JPH06204465A - Formation of gate oxide film - Google Patents

Formation of gate oxide film

Info

Publication number
JPH06204465A
JPH06204465A JP34960292A JP34960292A JPH06204465A JP H06204465 A JPH06204465 A JP H06204465A JP 34960292 A JP34960292 A JP 34960292A JP 34960292 A JP34960292 A JP 34960292A JP H06204465 A JPH06204465 A JP H06204465A
Authority
JP
Japan
Prior art keywords
oxide film
gate oxide
silicon substrate
nitrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34960292A
Other languages
Japanese (ja)
Inventor
Munetaka Oda
田 宗 隆 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34960292A priority Critical patent/JPH06204465A/en
Publication of JPH06204465A publication Critical patent/JPH06204465A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To suppress gate oxide film deterioration due to fluorine inclusion by providing a process of heat treating a silicon substrate in the nitrogen suboxide atmosphere which contains oxygen. CONSTITUTION:A silicon substrate 1 is provided in a reacting container 2. Then, the reacting container 2 is supplied with oxygen and nitrogen suboxide from an oxygen gas bomb 3 and a nitrogen suboxide gas bomb 4 through flow meters 53 and 54. The silicon substrate 1 is rapidly heated by an infrared lamp 6 and a gate oxide film which contains nitrogen is formed on the surface of the silicon substrate 1. A part of oxygen which constitutes the gate oxide film is replaced by nitrogen atoms by heat treating the silicon substrate in the nitrogen suboxide atmosphere which contains a slight amount of oxygen. Thus, gate oxide film deterioration due to fluorine inclusion is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゲート酸化膜の形成方
法に関し、特に、フッ素の含有によるゲート酸化膜の劣
化を抑制することができるゲート酸化膜の形成方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a gate oxide film, and more particularly to a method for forming a gate oxide film capable of suppressing the deterioration of the gate oxide film due to the inclusion of fluorine.

【0002】[0002]

【従来の技術】LSI製造の各種プロセスでは各種のフ
ッ素化合物が用いられる。このフッ素化合物を構成する
フッ素原子は、熱処理過程でゲート酸化膜中に偏析し、
酸化膜中のシリコンと酸素との結合を切断して酸化膜の
膜厚を増加させたり、酸化膜が破壊に至るまでの注入電
荷量を低減させたり、さらに酸化膜中に電子トラップや
正孔トラップを形成させたりすることが IEEE TRANSACT
ION ON ELECTRONDEVICES, Vo136, No.5, pp87〜889 で
P.J.WRIGHTにより報告されている。
2. Description of the Related Art Various fluorine compounds are used in various processes for manufacturing LSI. Fluorine atoms constituting this fluorine compound segregate in the gate oxide film during the heat treatment process,
The bond between silicon and oxygen in the oxide film is cut to increase the film thickness of the oxide film, reduce the amount of injected charges until the oxide film is destroyed, and further trap electrons and holes in the oxide film. Forming traps is IEEE TRANSACT
ION ON ELECTRONDEVICES, Vo136, No.5, pp87-889 P. J. Reported by WRIGHT.

【0003】例えば、ゲート電極用ポリサイドゲートを
形成する際にWF6 とSiH4 よりLPCVD装置を用
いてポリシリコン上にWSi2 を形成した場合、フッ素
原子は、その後の800℃、30分の熱処理時に酸化膜
中に1021個/cm3 程度偏析する。
For example, when WSi 2 is formed on polysilicon by using an LPCVD apparatus from WF 6 and SiH 4 when forming a polycide gate for a gate electrode, fluorine atoms are added at 800 ° C. for 30 minutes thereafter. During the heat treatment, about 10 21 particles / cm 3 are segregated in the oxide film.

【0004】また、p+ ポリシリコンゲートを形成する
ためにゲート電極用ポリシリコンにBF 2 + をイオン注
入し、900℃程度に熱処理した場合、ポリシリコン中
のフッ素原子は、酸化膜中に偏析する。例えば、厚さ8
nmのゲート酸化膜を持つMOSFETのポリシリコン
中に加速エネルギー20keVでBF 2 + を5×10 15
個/cm2 イオン注入した場合、フッ素原子はゲート酸
化膜中に約5×1020個/cm3 程度偏析する。
In addition, p+Forming a polysilicon gate
BF for polysilicon for gate electrode2 +The ion injection
When placed in a polysilicon and heat-treated at about 900 ° C,
Fluorine atoms segregate in the oxide film. For example, thickness 8
MOSFET polysilicon with nm gate oxide
BF with acceleration energy of 20 keV2 +5 x 10 15
Pieces / cm2When ion-implanted, the fluorine atom is the gate acid
About 5 × 10 in the chemical film20Pieces / cm3Segregate to some extent.

