】請求項1記載の半導体レーザ装置におい
て、上記ガイド層の混晶組成x、y又はzは、膜厚方向
に連続的に変化する値であることを特徴とする半導体レ
ーザ装置。
2. The semiconductor laser device according to claim 1, wherein the mixed crystal composition x, y or z of the guide layer has a value that continuously changes in the film thickness direction.
【請求項3】請求項1又は2記載の半導体レーザ装置に
おいて、上記基板は、Siであることを特徴とする半導
体レーザ装置。
3. The semiconductor laser device according to claim 1, wherein the substrate is Si.
【請求項4】請求項1又は2記載の半導体レーザ装置に
おいて、上記基板は、GaPであることを特徴とする半
導体レーザ装置。
4. A semiconductor laser device according to claim 1, wherein the substrate is GaP.
【請求項5】請求項1記載の半導体レーザ装置におい
て、上記ガイド層は、AlyGa1-yP(ただしyの値
は、0≦y≦1の範囲であって膜厚方向に連続的に変化
する値である)であることを特徴とする半導体レーザ装
置。
5. The semiconductor laser device according to claim 1, wherein the guide layer is Al y Ga 1-y P (where y is in the range of 0 ≦ y ≦ 1 and is continuous in the film thickness direction). A semiconductor laser device.
JP86193A 1993-01-07 1993-01-07 Semiconductor laser device Pending JPH06204605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP86193A JPH06204605A (en) 1993-01-07 1993-01-07 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP86193A JPH06204605A (en) 1993-01-07 1993-01-07 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH06204605A true JPH06204605A (en) 1994-07-22

Family

ID=11485453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP86193A Pending JPH06204605A (en) 1993-01-07 1993-01-07 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH06204605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008381A1 (en) * 2016-07-04 2019-04-18 ソニー株式会社 Optical element, active layer structure and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008381A1 (en) * 2016-07-04 2019-04-18 ソニー株式会社 Optical element, active layer structure and display device

Similar Documents

Publication Publication Date Title
US5381434A (en) High-temperature, uncooled diode laser
JPH06334168A (en) Semiconductor element
US20050098793A1 (en) Nitride based semiconductor photo-luminescent device
JPH0381317B2 (en)
US4841531A (en) Semiconductor laser device
JPH07154023A (en) Semiconductor laser
US9401404B2 (en) Semiconductor device and fabrication method
JPH0897504A (en) Semiconductor laser
US6452954B2 (en) High-power semiconductor laser device having current confinement structure and index-guided structure and oscillating in transverse mode
JPH0211027B2 (en)
JPH04236478A (en) Semiconductor light emitting element
JPH08274295A (en) Manufacture of optical semiconductor device
JPH06204605A (en) Semiconductor laser device
EP0528439A1 (en) Semiconductor laser
JPH0439988A (en) Semiconductor light emitting device
JPH0548215A (en) Semiconductor laser diode and its manufacture
JPS6184891A (en) Semiconductor laser element
JPH0846290A (en) Photo-semiconductor element
JPH1197790A (en) Semiconductor laser
JPH06104534A (en) Semiconductor laser element
JP3027038B2 (en) Semiconductor distributed feedback laser device
JP2000124553A (en) Semiconductor laser device and manufacture thereof
GB2164791A (en) Semiconductor lasers
JP2968159B2 (en) Method for manufacturing semiconductor laser device
JPH0373584A (en) Semiconductor laser device