JPH0620313A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0620313A
JPH0620313A JP4173597A JP17359792A JPH0620313A JP H0620313 A JPH0620313 A JP H0620313A JP 4173597 A JP4173597 A JP 4173597A JP 17359792 A JP17359792 A JP 17359792A JP H0620313 A JPH0620313 A JP H0620313A
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic layer
magneto
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4173597A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nanba
義幸 難波
Motonobu Mihara
基伸 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4173597A priority Critical patent/JPH0620313A/en
Publication of JPH0620313A publication Critical patent/JPH0620313A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable the control of exchange coupling force between 1st and 2nd magnetic layers by regulating the pressure of a sputtering gas at the time of forming a magnetic layer interposed between the 1st and 2nd magnetic layers and regulating the thickness of the middle layer. CONSTITUTION:A 1st protective layer 21, a 1st magnetic layer 3, a middle layer 4 having a formed columnar structure, a 2nd magnetic layer 5 and a 2nd protective layer 22 are successively formed by sputtering in a prescribed thickness each on a glass substrate 1 with a laser beam guide groove to obtain a magneto-optical recording medium. The magnetic layer 4 consists of crystals each having a fine columnar structure with an axis in a direction perpendicular to the film forming surface for growth. This middle layer 4 tends to reduce the interfacial magnetic wall energy in accordance with the increase of the pressure of a sputtering gas and tends to reduce the energy in accordance with the increase of the thickness of the layer 4. When the thickness of the layer 4 exceeds a prescribed value, exchange coupling of the layers 3, 5 is lost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ光を用いて情報の
記録、再生を行う光磁気記録媒体に関する。近年、電子
計算機の外部記録媒体として、光磁気ディスクが注目さ
れている。光磁気ディスクは、レーザ光を用いて光磁気
記録媒体上にサブミクロンオーダの記録ビットを作るこ
とにより、これ迄の外部記録媒体であるフロッピィディ
スクや、ハードディスクに比較して、格段に記録容量を
増大させることが可能となり、今後の発展が益々期待さ
れている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording / reproducing information using laser light. In recent years, a magneto-optical disk has attracted attention as an external recording medium for electronic computers. A magneto-optical disk has a recording capacity significantly higher than that of a conventional external recording medium such as a floppy disk or a hard disk by creating recording bits on the sub-micron order on a magneto-optical recording medium by using laser light. It is possible to increase the number, and future development is expected more and more.

【0002】[0002]

【従来の技術】光ディスクは3.5 インチのディスクの片
面で、約128 メガバイトの記憶容量を有している。3.5
インチのフロッピィディスク1枚の記憶容量が約1メガ
バイトであり、光ディスク1枚でフロッピィディスク12
8 枚分の記憶容量を持つことができる。
2. Description of the Related Art An optical disk is a 3.5-inch disk with one side having a storage capacity of about 128 megabytes. 3.5
The storage capacity of one inch floppy disk is about 1 megabyte, and one floppy disk 12
It can have a storage capacity of 8 sheets.

【0003】このように、光ディスクは記録密度の非常
に高い可換記録媒体である。然し、ハードディスクと比
較した場合、記憶容量では有利であるが、データ転送速
度で見るとハードディスクは約3メガバイト/secに対
し、光磁気ディスクは約640 メガバイト/secである。
As described above, the optical disk is an exchangeable recording medium having a very high recording density. However, compared with the hard disk, the storage capacity is advantageous, but the data transfer rate is about 3 megabytes / sec for the hard disk and about 640 megabytes / sec for the magneto-optical disk.

【0004】これは、光磁気ディスクは現在オーバーラ
イトを行っておらず、記録を行う場合、予め消去してお
く必要があり、その消去に要する分だけ、転送速度が遅
くなっている。
This is because the magneto-optical disk is not currently overwritten, and when recording is performed, it must be erased in advance, and the transfer speed is reduced by the amount required for the erase.

【0005】オーバーライトが行える光磁気記録媒体と
しては、媒体構成を2層化し、更に初期化磁石を用いる
ことにより、オーバーライトが行えるようにした例とし
て、特開昭62-175948 号がある。
As an example of a magneto-optical recording medium that can be overwritten, there is JP-A-62-175948 as an example in which the medium structure is made into two layers and an initialization magnet is used so that overwriting can be performed.