【0005】このように、フッ素がゲート酸化膜に偏析
すると、ゲート酸化膜を構成するシリコンと酸素の結合
が破壊され、電子や正孔を捕獲するダングリングボンド
とSi−Fおよび遊離した酸素原子が生成される。遊離
した酸素原子は、熱処理中にシリコン基板と反応し、新
たな酸化膜となる。また、フッ素により形成されたダン
グリングボンドは、トランジスターの動作中に発生する
ホットキャリアを捕獲し、トランジスタ寿命を著しく劣
化させる原因となる。
When fluorine is segregated in the gate oxide film, the bond between silicon and oxygen forming the gate oxide film is broken, and dangling bonds for capturing electrons and holes, Si-F, and free oxygen atoms. Is generated. The released oxygen atoms react with the silicon substrate during the heat treatment to form a new oxide film. Further, the dangling bond formed of fluorine captures hot carriers generated during the operation of the transistor, which causes the transistor life to be significantly deteriorated.

【0006】[0006]

【発明が解決しようとする課題】しかし、ゲート酸化膜
に偏析したフッ素によって生起される上記の問題を抑制
するために有効な方法が、従来はなかった。従来は、W
Si2 を形成する際にフッ素の発生量を抑止する方法や
酸化膜が不活性雰囲気の熱処理中に増膜する対策とし
て、最初に酸化膜を薄く形成しておく等の対策をとって
きた。
However, there has hitherto been no effective method for suppressing the above problems caused by the fluorine segregated in the gate oxide film. Conventionally, W
As a method for suppressing the amount of fluorine generated when forming Si 2 and a measure for increasing the oxide film during heat treatment in an inert atmosphere, measures such as first forming a thin oxide film have been taken.

【0007】そこで、本発明の目的は、フッ素の含有に
よるゲート酸化膜の劣化を抑制することができるゲート
酸化膜の形成方法を提供することにある。
Therefore, an object of the present invention is to provide a method for forming a gate oxide film which can suppress the deterioration of the gate oxide film due to the inclusion of fluorine.

【0008】[0008]

【課題を解決するための手段】そこで本発明者は、シリ
コン基板を種々の雰囲気中で熱処理し、得られた種々の
酸化膜についてフッ素原子の含有による劣化を評価し
た。評価は、まず、形成したゲート酸化膜上に、厚さ1
50nmのポリシリコン膜を形成し、これにBF 2 +
5×1015個/cm2 だけイオン注入し900℃で熱処
理した試料を作成した。さらに、これを、MOSキャパ
シター構造(図5参照)に加工し、ゲート電極に正電荷
をかけて、シリコン基板側から電子を一定速度で注入し
た後のゲート電圧変化、および界面準位密度変化を測定
した。
Therefore, the present inventor
The various substrates obtained by heat treating
We evaluated the deterioration of the oxide film due to the inclusion of fluorine atoms.
It was First of all, the thickness of 1 is formed on the formed gate oxide film.
A 50 nm polysilicon film is formed and BF is formed on this. 2 +To
5 x 1015Pieces / cm2Ion implantation and heat treatment at 900 ℃
A processed sample was prepared. Furthermore, this is the MOS capacity.
Processed into a sitter structure (see Fig. 5), and positive charge is applied to the gate electrode
By injecting electrons from the silicon substrate side at a constant speed
Change in gate voltage and interface state density after measurement
did.

【0009】まず、特公昭63−318162号公報に
開示された方法によって、アンモニアガス雰囲気中、シ
リコン基板を950℃で30秒間だけ熱処理して酸化膜
を形成した。得られた酸化膜の表面付近に窒素が高濃度
に存在し、酸化膜表面からシリコン基板の深さ方向に従
って急激に減少し、また酸化膜とシリコン基層との界面
付近で増加していた。このシリコン基板をさらに窒化さ
せると酸化膜中の窒素濃度は上昇するが、酸化膜の表面
付近の窒素濃度も急激に上昇してしまい、酸化膜の表面
付近に窒素原子起因の電子トラップが多量に形成されて
しまった。したがって、この方法では酸化膜の表面が優
先的に窒化されてしまい、酸化膜の厚さ方向に均一に窒
素が分布されないことが分かった。また、このようにし
て形成したゲート酸化膜には、10C/cm2 の電子注
入後の容量を測定した結果、5×1011個/cm2 程度
の多量の電子トラップが存在していることが分かった。
First, according to the method disclosed in Japanese Examined Patent Publication No. 63-318162, a silicon substrate was heat-treated at 950 ° C. for 30 seconds in an ammonia gas atmosphere to form an oxide film. Nitrogen was present at a high concentration near the surface of the obtained oxide film, was rapidly decreased in the depth direction of the silicon substrate from the surface of the oxide film, and was increased near the interface between the oxide film and the silicon base layer. If this silicon substrate is further nitrided, the nitrogen concentration in the oxide film rises, but the nitrogen concentration near the surface of the oxide film also rises sharply, and a large amount of electron traps due to nitrogen atoms near the surface of the oxide film. It has been formed. Therefore, it was found that in this method, the surface of the oxide film was preferentially nitrided, and nitrogen was not uniformly distributed in the thickness direction of the oxide film. In addition, as a result of measuring the capacity after electron injection of 10 C / cm 2 in the gate oxide film thus formed, it is found that a large amount of electron traps of about 5 × 10 11 pieces / cm 2 are present. Do you get it.

