JPH06201997A - Discussion microscope optical system - Google Patents
Discussion microscope optical systemInfo
- Publication number
- JPH06201997A JPH06201997A JP34834492A JP34834492A JPH06201997A JP H06201997 A JPH06201997 A JP H06201997A JP 34834492 A JP34834492 A JP 34834492A JP 34834492 A JP34834492 A JP 34834492A JP H06201997 A JPH06201997 A JP H06201997A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- image
- optical axis
- sub
- observation optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Microscoopes, Condenser (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、複数の観察者が同一の
標本を同時に観察することができるディスカッション顕
微鏡光学系に関し、特に無限遠補正の顕微鏡光学系に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discussion microscope optical system in which a plurality of observers can observe the same specimen at the same time, and more particularly to a microscope optical system for infinity correction.
【0002】[0002]
【従来の技術】顕微鏡光学系を結像方式の違いによって
区別すれば、対物レンズが有限距離に物体像を形成せし
める有限遠補正光学系と、対物レンズの射出光が略平行
光束となる無限遠補正光学系の二種類に分けられる。図
4は有限遠補正光学系の略構成を示している。図中、1
は標本面、2は対物レンズ、3は接眼レンズであり、対
物レンズ2により該対物レンズ2と接眼レンズ3との間
に標本面1の像(矢符A)の中間像(矢符A′)が結像
されるようになっている。かかる構成より成る有限遠補
正光学系では、対物レンズ2と接眼レンズ3との間に中
間鏡筒を挿入する場合、中間鏡筒内に中間鏡筒の長さに
相当する像の位置ズレを補正するための像のばしレンズ
を設置する必要があった。2. Description of the Related Art If a microscope optical system is distinguished by a difference in image forming method, a finite distance correction optical system for forming an object image at a finite distance by an objective lens and an infinite distance at which the light emitted from the objective lens becomes a substantially parallel light beam. There are two types of correction optics. FIG. 4 shows a schematic configuration of a finite distance correction optical system. 1 in the figure
Is a sample surface, 2 is an objective lens, 3 is an eyepiece lens, and an intermediate image (arrow A ') of the image (arrow A) of the sample surface 1 is provided between the objective lens 2 and the eyepiece 3 by the objective lens 2. ) Is imaged. In the finite-distance correction optical system having such a configuration, when the intermediate lens barrel is inserted between the objective lens 2 and the eyepiece lens 3, the positional deviation of the image corresponding to the length of the intermediate lens barrel is corrected in the intermediate lens barrel. It was necessary to install a flattening lens for the image.
【0003】図5は図4に示した光学系にディスカッシ
ョン鏡筒を挿入した場合の構成を示している。図におい
て、対物レンズ2を射出した光束は像のばしレンズ4を
介して光束分割素子M1に入射し、該光束分割素子M1
により一部の光束が偏向されてリレーレンズ5へ向か
い、偏向を受けない光束はそのまま透過する。光束分割
素子M1を透過した光束は一旦集光して中間像を結像
し、この像が接眼レンズ3を介して主観察者により観察
される。一方、リレーレンズ5に入射した光束は、該リ
レーレンズ5により一旦集光された後リレーレンズ6に
入射し、更にリレーレンズ6を射出し反射光学素子M2
を介して再び集光して中間像を結像し、接眼レンズ3を
介して副観察者により観察される。7,8は夫々主観察
光軸及び副観察光軸である。上記構成によれば、像のば
しレンズ4が対物レンズ2と光束分割素子M1との間に
設置されているので、主観察者と副観察者の双方が像の
ばしレンズ4を介して伝送された像を観察するようにな
っている。しかし、このように像のばしレンズが中間鏡
筒に設置される場合は、像の位置ズレを補正するのに伴
って、像の中間倍率を変動させてしまうことがあった。
また、かかる中間倍率の変動を抑えるために、像のばし
レンズとして、構造が複雑な等倍アフォーカルレンズを
用いなければならなかった。FIG. 5 shows a configuration in which a discussion lens barrel is inserted into the optical system shown in FIG. In the figure, the light beam emitted from the objective lens 2 enters the light beam splitting element M1 through the image spreading lens 4, and the light beam splitting element M1
As a result, a part of the light flux is deflected to the relay lens 5, and the light flux not deflected is transmitted as it is. The light beam that has passed through the light beam splitting element M1 is once condensed to form an intermediate image, and this image is observed by the main observer via the eyepiece lens 3. On the other hand, the light flux that has entered the relay lens 5 is once condensed by the relay lens 5 and then enters the relay lens 6, and then exits the relay lens 6 and is reflected by the reflective optical element M2.