【0006】この方法はキュリー温度と保磁力の関係
が、図4の曲線aに示すような関係を有する記録層と、
キュリー温度と保磁力の関係が、図4の曲線bに示す補
助層のように、互いにキュリー点と保磁力の温度に対す
る勾配の異なる曲線を有する補助層と記録層の二層の光
磁気記録媒体を用いる。
According to this method, the Curie temperature and the coercive force have a relationship as shown by the curve a in FIG.
The relationship between the Curie temperature and the coercive force is the same as that of the auxiliary layer shown by the curve b in FIG. 4, and the Curie point and the coercive force have different curves with respect to temperature. To use.

【0007】そして曲線aに示すように、室温TR で記
録層の保磁力Hc1は、曲線bに示す補助層の保磁力Hc2
より大で、該記録層のキュリー温度Tc1は補助層のキュ
リー温度Tc2より低い光磁気記録媒体を用いている。
As shown by the curve a, the coercive force H c1 of the recording layer at room temperature T R is the coercive force H c2 of the auxiliary layer shown by the curve b.
The magneto-optical recording medium having a higher Curie temperature T c1 than the Curie temperature T c2 of the auxiliary layer is used.

【0008】そして記録に先立って補助層の磁気モーメ
ントの向きを一方向に揃えておき、記録しようとする信
号に対応して記録層のキュリー温度Tc1以上で、かつ補
助層の磁化反転の生じない温度に加熱する第1の加熱状
態と、該第1の加熱状態よりも加熱温度が高く、補助層
の磁化を反転させるのに充分な第2の加熱状態とで、記
録層と補助層の光磁気記録媒体を、レーザ光の照射で加
熱した後、各々の加熱状態から冷却することで2値情報
を記録している。そしてこの方法は記録の際に用いる記
録磁石の他に、補助層の磁気モーメントの向きを一方向
に揃えるための初期化磁石が設置されている。
Prior to recording, the directions of the magnetic moments of the auxiliary layer are aligned in one direction, the Curie temperature T c1 of the recording layer or higher corresponding to the signal to be recorded, and the magnetization reversal of the auxiliary layer occurs. A first heating state in which the recording layer and the auxiliary layer are heated to a non-existing temperature, and a second heating state in which the heating temperature is higher than the first heating state and is sufficient to reverse the magnetization of the auxiliary layer. Binary information is recorded by heating the magneto-optical recording medium by irradiating it with laser light and then cooling it from each heating state. Further, in this method, in addition to the recording magnet used for recording, an initialization magnet for aligning the magnetic moments of the auxiliary layer in one direction is installed.

【0009】ところでこのような方法では、記録用磁石
の他に大きい初期化用磁石が必要であり、そのため光磁
気記録装置が大規模に成る欠点があり、光磁気記録装置
の小型化を図る上で大きい障害となっている。
By the way, such a method requires a large initialization magnet in addition to the recording magnet, which has a drawback that the magneto-optical recording apparatus becomes large in scale. Is a major obstacle.

【0010】更に光磁気記録媒体を二層構造以上に多層
構造として成層し、初期化磁石を不要としたものとし
て、第13回日本応用磁気学会学術講演会講演番号23aC-4
で開示されたものがある。
Further, the magneto-optical recording medium is layered as a multi-layered structure having a two-layered structure or more, and an initializing magnet is not required.
Have been disclosed in.

【0011】上記した二層膜、或いは二層膜以上の多層
膜が積層された光磁気記録媒体は、該光磁気記録媒体同
士の間に働く交換結合力を利用してオーバーライトを行
っており、的確にオーバーライトを行うためには、交換
結合力の制御が非常に重要となる。
A magneto-optical recording medium in which the above-mentioned two-layer film or a multilayer film of two or more layers is laminated is overwritten by utilizing the exchange coupling force acting between the magneto-optical recording media. The control of the exchange coupling force is very important for accurate overwriting.