【0010】また、特公平3−160720号公報に
は、シリコン基板を酸素ガス雰囲気中で熱処理して酸化
膜を形成した後、亜酸化窒素ガス中で熱処理することに
より、上記酸化膜中に窒素原子を導入する方法が開示さ
れている。この方法を用いると、酸化膜とシリコン基板
の界面近傍に、窒素原子を導入することができるが、酸
化膜に窒素を均一に導入することができなかった。ま
た、酸化膜中の窒素濃度が低いため、フッ素原子による
酸化膜の劣化を抑制できなかった。さらに、10C/c
2 の電子注入後の容量測定を行なった結果、1012
/cm2 程度の多量の電子トラップが存在していた。
Further, in Japanese Patent Publication No. 3-160720, a silicon substrate is heat-treated in an oxygen gas atmosphere to form an oxide film, and then heat-treated in a nitrous oxide gas so that the nitrogen in the oxide film is reduced. A method of introducing atoms is disclosed. Using this method, nitrogen atoms could be introduced near the interface between the oxide film and the silicon substrate, but nitrogen could not be uniformly introduced into the oxide film. Further, since the nitrogen concentration in the oxide film is low, the deterioration of the oxide film due to the fluorine atom could not be suppressed. Furthermore, 10C / c
As a result of measuring the capacity after injecting m 2 electrons, a large number of electron traps of about 10 12 / cm 2 were present.

【0011】さらに、亜酸化窒素ガスを用いシリコン基
板を直接窒化する方法がある。この方法を用いると、窒
素原子を酸化膜中に均一に存在させることができるが、
酸化膜とシリコン基板の界面の凹凸が大きくなり、MO
SFETを製造するには不適である。
Further, there is a method of directly nitriding a silicon substrate using nitrous oxide gas. Using this method, nitrogen atoms can be made to exist uniformly in the oxide film.
The unevenness of the interface between the oxide film and the silicon substrate becomes large, and the MO
It is not suitable for manufacturing SFET.

【0012】また、特公平1−187828号公報に
は、アンモニアガスと酸素ガスを用いて、シリコン基板
を熱処理し、酸化膜を形成する方法が開示されている。
この方法を用いると、窒素は酸化膜の深さ方向にほぼ均
一に導入されるが、アンモニアを構成する水素が酸化膜
中にSi−HまたはSi−OHの形で残り、ゲート酸化
膜上のポリシリコンにBF2 + をイオン注入し熱処理し
た時、フッ素原子が酸化膜中のSi−HまたはSi−O
Hと反応し、電子やホールトラップとなる。10C/c
2 の電子注入後の容量測定の結果、電子トラップが1
12個/cm2 程度生成していることがわかった。これ
は、MOSFETの特性を著しく劣化させる量である。
この膜の場合、窒素は添加されているがその効果が見ら
れなかった。
Further, Japanese Patent Publication No. 1-187828 discloses a method of forming an oxide film by heat-treating a silicon substrate using ammonia gas and oxygen gas.
When this method is used, nitrogen is introduced substantially uniformly in the depth direction of the oxide film, but hydrogen constituting ammonia remains in the oxide film in the form of Si—H or Si—OH and remains on the gate oxide film. When BF 2 + is ion-implanted into polysilicon and heat-treated, fluorine atoms are contained in the Si-H or Si-O oxide film.
It reacts with H and becomes an electron or hole trap. 10 C / c
As a result of the capacitance measurement after the electron injection of m 2 , the electron trap was 1
It was found that about 0 12 pieces / cm 2 were generated. This is an amount that significantly deteriorates the characteristics of the MOSFET.
In the case of this film, nitrogen was added, but its effect was not observed.