The light is focused again through to form an intermediate image and is observed by a sub-observer through the eyepiece lens 3. Reference numerals 7 and 8 are the main observation optical axis and the sub-observation optical axis, respectively. According to the above configuration, since the image expanding lens 4 is installed between the objective lens 2 and the light beam splitting element M1, both the main observer and the sub-observer receive the image transmitted through the image expanding lens 4. Is supposed to be observed. However, when the image expanding lens is installed in the intermediate lens barrel as described above, the intermediate magnification of the image may be changed in accordance with the correction of the positional deviation of the image.
Further, in order to suppress the variation of the intermediate magnification, an equal magnification afocal lens having a complicated structure has to be used as an image spreading lens.
【0004】[0004]
【発明が解決しようとする課題】上述の如く、有限遠補
正光学系に中間鏡筒を挿入する場合には、像の位置ズレ
を補正するための像のばしレンズが光路中に挿入される
ため、観察像の倍率の変動や実視野の狭小化、或いは像
の劣化等の不具合が生じてしまうという問題があった。
とりわけ、中間鏡筒を複数挿入した場合は、これら不具
合が顕著に発生する。また、上記従来の構成では、副観
察者側に中間鏡筒を挿入する場合も、像のばしレンズが
必要となり、同様な不具合が生じるという問題があっ
た。As described above, when the intermediate lens barrel is inserted in the finite-distance correction optical system, the image expansion lens for correcting the positional deviation of the image is inserted in the optical path. There is a problem in that a problem such as a change in magnification of an observed image, a narrowing of a real visual field, or deterioration of an image occurs.
Especially, when a plurality of intermediate lens barrels are inserted, these problems occur remarkably. Further, in the above-mentioned conventional configuration, even when the intermediate lens barrel is inserted on the side of the sub-observer, an image flattening lens is necessary, and there is a problem that a similar problem occurs.
【0005】これに対して、無限遠補正光学系では、対
物レンズと結像レンズとの間の光束が平行なため対物レ
ンズと結像レンズとの間隔は可変となり、中間鏡筒を挿
入する場合も、像のばしレンズは不要である。然し乍
ら、無限遠補正光学系を採用したディスカッション顕微
鏡光学系は提案されていなかった。On the other hand, in the infinity correction optical system, since the light flux between the objective lens and the imaging lens is parallel, the distance between the objective lens and the imaging lens is variable, and when the intermediate lens barrel is inserted. However, no image extension lens is required. However, a discussion microscope optical system that employs an infinity correction optical system has not been proposed.
【0006】本発明は、従来の技術の有するこのような
問題点に鑑みて成されたものであり、その目的とすると
ころは、像のばしレンズを用いることなく主観察者側及
び副観察者側において自由に中間鏡筒の挿脱が可能であ
り、且つ明瞭な観察像が得られるディスカッション顕微
鏡光学系を提供することにある。The present invention has been made in view of the above problems of the prior art, and its object is to make a main observer side and a sub-observer side without using an image expanding lens. The objective of the present invention is to provide a discussion microscope optical system in which the intermediate lens barrel can be freely inserted and removed and a clear observation image can be obtained.
【0007】[0007]
【課題を解決するための手段及び作用】本発明の第1実
施例の構成を示した図1を参照し、手段及び作用につい
て説明する。本発明のディスカッション顕微鏡光学系
は、対物レンズ2と結像レンズTLとを有し、対物レン
ズ2と結像レンズTLとの間隔が可変の無限遠補正の顕
微鏡光学系において、対物レンズ2と結像レンズTLに
よって主観察光軸7を構成し、対物レンズ2と結像レン
ズTLとの間の平行光束中に設置されていて対物レンズ
2からの光束を主観察光軸7と異なる方向へ偏向させる
光束分割素子M1と、偏向された光束を一旦集光させて
対物レンズ2による像を結像せしめる第1レンズ群L1
と、第1レンズ群L1によって集光された光束を平行光
束に変換せしめる第2レンズ群L2と、第2レンズ群L
2からの平行光束を偏向させて主観察光軸7に対して平
行となる副観察光軸8を構成する反射光学素子M2と、
反射光学素子M2により偏向された光束を集光させて対
物レンズ2による像を結像せしめる結像レンズL3とを
備え、副観察光軸8側の反射光学素子M2と結像レンズ
L3との間隔が可変であって、且つ、主観察光軸7側の
結像レンズTLの焦点距離と副観察光軸8側の結像レン
ズL3の焦点距離が等しくなるように、換言すれば結像
レンズTL,L3の焦点距離を夫々fT1、fT2とすると
き、fT1=fT2となるように構成されている。Means and Actions for Solving the Problems The means and actions will be described with reference to FIG. 1 showing the configuration of the first embodiment of the present invention. The discussion microscope optical system of the present invention has an objective lens 2 and an imaging lens TL, and is connected to the objective lens 2 in an infinity-corrected microscope optical system in which the distance between the objective lens 2 and the imaging lens TL is variable. The image lens TL constitutes the main observation optical axis 7 and is installed in a parallel light beam between the objective lens 2 and the imaging lens TL to deflect the light beam from the objective lens 2 in a direction different from the main observation optical axis 7. And a first lens group L1 for temporarily converging the deflected light beam and forming an image by the objective lens 2.