【0012】通常、垂直磁気異方性を有する第1の磁性
層と、垂直磁気異方性を有する第2の磁性層を直接スパ
ッタ法を用いて連続して成層した場合、該隣接する磁性
層同士の間に働く交換結合力が強すぎてオーバーライト
が不可能となる場合が多い。
Usually, when a first magnetic layer having perpendicular magnetic anisotropy and a second magnetic layer having perpendicular magnetic anisotropy are continuously formed by a direct sputtering method, the adjacent magnetic layers are adjacent to each other. In many cases, the exchange coupling force acting between them is too strong to make overwriting impossible.

【0013】[0013]

【発明が解決しようとする課題】本発明は上記した事項
に鑑みて成されたもので、多層構造に積層した光磁気記
録媒体同士の間に働く交換結合力を制御可能にした光磁
気記録媒体の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above matters, and it is possible to control the exchange coupling force acting between magneto-optical recording media laminated in a multilayer structure. For the purpose of providing.

【0014】[0014]

【課題を解決するための手段】本発明の光磁気記録媒体
は、請求項1に示すように垂直磁気異方性を有する第1
の磁性層と、第2の磁性層とを積層させて該磁性層同士
を交換結合させた光磁気記録媒体に於いて、前記第1の
磁性層と第2の磁性層の間に柱状構造化させた磁性層を
介在させて中間層として設けたことを特徴とする。
A magneto-optical recording medium according to the present invention has a first aspect having a perpendicular magnetic anisotropy as described in claim 1.
In a magneto-optical recording medium in which the magnetic layer and the second magnetic layer are laminated and the magnetic layers are exchange-coupled to each other, a columnar structure is formed between the first magnetic layer and the second magnetic layer. It is characterized in that it is provided as an intermediate layer with the magnetic layer thus formed interposed.

【0015】また請求項2に示すように、前記中間層の
厚さを、厚さの薄い側の磁性層の厚さと等しい厚さとす
るか、或いは薄く保つようにしたことを特徴とする。ま
た請求項3に示すように、前記積層して隣接する第1の
磁性層と第2の磁性層の境界面に於いて、少なくとも一
方の磁性層の境界面の層構造を、柱状構造化したことを
特徴とする。
According to a second aspect of the present invention, the thickness of the intermediate layer is equal to or smaller than the thickness of the magnetic layer on the thin side. According to a third aspect of the present invention, at the boundary surface between the first magnetic layer and the second magnetic layer adjacent to each other, the layer structure of the boundary surface of at least one of the magnetic layers has a columnar structure. It is characterized by

【0016】また請求項4に示すように、前記積層する
第1の磁性層、或いは第2の磁性層のうちの少なくとも
一方の磁性層の層構造を柱状構造化したことを特徴とす
るものである。
According to a fourth aspect of the present invention, the layer structure of at least one of the first magnetic layer and the second magnetic layer to be laminated has a columnar structure. is there.

【0017】[0017]

【作用】オーバーライトが可能なように、垂直磁気異方
性を有して積層する磁性層の間に、柱状構造化した磁性
層より成る中間層を設けるか、該積層する磁性層の隣接
する面の内、少なくとも片方の面を柱状構造化するか、
或いは隣接する磁性層の少なくとも片方の磁性層を柱状
構造化する。
In order to allow overwriting, an intermediate layer composed of a magnetic layer having a columnar structure is provided between magnetic layers having perpendicular magnetic anisotropy, or adjacent magnetic layers are laminated. Of the surfaces, at least one surface has a columnar structure,
Alternatively, at least one of the adjacent magnetic layers has a columnar structure.

【0018】上記した柱状構造化された磁性層は、特願
平2-150293号に示したように、成長する成膜面に対して
垂直方向に軸を有する微細な柱状体( コラム) 構造を呈
した結晶が集合して形成されており、この柱状体構造同
士が接触していない間隙が形成され、この柱状化膜は走
査型電子顕微鏡により観察される。
As described in Japanese Patent Application No. 2-150293, the above-mentioned columnar structured magnetic layer has a fine columnar structure having an axis in the direction perpendicular to the growing film-forming surface. The presented crystals are aggregated to form a gap where the columnar structures are not in contact with each other, and the columnar film is observed by a scanning electron microscope.