【0013】最後に、本発明者は、亜酸化窒素に微量の
酸素を含有させたガス雰囲気中でシリコン基板を熱処理
した。この方法を用いることによって、窒素は酸化膜の
厚さ方向に均一に含有されていることを新たに発見し
た。さらに、水素は酸化膜中に20ppm以下しか含有
されないことが分かった。このゲート酸化膜の特性を評
価した。10C/cm2 の電子注入後の容量測定の結
果、酸化膜中には2×10 10程度の電子トラップしか発
生していないことが分かった。また、界面準位密度も、
1010/eV・cm2 程度しか増加していなかった。
Finally, the present inventors have found that nitrous oxide contains a trace amount of
Heat treatment of a silicon substrate in a gas atmosphere containing oxygen
did. By using this method, nitrogen is removed from the oxide film.
Newly discovered that it is uniformly contained in the thickness direction
It was Furthermore, hydrogen contains less than 20 ppm in the oxide film.
It turns out that it will not be done. Evaluation of characteristics of this gate oxide film
I paid. 10 C / cm2Of capacity measurement after electron injection of
2x10 in the oxide film TenOnly an electronic trap of about
I found that it wasn't live. Also, the interface state density is
10Ten/ EV · cm2It was only increasing.

【0014】そこで本発明者は、フッ素によるゲート酸
化膜の劣化を抑制するためには、ゲート酸化膜の膜厚方
向に窒素原子を均一に分散させ、かつ水素を低減するこ
とが有効であることを見いだした。そこで、微量の酸素
を含有する亜酸化窒素雰囲気中でシリコン基板を熱処理
することにより、ゲート酸化膜を構成する酸素の一部を
窒素原子に置き換えることによって、フッ素の含有によ
るゲート酸化膜の劣化を抑制できることを見出した。
Therefore, in order to suppress the deterioration of the gate oxide film due to fluorine, the present inventor has found that it is effective to uniformly disperse nitrogen atoms in the film thickness direction of the gate oxide film and reduce hydrogen. I found it. Therefore, by heat-treating the silicon substrate in a nitrous oxide atmosphere containing a small amount of oxygen, a part of oxygen constituting the gate oxide film is replaced with nitrogen atoms, so that the deterioration of the gate oxide film due to the inclusion of fluorine is prevented. It was found that it can be suppressed.

【0015】すなわち、本発明は、酸素を含む亜酸化窒
素雰囲気中でシリコン基板を熱処理する工程を有する、
窒素を含むゲート酸化膜の形成方法を提供するものであ
る。
That is, the present invention has a step of heat-treating a silicon substrate in a nitrous oxide atmosphere containing oxygen.
A method for forming a gate oxide film containing nitrogen is provided.

【0016】本発明の方法において、熱処理の雰囲気中
の亜酸化窒素の含有量は、ゲート酸化膜中の窒素原子の
濃度が、フッ素の含有によるゲート酸化膜の膜質劣化を
抑制し、窒化ケイ素に起因する新たな電子、正孔トラッ
プの形成を抑制できるように、通常、3〜10原子%程
度、好ましくは4〜6原子%程度になるように調整され
る。
In the method of the present invention, the content of nitrous oxide in the atmosphere of the heat treatment is such that the concentration of nitrogen atoms in the gate oxide film suppresses the deterioration of the film quality of the gate oxide film due to the inclusion of fluorine, and silicon nitride is formed. In order to suppress the formation of new electron and hole traps due to this, the amount is usually adjusted to about 3 to 10 atom%, preferably about 4 to 6 atom%.

【0017】また、本発明の方法において、熱処理雰囲
気中における亜酸化窒素/酸素の含有割合は、通常、1
0〜100の割合、好ましくは20〜50の割合に調整
される。
In the method of the present invention, the content ratio of nitrous oxide / oxygen in the heat treatment atmosphere is usually 1
The proportion is adjusted to 0 to 100, preferably 20 to 50.

【0018】また、熱処理雰囲気中には、上記亜酸化窒
素および酸素以外に、窒素、アルゴン等が含まれていて
もよい。
The heat treatment atmosphere may contain nitrogen, argon, etc. in addition to the nitrous oxide and oxygen.

【0019】さらに、本発明の方法において、熱処理の
温度は、900〜1200℃程度、好ましくは1050
〜1150℃程度である。また、熱処理時の雰囲気圧力
は、通常、大気圧程度に調整される。
Further, in the method of the present invention, the temperature of the heat treatment is about 900 to 1200 ° C., preferably 1050.
It is about 1150 ° C. The atmospheric pressure during heat treatment is usually adjusted to about atmospheric pressure.

【0020】亜酸化窒素に酸素を含有させた場合、実用
温度範囲で酸化する場合、酸化が優先して起こり、窒化
は抑制されるため、酸化膜中に窒素が10%以上含有さ
れない。
When nitrous oxide contains oxygen, when it is oxidized in a practical temperature range, the oxidation takes precedence and nitriding is suppressed, so that the oxide film does not contain 10% or more of nitrogen.