A second lens group L2 for converting the light flux condensed by the first lens group L1 into a parallel light flux, and a second lens group L
A reflective optical element M2 that forms a sub-observation optical axis 8 that is parallel to the main observation optical axis 7 by deflecting the parallel light flux from
An imaging lens L3 for condensing the light beam deflected by the reflection optical element M2 to form an image by the objective lens 2, and a distance between the reflection optical element M2 on the side of the sub-observation optical axis 8 and the imaging lens L3. Is variable, and the focal length of the imaging lens TL on the main observation optical axis 7 side and the focal length of the imaging lens L3 on the sub observation optical axis 8 side are equal, in other words, the imaging lens TL. , L3 when the focal lengths are fT1 and fT2, respectively, fT1 = fT2.
【0008】光束分割素子M1はプリズムブロック或い
はハーフミラーでも良く、また、反射光学素子M2はプ
リズム或いはミラーでも良い。副観察光軸8側へ像を伝
達する第1レンズ群L1と第2レンズ群L2は、アフォ
ーカルな等倍リレー系を構成しており、また、副観察光
軸8側も無限遠補正光学系として構成されているので、
反射光学素子M2と結像レンズL3との間隔は可変とな
り、観察目的によって中間鏡筒類を挿脱することができ
る。また、結像レンズTLと結像レンズL3は、夫々の
焦点距離fT1,fT2が等しく(fT1=fT2)なるように
配設されているので、主観察光軸7側と副観察光軸8側
で同じ倍率の接眼レンズ3を用いる限り、夫々の側で観
察像の倍率は同じとなる。The beam splitting element M1 may be a prism block or a half mirror, and the reflective optical element M2 may be a prism or a mirror. The first lens unit L1 and the second lens unit L2 that transmit an image to the sub-observation optical axis 8 side constitute an afocal equal-magnification relay system, and the sub-observation optical axis 8 side also has infinity correction optics. Since it is configured as a system,
The distance between the reflective optical element M2 and the imaging lens L3 is variable, and the intermediate lens barrels can be inserted and removed depending on the purpose of observation. Further, since the image forming lens TL and the image forming lens L3 are arranged so that their focal lengths fT1 and fT2 are equal (fT1 = fT2), the main observation optical axis 7 side and the sub observation optical axis 8 side are arranged. As long as the eyepiece 3 having the same magnification is used, the magnification of the observation image is the same on each side.
【0009】更に、主観察光軸7と副観察光軸8との距
離をdとするとき、距離dを実用上の適当な大きさに保
つために、次式(1)で示される条件を満足させること
が望ましい。 式(1) 0.7fT1 < fL1 < 1.4fT1 但し、fL1は第1レンズ群L1の焦点距離である。Further, when the distance between the main observation optical axis 7 and the sub-observation optical axis 8 is d, in order to keep the distance d at a practically appropriate size, the condition expressed by the following equation (1) is set. It is desirable to satisfy. Formula (1) 0.7fT1 <fL1 <1.4fT1 where fL1 is the focal length of the first lens unit L1.
【0010】上記式(1)の下限を超えると、距離dが
小さくなりすぎる。顕微鏡には、主観察者の手前側から
順にステージ,フレームが設けられ、主観察者から最も
離れた位置にランプハウスが設けられている。つまり、
ディスカッション顕微鏡を対向型、即ち主観察者と副観
察者とが向かい合うように構成する場合、副観察者の一
番手前にランプハウスが位置することになる。従って、
距離dが小さすぎると、副観察者が接眼レンズに眼を近
づけるときにランプハウスの上に顔が来ることとなり、
ランプハウスから発生する熱気流が顔に当たり観察その
ものが困難となってしまう。また、上記式(1)の上限
を超えると、距離dが大きくなりすぎる。つまり、ディ
スカッション顕微鏡を並列型、即ち主観察者と副観察者
とが同じ方向に向かって並ぶように構成する場合に、距
離dが必要以上に大きいと顕微鏡の横幅が大きくなり、
スペース上の無駄が大きくなる。If the lower limit of the above equation (1) is exceeded, the distance d becomes too small. The microscope is provided with a stage and a frame in order from the front side of the main observer, and a lamp house is provided at a position farthest from the main observer. That is,
When the discussion microscope is configured to face each other, that is, the main observer and the sub-observer face each other, the lamp house is located in front of the sub-observer. Therefore,
If the distance d is too small, the face will come over the lamp house when the sub-observer approaches the eyepiece lens,
The hot airflow generated from the lamp house hits the face, making observation difficult. If the upper limit of the above formula (1) is exceeded, the distance d becomes too large. That is, when the discussion microscopes are arranged in parallel, that is, when the main observer and the sub-observer are arranged in the same direction, if the distance d is unnecessarily large, the width of the microscope becomes large,
The waste of space becomes large.