【0019】そしてこの特願平2-150293号には、柱状構
造膜を非柱状構造膜で挟んだ光磁気記録媒体の構成を開
示しているが、この場合は上記した柱状構造膜が熱伝導
が悪いので、レーザ光で照射された磁性層の熱の移動を
防いで、形成される光磁気記録媒体の感度を向上させる
のを目的としており、本願のようにオーバーライト可能
な光磁気記録媒体を対象として居らず、また柱状構造膜
の厚さについても言及していない。
This Japanese Patent Application No. 2-150293 discloses a structure of a magneto-optical recording medium in which a columnar structure film is sandwiched between non-columnar structure films. In this case, the above-mentioned columnar structure film is thermally conductive. Therefore, the purpose of the present invention is to prevent the heat transfer of the magnetic layer irradiated with the laser beam and to improve the sensitivity of the formed magneto-optical recording medium. And does not mention the thickness of the columnar structure film.

【0020】そしてこの磁性層の柱状化の度合いが大に
成ると、該磁性層の界面磁壁エネギーが小さく成って交
換結合力が弱くなり、また柱状構造化した中間層の厚さ
が増大すると、該中間層の磁性層の界面磁壁エネルギー
が低下して交換結合力が弱くなる。
When the degree of columnarization of the magnetic layer becomes large, the interface domain wall energy of the magnetic layer becomes small and the exchange coupling force becomes weak, and when the thickness of the intermediate layer having the columnar structure increases, The interfacial domain wall energy of the magnetic layer of the intermediate layer is lowered and the exchange coupling force is weakened.

【0021】そのため、この中間層の柱状化度を制御す
ることで、或いは柱状構造化した中間層の厚さを制御す
ることで、中間層を挟んだ磁性層同士の交換結合力を制
御することが可能となる。
Therefore, the exchange coupling force between the magnetic layers sandwiching the intermediate layer can be controlled by controlling the degree of columnarization of the intermediate layer or by controlling the thickness of the intermediate layer having the columnar structure. Is possible.

【0022】そして上記磁性層が柱状化される度合い
は、アルゴンガスのスパッタガス圧によって変化し、ス
パッタガス圧が大きい程、柱状化度が進行するので、形
成さる磁性層の界面磁壁エネルギーが小さくなり、中間
層をスパッタ法で成膜する際にスパッタガス圧を制御し
て磁性層の柱状化する度合いを制御する。
The degree of columnarization of the magnetic layer varies depending on the sputtering gas pressure of the argon gas. The higher the sputtering gas pressure, the more the columnarization progresses, so that the magnetic domain wall energy of the formed magnetic layer is small. Therefore, when forming the intermediate layer by the sputtering method, the sputtering gas pressure is controlled to control the degree of columnarization of the magnetic layer.

【0023】例えば、隣接する磁性層同士の間に中間層
を挿入する場合に付いて述べる。非柱状構造膜より柱状
構造膜へと、膜構造が変化するにつれて、磁性層のヒス
テリシスループの角形比が悪くなり、面内磁化成分が現
れる。
For example, the case of inserting an intermediate layer between adjacent magnetic layers will be described. As the film structure changes from the non-columnar structure film to the columnar structure film, the squareness ratio of the hysteresis loop of the magnetic layer deteriorates and an in-plane magnetization component appears.

【0024】また垂直磁気異方性定数Ku も小さくな
り、交換結合力を弱くする方向となる。従って、柱状化
の度合いが大きく、またその柱状化された膜厚が厚い
程、交換結合力が弱くなる。なお、交換結合力を制御す
る中間層として、柱状構造膜を用いる場合、記録感度の
悪化が懸念されるが、柱状構造膜は第38回応用物理学関
係連合講演会講演番号31pR-13 に於いて開示したよう
に、非柱状構造膜と比較して密度が小さく、緻密に結晶
化していないで、熱伝導率が小さいため、レーザ光の照
射の熱の移動が少なく、中間層を設けて磁性層全体の厚
さが厚くなっても、記録感度は影響されない。
Further, the perpendicular magnetic anisotropy constant Ku also decreases, and the exchange coupling force is weakened. Therefore, the greater the degree of columnarization and the thicker the columnar film thickness, the weaker the exchange coupling force. It should be noted that when a columnar structure film is used as an intermediate layer for controlling the exchange coupling force, the recording sensitivity may be deteriorated. However, the columnar structure film will be presented at the 38th Applied Physics Association Conference Lecture No. 31pR-13. As described above, the density is smaller than that of the non-columnar structure film, it is not densely crystallized, and the thermal conductivity is small. The recording sensitivity is not affected even if the thickness of the entire layer is increased.