【0021】[0021]

【作用】本発明の方法によれば、酸素および亜酸化窒素
を含む雰囲気でシリコン基板を熱処理することにより、
酸化膜の膜厚方向に窒素原子を一様に含んだゲート酸化
膜を形成でき、この膜を用いるとフッ素原子による酸化
膜の膜質特性の劣化が抑制され、MOSFETのゲート
酸化膜として優れた特性を示す。
According to the method of the present invention, by heat-treating a silicon substrate in an atmosphere containing oxygen and nitrous oxide,
A gate oxide film that contains nitrogen atoms uniformly in the thickness direction of the oxide film can be formed. By using this film, deterioration of the film quality characteristics of the oxide film due to fluorine atoms is suppressed, and it is an excellent gate oxide film for MOSFET. Indicates.

【0022】[0022]

【実施例】以下、本発明の実施例および比較例を示し、
本発明を具体的に説明する。
EXAMPLES Examples and comparative examples of the present invention will be shown below.
The present invention will be specifically described.

【0023】(実施例および比較例)図1に示す装置に
よって、ゲート酸化膜の形成を行った。
Example and Comparative Example A gate oxide film was formed by the apparatus shown in FIG.

【0024】図1に示す装置において、まず、シリコン
基板1を反応容器2内に設置する。次に反応容器2内に
は、酸素ガスボンベ3および亜酸化窒素ガスボンベ4か
ら、それぞれ流量計53 および54 を通して酸素および
亜酸化窒素を、それぞれ2〜10(l/min.)、
0.1〜1(l/min.)の流量で供給した。赤外ラ
ンプ6によりシリコン基板1を1050〜1100℃ま
で急速加熱し、この温度を32〜73秒間だけ保持し、
膜厚9nmの窒素を含むゲート酸化膜をシリコン基板1
の表面に形成した。その後、室温まで急速に冷却させ
た。このときのゲート酸化膜の形成条件、ならびに形成
されたゲート酸化膜の膜厚を、表1に示す。
In the apparatus shown in FIG. 1, first, the silicon substrate 1 is placed in the reaction container 2. Next, in the reaction container 2, oxygen and nitrous oxide are supplied from the oxygen gas cylinder 3 and the nitrous oxide gas cylinder 4 through the flowmeters 5 3 and 5 4 , respectively, at 2 to 10 (l / min.),
It was supplied at a flow rate of 0.1 to 1 (l / min.). The silicon substrate 1 is rapidly heated to 1050 to 1100 ° C. by the infrared lamp 6, and this temperature is held for 32 to 73 seconds,
A gate oxide film containing nitrogen having a film thickness of 9 nm is formed on the silicon substrate 1.
Formed on the surface of. Then, it was made to cool rapidly to room temperature. Table 1 shows the conditions for forming the gate oxide film and the film thickness of the formed gate oxide film at this time.

【0025】また、得られたゲート酸化膜における深さ
方向の窒素原子の濃度および水素原子の濃度を、SIM
S分析で測定した。結果を図2〜4に示す。
Further, the concentration of nitrogen atoms and the concentration of hydrogen atoms in the depth direction in the obtained gate oxide film were measured by SIM.
It was measured by S analysis. The results are shown in FIGS.

【0026】図2は、表1の条件1で形成されたゲート
酸化膜の深さ方向のSIMS分析結果である。図中、S
IMSのスパッタリング時間は、ゲート酸化膜の深さと
比例する。図3および図4においても同様である。この
ゲート酸化膜においては、窒素原子は深さ方向に均一に
分布しており、その窒素原子の濃度の値も4〜5原子%
であった。また、水素原子の濃度は、20ppm以下と
十分低くなっていた。
FIG. 2 shows the results of SIMS analysis in the depth direction of the gate oxide film formed under the condition 1 in Table 1. In the figure, S
The IMS sputtering time is proportional to the depth of the gate oxide film. The same applies to FIGS. 3 and 4. In this gate oxide film, nitrogen atoms are evenly distributed in the depth direction, and the concentration value of the nitrogen atoms is also 4 to 5 atomic%.
Met. Further, the concentration of hydrogen atoms was sufficiently low at 20 ppm or less.

【0027】これに対して、図3は、表1中の条件3で
形成されたゲート酸化膜試料のSIMS分析結果を示
す。この試料では、ゲート酸化膜を9nmだけ形成し、
これを950℃で30秒間だけアンモニアガス雰囲気中
にて急速加熱装置で熱処理した。その結果、この試料で
は、ゲート酸化膜の表面だけが窒化され、ゲート酸化膜
の深さ方向にしたがって窒素原子の濃度が低減している
ことがわかる。
On the other hand, FIG. 3 shows SIMS analysis results of the gate oxide film sample formed under the condition 3 in Table 1. In this sample, the gate oxide film is formed to a thickness of 9 nm,
This was heat-treated at 950 ° C. for 30 seconds in an ammonia gas atmosphere with a rapid heating device. As a result, in this sample, it is found that only the surface of the gate oxide film is nitrided, and the concentration of nitrogen atoms decreases in the depth direction of the gate oxide film.