【0025】[0025]

【実施例】本発明の光磁気記録媒体の第1実施例を図1
(a)に示す。図1(a)に示すように、レーザ光案内溝付き
のガラス基板1上に順次厚さが90nmのTb- SiO2よりなる
第1の保護層2-1 と、60nmの厚さのテルビウム- ジスプ
ロシウム- 鉄- コバルト(Tb5Dy23Fe32Co40) よりなる第
1の磁性層3と、柱状構造化された10nmの厚さのテルビ
ウム- 鉄- コバルト(Tb21Fe49Co30)よりなる中間層4
と、30nmの厚さのテルビウム- 鉄- コバルト(Tb13Fe77C
o5) より成る第2の磁性層5と、90nmのTb- SiO2よりな
る第2の保護層2-2 とがマグネトロンスパッタ法で成層
されている。
FIG. 1 shows a first embodiment of the magneto-optical recording medium of the present invention.
Shown in (a). As shown in FIG. 1 (a), a first protective layer 2-1 made of Tb-SiO 2 having a thickness of 90 nm and a terbium layer having a thickness of 60 nm are sequentially formed on a glass substrate 1 having a laser light guide groove. The first magnetic layer 3 made of dysprosium-iron-cobalt (Tb 5 Dy 23 Fe 32 Co 40 ) and the columnar structured terbium-iron-cobalt (Tb 21 Fe 49 Co 30 ) having a thickness of 10 nm. Middle layer 4
And 30 nm thick terbium-iron-cobalt (Tb 13 Fe 77 C
The second magnetic layer 5 made of O 5 ), and the second protective layer 2-2 made of 90 nm Tb-SiO 2 are formed by magnetron sputtering.

【0026】このような各々の保護層、第1と第2の磁
性層、中間層の成膜条件を表1に示す。
Table 1 shows film forming conditions for the respective protective layers, the first and second magnetic layers, and the intermediate layer.

【0027】[0027]

【表1】 [Table 1]

【0028】上記した柱状構造化された磁性層は、特願
平2-150293号に示したように、成長する成膜面に対して
垂直方向に軸を有する微細な柱状体( コラム) 構造を呈
した結晶が集合して形成されており、この柱状体構造同
士が接触していない間隙が形成され、この柱状化膜は走
査型電子顕微鏡により観察される。
As described in Japanese Patent Application No. 2-150293, the above-mentioned magnetic layer having a columnar structure has a fine columnar structure having an axis in the direction perpendicular to the growing film-forming surface. The presented crystals are aggregated to form a gap where the columnar structures are not in contact with each other, and the columnar film is observed by a scanning electron microscope.

【0029】そしてこの中間層の界面磁壁エネルギーの
大きさと、スパッタガスに用いるアルゴンガスのガス圧
力の関係を図2に示す。図2に示すように、スパッタガ
スのアルゴンガスの圧力が増加する程、界面磁壁エネル
ギーは低下する傾向にあり、このことは、スパッタガス
の圧力を増加させる程、柱状化構造化の度合が進行し、
そのため、界面磁壁エネルギーが低下することが判る。
FIG. 2 shows the relationship between the magnitude of the interfacial domain wall energy of this intermediate layer and the gas pressure of the argon gas used as the sputtering gas. As shown in FIG. 2, the interface domain wall energy tends to decrease as the pressure of the argon gas of the sputtering gas increases. This means that the degree of columnar structure progresses as the pressure of the sputtering gas increases. Then
Therefore, it is understood that the interface domain wall energy is reduced.