【0028】図4は、表1の条件5で形成されたゲート
酸化膜試料のSIMS分析結果を示す。この試料では、
窒素原子の濃度は、ゲート酸化膜の深さ方向でほぼ均一
な濃度を示しているが、水素原子の濃度が酸化膜の表面
付近で0.1%程度と非常に高い濃度を示した。
FIG. 4 shows the SIMS analysis results of the gate oxide film sample formed under the condition 5 in Table 1. In this sample,
The concentration of nitrogen atoms was almost uniform in the depth direction of the gate oxide film, but the concentration of hydrogen atoms was as high as about 0.1% near the surface of the oxide film.

【0029】次に、表1の各条件で形成したゲート酸化
膜の上に、ゲート電極用ポリシリコンを厚さ150nm
だけ形成し、これにBF 2 + を5×1015個/cm2
けエネルギー40keVで注入した。その後、900℃
で30分間、炉を用い熱処理した。次に、図5に示すと
おり、ゲート酸化膜10の上に形成されたポリシリコン
からなるゲート電極11、フィールド酸化膜12、ゲー
ト電極11に接続するAl電極13、ならびに絶縁膜1
4、および保護膜15を形成して、MOSキャパシタを
作成した。このMOSキャパシタに、図5に示すよう
に、ゲートに正の電圧Vgを加え、ゲート酸化膜10中
を2.5×10-3A/cm2 の電流が流れるようにし
た。このとき、シリコン基板16からゲート酸化膜10
に10C/cm2 だけ電子を注入し、1MHzの高周波
容量測定および準静的な容量測定をした。
Next, on the gate oxide film formed under each condition of Table 1, polysilicon for a gate electrode is formed to a thickness of 150 nm.
Then, BF 2 + was implanted into this by 5 × 10 15 pieces / cm 2 at an energy of 40 keV. Then 900 ° C
And heat-treated in a furnace for 30 minutes. Next, as shown in FIG. 5, a gate electrode 11 made of polysilicon formed on the gate oxide film 10, a field oxide film 12, an Al electrode 13 connected to the gate electrode 11, and an insulating film 1 are formed.
4 and the protective film 15 were formed to form a MOS capacitor. As shown in FIG. 5, a positive voltage Vg was applied to the gate of this MOS capacitor so that a current of 2.5 × 10 −3 A / cm 2 could flow through the gate oxide film 10. At this time, the gate oxide film 10 is removed from the silicon substrate 16.
Electrons were injected into the substrate at 10 C / cm 2 , and high frequency capacitance measurement at 1 MHz and quasi-static capacitance measurement were performed.

【0030】また、2.5×10-3A/cm2 の一定電
流を流すためのゲート電圧の変化量を測定した。電子の
注入開始時のゲート電圧と、電子を10C/cm2 注入
後のゲート電圧の変化分をΔVgとした。また、電子の
注入前の界面準位密度と10C/cm2 注入後の界面準
位密度の差をΔDitとした。結果を表2に示す。な
お、ここで示す酸化膜厚は、シリコン基板が蓄積状態に
なるゲート電圧をかけ1MHzの高周波容量測定法によ
って決定した。
The amount of change in the gate voltage for flowing a constant current of 2.5 × 10 -3 A / cm 2 was measured. The change in the gate voltage at the start of electron injection and the change in the gate voltage after 10 C / cm 2 injection of electrons were defined as ΔVg. Further, the difference between the interface state density before electron injection and the interface state density after 10 C / cm 2 injection was defined as ΔDit. The results are shown in Table 2. Note that the oxide film thickness shown here was determined by a high-frequency capacitance measuring method of 1 MHz by applying a gate voltage at which the silicon substrate is in an accumulated state.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1に示す条件1および条件2は、亜酸化
窒素に酸素を混合した雰囲気中でシリコン基板を熱処理
して、ゲート酸化膜を形成する本発明例である。この本
発明例においては、ゲート酸化膜に電子を10C/cm
2 注入前後のΔVgは、25mVと31mVでしかなか
った。しかし、比較例においては、ΔVgが、190m
V、210mVおよび180mVと大きな変化を示し
た。また、従来の方法である条件6によって形成された
ゲート酸化膜については、ΔVgは300mVであっ
た。また、界面準位密度の変化ΔDitにおいても、本
発明例では、比較例に比べて1/10程度の変化に抑え
られた。
Conditions 1 and 2 shown in Table 1 are examples of the present invention in which a gate oxide film is formed by heat treating a silicon substrate in an atmosphere in which nitrous oxide is mixed with oxygen. In this example of the present invention, the gate oxide film is provided with electrons of 10 C / cm.
The ΔVg before and after the two injections were only 25 mV and 31 mV. However, in the comparative example, ΔVg is 190 m
V, 210 mV and 180 mV showed large changes. The ΔVg of the gate oxide film formed under the conventional method of Condition 6 was 300 mV. Also, in the change ΔDit of the interface state density, the change of the present invention example was suppressed to about 1/10 of that of the comparative example.

【0034】また、フッ素によるゲート酸化膜の増加
は、条件1、条件2の試料においては、0.1nmであ
るのに対して、比較例では1.0〜1.1nmの増加が
あった。また従来の方法である条件5によって作成され
たゲート酸化膜では、1.5nmもの増膜が観察され
た。したがって、本発明の方法を用いれば、フッ素によ
るゲート酸化膜の増加を抑制できることがわかる。
Further, the increase in the gate oxide film due to fluorine was 0.1 nm in the samples under the conditions 1 and 2, whereas it increased by 1.0 to 1.1 nm in the comparative example. Further, in the gate oxide film formed under the conventional method of Condition 5, an increase of 1.5 nm was observed. Therefore, it can be seen that the use of the method of the present invention can suppress the increase in the gate oxide film due to fluorine.

【0035】以上の結果から、本発明の方法によれば、
従来方法に比べ、Wポリサイドゲート形成工程やBF 2
+ のイオン注入工程において、ゲート酸化膜に偏析する
フッ素原子による悪影響を抑えることができることが判
る。
From the above results, according to the method of the present invention,
Compared with the conventional method, W polycide gate formation process and BF 2
It can be seen that in the + ion implantation step, the adverse effect of fluorine atoms segregated in the gate oxide film can be suppressed.

【0036】[0036]

【発明の効果】本発明の方法によれば、窒素原子が膜厚
方向に均一に分布するゲート酸化膜を形成することがで
きる。そのため、本発明の方法によってゲート酸化膜を
形成すれば、各種のプロセスで生ずるフッ素の偏析によ
る酸化膜の劣化を抑制することができる。例えば、ゲー
ト電極用ポリシリコンにBF 2 + をイオン注入した後、
活性化熱処理時に発生するゲート酸化膜の劣化や、WF
6 ガスとSH4 ガスを用いてWSi2 をゲート電極用ポ
リシリコン上に形成し、熱処理した場合に生起するゲー
ト酸化膜の劣化を抑制することができる。
According to the method of the present invention, a gate oxide film in which nitrogen atoms are uniformly distributed in the film thickness direction can be formed. Therefore, if the gate oxide film is formed by the method of the present invention, it is possible to suppress the deterioration of the oxide film due to the segregation of fluorine that occurs in various processes. For example, after ion-implanting BF 2 + into polysilicon for a gate electrode,
Deterioration of the gate oxide film that occurs during activation heat treatment and WF
It is possible to suppress the deterioration of the gate oxide film that occurs when WSi 2 is formed on the polysilicon for the gate electrode using 6 gas and SH 4 gas and heat-treated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 酸化膜の形成装置の構成を説明する概略図。FIG. 1 is a schematic diagram illustrating a configuration of an oxide film forming apparatus.

【図2】 実施例におけるSIMS分析結果を示す図。FIG. 2 is a diagram showing SIMS analysis results in Examples.

【図3】 比較例におけるSIMS分析結果を示す図。FIG. 3 is a diagram showing SIMS analysis results in a comparative example.

【図4】 比較例におけるSIMS分析結果を示す図。FIG. 4 is a diagram showing SIMS analysis results in a comparative example.

【図5】 測定に用いたMOSキャパシターの模式図で
ある。
FIG. 5 is a schematic diagram of a MOS capacitor used for measurement.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 反応容器 3 酸素ガスボンベ 4 亜酸化窒素ガスボンベ 53 ,54 流量計 6 赤外ランプ 10 ゲート酸化膜 11 ゲート電極 12 フィールド酸化膜 13 Al電極 14 絶縁膜 15 保護膜 16 シリコン基板1 Silicon Substrate 2 Reaction Container 3 Oxygen Gas Cylinder 4 Nitrous Oxide Gas Cylinder 5 3 , 5 4 Flow Meter 6 Infrared Lamp 10 Gate Oxide Film 11 Gate Electrode 12 Field Oxide Film 13 Al Electrode 14 Insulating Film 15 Protective Film 16 Silicon Substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素を含む亜酸化窒素雰囲気中でシリコン
基板を熱処理する工程を有する、窒素を含むゲート酸化
膜の形成方法。
1. A method for forming a gate oxide film containing nitrogen, comprising the step of heat-treating a silicon substrate in a nitrous oxide atmosphere containing oxygen.
JP34960292A 1992-12-28 1992-12-28 Formation of gate oxide film Withdrawn JPH06204465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34960292A JPH06204465A (en) 1992-12-28 1992-12-28 Formation of gate oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34960292A JPH06204465A (en) 1992-12-28 1992-12-28 Formation of gate oxide film