【0030】また柱状構造化された本発明の中間層の厚
さと、界面磁壁エネルギーの関係を図3に示す。図3に
示すように、中間層の膜厚が厚くなる程、界面磁壁エネ
ルギーは低下する傾向にあり、柱状構造化された中間層
の厚さが40nm以上になると、界面磁壁エネルギーは殆ど
零になり、第1の磁性層と第2の磁性層との交換結合が
できなくなる。
The relationship between the thickness of the intermediate layer of the present invention having a columnar structure and the domain wall energy is shown in FIG. As shown in FIG. 3, the interface domain wall energy tends to decrease as the thickness of the intermediate layer increases. When the thickness of the columnar structured intermediate layer becomes 40 nm or more, the interface domain wall energy becomes almost zero. Therefore, exchange coupling between the first magnetic layer and the second magnetic layer cannot be performed.

【0031】従って、第1実施例に示したように中間層
として用いる柱状構造化膜の厚さは10nm程度が良いが、
交換結合をする複数の磁性層の内で、薄い方の磁性層の
厚さより薄く保つことが望ましい。
Therefore, as shown in the first embodiment, the thickness of the columnar structured film used as the intermediate layer is preferably about 10 nm.
It is desirable to keep the thickness smaller than the thickness of the thinner magnetic layer among the plurality of magnetic layers that are exchange-coupled.

【0032】このように交換結合力は、中間層の厚さ
や、該中間層の成層条件に依って異なるので、最適な交
換結合力を得るための中間層の厚さを所定の厚さに制御
して、かつ中間層を形成する際のスパッタガスのArガス
のガス圧を適当な値に調整してスパッタすると、交換結
合力が所定の値に制御されたオーバーライト可能な光磁
気記録媒体が得られる。
As described above, the exchange coupling force varies depending on the thickness of the intermediate layer and the layering conditions of the intermediate layer. Therefore, the thickness of the intermediate layer is controlled to a predetermined thickness to obtain the optimum exchange coupling force. Then, when the gas pressure of the Ar gas of the sputtering gas when forming the intermediate layer is adjusted to an appropriate value and sputtering is performed, an overwritable magneto-optical recording medium whose exchange coupling force is controlled to a predetermined value is obtained. can get.

【0033】例えば、上記した図1(a)の構成に於いて、
表1に示した条件で成膜した光磁気記録媒体を用い、該
光磁気記録媒体を9m/sec の速度で回転させ、オーバー
ライト条件として旧情報の書き込み周波数を2.2MHz、オ
ーバーライトの書き込み周波数を5.8MHzとし、高レベル
のレーザパワーを8mW 、低レベルのレーザパワーを2mW
の条件でオーバーライト後のC/N の値を測定したところ
47dBの値が得られた。
For example, in the configuration of FIG. 1 (a) described above,
Using the magneto-optical recording medium formed under the conditions shown in Table 1, the magneto-optical recording medium was rotated at a speed of 9 m / sec, and the overwriting condition was the old information writing frequency of 2.2 MHz and the overwriting writing frequency. 5.8MHz, high level laser power 8mW, low level laser power 2mW
When the C / N value after overwriting was measured under the condition
A value of 47 dB was obtained.

【0034】また、本発明の他の実施例として図1(b)に
示すように第1の磁性層3と第2の磁性層5との間の隣
接する膜面11で、第1の磁性層3側の膜面か、或いは第
2の磁性層5側の膜面11の何れかを、前記第1の磁性層
3と第2の磁性層5とを連続してスパッタ法で成膜する
場合に、該スパッタガスのArガスのガス圧力を調節して
スパッタし、柱状化構造膜としても良い。
As another embodiment of the present invention, as shown in FIG. 1 (b), the first magnetic layer 3 is formed on the adjacent film surface 11 between the first magnetic layer 3 and the second magnetic layer 5. Either the film surface on the side of the layer 3 or the film surface 11 on the side of the second magnetic layer 5 is formed by continuously sputtering the first magnetic layer 3 and the second magnetic layer 5. In this case, the columnar structure film may be formed by adjusting the gas pressure of Ar gas as the sputtering gas and performing sputtering.

【0035】このような本実施例の各々の保護層、第1
と第2の磁性層、中間層の成膜条件を表2に示す。
Each of the protective layers of this embodiment, the first
Table 2 shows the film forming conditions for the second magnetic layer and the intermediate layer.

【0036】[0036]

【表2】 [Table 2]

【0037】この表2に於けるように第2の磁性層の成
膜時には、成膜用のスパッタガスのArガスのガス圧を成
膜開始時には、1.0Pa で成膜し、成膜の時間の経過とと
もに0.2Pa へと減少させて成膜する。
As shown in Table 2, when forming the second magnetic layer, the gas pressure of Ar gas of the sputtering gas for forming the film is set to 1.0 Pa at the start of film formation, and the film formation time is set. The film thickness is reduced to 0.2 Pa with the lapse of time.

【0038】或いは本発明の他の実施例として図1(c)に
示すように、第1の磁性層3と、第2の磁性層5の何れ
かを、Arガスのスパッタガス圧力を変更してスパッタす
ることで、例えば第2の磁性層5を柱状構造化膜12とし
ても良い。
Alternatively, as another embodiment of the present invention, as shown in FIG. 1 (c), the sputtering gas pressure of Ar gas is changed in either the first magnetic layer 3 or the second magnetic layer 5. Then, the second magnetic layer 5 may be used as the columnar structured film 12 by sputtering.

【0039】このような本実施例の各々の保護層、第1
と第2の磁性層、中間層の成膜条件を表3に示す。
The protective layer of each of the present embodiments, the first
Table 3 shows the film forming conditions for the second magnetic layer and the intermediate layer.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【発明の効果】以上述べたように、本発明のように第1
の磁性層と第2の磁性層の間に設ける磁性層の成膜時の
Arガスのスパッタガス圧を調整し、かつ中間層の厚さを
調節することで、第1の磁性層と第2の磁性層との間の
交換結合力を制御することが可能となり、磁性層間の交
換結合力を所定の値に制御したオーバーライトが可能な
光磁気記録媒体が得られる効果がある。
As described above, according to the present invention, the first
Of the magnetic layer provided between the first magnetic layer and the second magnetic layer
By adjusting the sputtering gas pressure of Ar gas and adjusting the thickness of the intermediate layer, it becomes possible to control the exchange coupling force between the first magnetic layer and the second magnetic layer. There is an effect that an overwritable magneto-optical recording medium can be obtained in which the exchange coupling force is controlled to a predetermined value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光磁気記録媒体の実施例を示す断面
図である。
FIG. 1 is a sectional view showing an embodiment of a magneto-optical recording medium of the present invention.

【図2】 スパッタガス圧と界面磁壁エネルギーの関係
図である。
FIG. 2 is a diagram showing the relationship between sputtering gas pressure and interface wall energy.

【図3】 柱状構造中間層の膜厚と界面磁壁エネルギー
の関係図である。
FIG. 3 is a relationship diagram between the film thickness of a columnar structure intermediate layer and the interfacial domain wall energy.