Publications (1)

Publication Number Publication Date
JPH06204465A true JPH06204465A (en) 1994-07-22

Family

ID=18404841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34960292A Withdrawn JPH06204465A (en) 1992-12-28 1992-12-28 Formation of gate oxide film

Country Status (1)

Country Link
JP (1) JPH06204465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990517A (en) * 1997-03-06 1999-11-23 Fujitsu Limited Semiconductor memory device containing nitrogen in a gate oxide film
US6144094A (en) * 1997-05-07 2000-11-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including an insulation film and electrode having nitrogen added thereto
US6245652B1 (en) 1998-09-04 2001-06-12 Advanced Micro Devices, Inc. Method of forming ultra thin gate dielectric for high performance semiconductor devices
WO2005076339A1 (en) * 2004-02-10 2005-08-18 Seiko Epson Corporation A semiconductor device, an electronic device and an electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990517A (en) * 1997-03-06 1999-11-23 Fujitsu Limited Semiconductor memory device containing nitrogen in a gate oxide film
US6979658B2 (en) 1997-03-06 2005-12-27 Fujitsu Limited Method of fabricating a semiconductor device containing nitrogen in a gate oxide film
US7005393B2 (en) 1997-03-06 2006-02-28 Fujitsu Limited Method of fabricating a semiconductor device containing nitrogen in an oxide film
US6144094A (en) * 1997-05-07 2000-11-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including an insulation film and electrode having nitrogen added thereto
US6245652B1 (en) 1998-09-04 2001-06-12 Advanced Micro Devices, Inc. Method of forming ultra thin gate dielectric for high performance semiconductor devices
WO2005076339A1 (en) * 2004-02-10 2005-08-18 Seiko Epson Corporation A semiconductor device, an electronic device and an electronic apparatus
US8168482B2 (en) 2004-02-10 2012-05-01 Seiko Epson Corporation Semiconductor device, an electronic device and an electronic apparatus
US8395225B2 (en) 2004-02-10 2013-03-12 Seiko Epson Corporation Semiconductor device, an electronic device and an electronic apparatus

Similar Documents

Publication Publication Date Title
US7727340B2 (en) Inclusion of nitrogen at the silicon dioxide-silicon carbide interface for passivation of interface defects
Nissan-Cohen et al. The effect of hydrogen on trap generation, positive charge trapping, and time-dependent dielectric breakdown of gate oxides
Sah et al. Study of the atomic models of three donor‐like traps on oxidized silicon with aluminum gate from their processing dependences
US6756646B2 (en) Oxynitride gate dielectric and method of forming
Sah et al. Study of the atomic models of three donorlike defects in silicon metal‐oxide‐semiconductor structures from their gate material and process dependencies
KR100204856B1 (en) Method for producing shallow junction in surface region of semiconductor substrate and apparatus therfor
US5908312A (en) Semiconductor device fabrication
US20060178018A1 (en) Silicon oxynitride gate dielectric formation using multiple annealing steps
JP2003531490A (en) UV pretreatment of ultra-thin oxynitride for forming silicon nitride films
JPH0620896A (en) Manufacture of semiconductor wafer
JPS58156523A (en) Formation of silicon oxide
US20050130448A1 (en) Method of forming a silicon oxynitride layer
TW577934B (en) Method of preparing a silicon, oxygen and nitrogen containing film on a substrate comprising silicon
JP2004507071A (en) Growth of ultra-thin nitride on Si (100) by rapid thermal N2 treatment
Yount et al. Electron spin resonance study of radiation-induced points defects in nitrided and reoxidized nitrided oxides
JPH06204465A (en) Formation of gate oxide film
JP2830828B2 (en) Method for manufacturing semiconductor device
Hsieh et al. Study and improvement of anomalous interface states of metal‐oxide‐semiconductor structures induced by rapid thermal post‐oxide annealing
US20070010103A1 (en) Nitric oxide reoxidation for improved gate leakage reduction of sion gate dielectrics
Kassabov et al. Plasma processing effects on O2-HCl grown Si-SiO2 structures
Mártil et al. Rapid thermally annealed plasma deposited SiN x: H thin films: Application to metal–insulator–semiconductor structures with Si, In 0.53 Ga 0.47 As, and InP
KR100310461B1 (en) Method for forming silicon oxide
RU2012091C1 (en) Mos structure manufacturing technique
Castán et al. Interfacial state density and conductance-transient three-dimensional profiling of disordered-induced gap states on metal insulator semiconductor capacitors fabricated from electron-cyclotron resonance plasma-enhanced chemical vapor deposited SiOxNyHz films
KR20210123908A (en) Thermal annealing Apparatus for gate oxides on SiC by using microwave excited plasma

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307