【図4】 従来のオーバーライト可能な光磁気記録媒体
の特性図である。
FIG. 4 is a characteristic diagram of a conventional overwritable magneto-optical recording medium.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2-1 第1の保護層 3 第1の磁性層 4 中間層 5 第2の磁性層 11 膜面 12 柱状構造化膜 1 glass substrate 2-1 first protective layer 3 first magnetic layer 4 intermediate layer 5 second magnetic layer 11 film surface 12 columnar structured film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 垂直磁気異方性を有する第1の磁性層
(3) と第2の磁性層(5) とを積層させて該磁性層同士を
交換結合させた光磁気記録媒体に於いて、 前記第1の磁性層(3) と第2の磁性層(5) の間に柱状構
造化させた磁性層を介在させて中間層(4) として設けた
ことを特徴とする光磁気記録媒体。
1. A first magnetic layer having perpendicular magnetic anisotropy.
In a magneto-optical recording medium in which (3) and a second magnetic layer (5) are laminated and the magnetic layers are exchange-coupled to each other, the first magnetic layer (3) and the second magnetic layer ( A magneto-optical recording medium characterized in that a magnetic layer having a columnar structure is interposed between (5) to provide an intermediate layer (4).
【請求項2】 請求項1記載の中間層(4) の厚さを、厚
さの薄い方の磁性層の厚さと等しいか、或いは薄く保つ
ようにしたことを特徴とする光磁気記録媒体。
2. A magneto-optical recording medium, characterized in that the thickness of the intermediate layer (4) according to claim 1 is equal to or smaller than the thickness of the magnetic layer having the smaller thickness.
【請求項3】 垂直磁気異方性を有する第1の磁性層
(3) と第2の磁性層(5) とを積層させて該磁性層同士を
交換結合させた光磁気記録媒体に於いて、 前記積層して隣接する第1の磁性層(3) と第2の磁性層
(5) の膜面(11)に於いて、少なくとも一方の膜面(11)の
構造を、柱状構造化したことを特徴とする光磁気記録媒
体。
3. A first magnetic layer having perpendicular magnetic anisotropy.
In a magneto-optical recording medium in which (3) and a second magnetic layer (5) are laminated and the magnetic layers are exchange-coupled to each other, the first magnetic layer (3) and the first magnetic layer (3) adjacent to each other are laminated. 2 magnetic layers
A magneto-optical recording medium characterized in that, in the film surface (11) of (5), at least one film surface (11) has a columnar structure.
【請求項4】 垂直磁気異方性を有する第1の磁性層
(3) と第2の磁性層(5) とを積層させて該磁性層同士を
交換結合させた光磁気記録媒体に於いて、 前記第1の磁性層(3) 、或いは第2の磁性層(5) のうち
の少なくとも一方の磁性層の膜構造を柱状構造化したこ
とを特徴とする光磁気記録媒体。
4. A first magnetic layer having perpendicular magnetic anisotropy.
A magneto-optical recording medium in which (3) and a second magnetic layer (5) are laminated and the magnetic layers are exchange-coupled to each other, wherein the first magnetic layer (3) or the second magnetic layer A magneto-optical recording medium, wherein the film structure of at least one of the magnetic layers of (5) is columnar.
JP4173597A 1992-07-01 1992-07-01 Magneto-optical recording medium Withdrawn JPH0620313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4173597A JPH0620313A (en) 1992-07-01 1992-07-01 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173597A JPH0620313A (en) 1992-07-01 1992-07-01 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH0620313A true JPH0620313A (en) 1994-01-28

Family

ID=15963554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173597A Withdrawn JPH0620313A (en) 1992-07-01 1992-07-01 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0620313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235313B2 (en) * 2002-10-08 2007-06-26 Matsushita Electic Industrial Co., Ltd. Magneto-optical recording medium, method of manufacturing magneto-optical recording medium, method of recording on magneto-optical recording medium, and method of reproduction from magneto-optical recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235313B2 (en) * 2002-10-08 2007-06-26 Matsushita Electic Industrial Co., Ltd. Magneto-optical recording medium, method of manufacturing magneto-optical recording medium, method of recording on magneto-optical recording medium, and method of reproduction from magneto-optical recording medium

Similar Documents

Publication Publication Date Title
JP2910250B2 (en) Magneto-optical recording medium
US4882231A (en) Magneto-optical recording medium
US5629909A (en) Magneto-optical recording medium with initializing layer for initializing different regions in different directions
US5754500A (en) Magneto-optical recording medium and method of reading the same
JP2000163814A (en) Magneto-optical recording medium
EP0997894B1 (en) Magneto-optical recording medium and method of manufacturing magneto-optical recording medium
KR100238692B1 (en) Magneto-optical recording medium
US5736265A (en) Magneto-optical recording medium and recording method using the same
US5498485A (en) Magneto-optical recording medium and manufacturing method thereof
JPH0620313A (en) Magneto-optical recording medium
US5635296A (en) Magneto-optical recording medium whereon overwriting is permitted by light intensity modulation
JP3208275B2 (en) Magneto-optical recording medium
US7313055B2 (en) Magnetic domain wall displacement type magneto-optical recording medium
JPH06302029A (en) Magneto-optical recording medium and recording method therefor
JP3381960B2 (en) Magneto-optical recording medium
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JPS5833619B2 (en) magnetic recording medium
KR100209584B1 (en) Magneto-optical disk
JP2805787B2 (en) Magneto-optical recording method
JPH01144248A (en) Magneto-optical recording medium
JPH01118243A (en) Magneto-optical recording medium
JPH04281239A (en) Magneto-optical recording medium
JPH06302030A (en) Magneto-optical recording medium and magnetooptical recording method
JPH07141709A (en) Magneto-optical recording medium
JPH11126380A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005