【0011】無限遠補正の顕微鏡光学系の結像レンズT
Lの焦点距離fT1は、対物レンズの焦点距離やシステム
全体の構成等の制限条件によって定まるが、概ね160
〜200mmである。従って、上記式(1)より第1レ
ンズ群L1の焦点距離fL1の範囲は112〜280mm
となる。それに対して、距離dの実用的な範囲は対向型
で300mm程度、並列型で600〜700mm程度で
ある。Imaging lens T of the microscope optical system for infinity correction
Although the focal length fT1 of L is determined by the focal length of the objective lens and the limiting conditions such as the configuration of the entire system, it is approximately 160
~ 200 mm. Therefore, from the above formula (1), the range of the focal length fL1 of the first lens unit L1 is 112 to 280 mm.
Becomes On the other hand, the practical range of the distance d is about 300 mm for the opposed type and about 600 to 700 mm for the parallel type.
【0012】第1レンズ群L1と第2レンズ群L2はア
フォーカルな等倍リレー系を構成しているので、第2レ
ンズ群L2の焦点距離をfL2とすると、fL1=fL2とな
り、且つ、両者の焦点距離は同じとなる。従って、レン
ズの厚さを無視すると、第1レンズ群L1と第2レンズ
群L2を合成して成るアフォーカル系の近軸的な厚さは
(fL1+fL2)であるから、概ね224〜560mmと
なる。この数値は対向型では勿論のこと、並列型のディ
スカッション顕微鏡を構成する場合にも複数の副観察光
軸を設けるために図1中の光束分割素子M1及び反射光
学素子M2の他に複数の光束分割素子及び反射光学素子
を組み合わせて光軸を更に折り曲げることがあること、
第1レンズ群L1及び第2レンズ群L2が実際には複数
のレンズで構成されてある程度の厚さのあること等を考
慮すると、上述した距離dの実用的な範囲と、第1レン
ズ群L1と第2レンズ群L2を合成して成るアフォーカ
ル系の近軸的な厚さは、ほぼ対応したものであるといえ
る。Since the first lens unit L1 and the second lens unit L2 constitute an afocal equal-magnification relay system, if the focal length of the second lens unit L2 is fL2, then fL1 = fL2, and both Have the same focal length. Therefore, ignoring the lens thickness, the paraxial thickness of the afocal system formed by combining the first lens unit L1 and the second lens unit L2 is (fL1 + fL2), which is approximately 224 to 560 mm. . In order to provide a plurality of sub-observation optical axes not only in the facing type but also in a parallel type discussion microscope, this numerical value is used in addition to the light beam splitting element M1 and the reflection optical element M2 in FIG. The optical axis may be further bent by combining the split element and the reflective optical element,
Considering that the first lens group L1 and the second lens group L2 are actually composed of a plurality of lenses and have a certain thickness, etc., the practical range of the distance d described above and the first lens group L1 It can be said that the paraxial thickness of the afocal system formed by combining the above and the second lens unit L2 substantially corresponds.
【0013】図1においては、一つの副観察光軸を構成
しているに過ぎないが、周知の如く光学系中に光束分割
素子と反射光学素子が合計で偶数個配設されている場合
は、複数の副観察光軸を構成することが可能である。こ
の場合にも、夫々の光軸に対して結像レンズを配設する
ことにより、各副観察光軸における中間鏡筒の挿脱を行
うことができる。In FIG. 1, only one sub-observation optical axis is formed, but as is well known, when a total of an even number of light beam splitting elements and reflective optical elements are arranged in the optical system. , It is possible to configure a plurality of sub-observation optical axes. Also in this case, the intermediate lens barrel can be inserted / removed on / from each sub-observation optical axis by disposing the image forming lens for each optical axis.
【0014】また、第1レンズ群L1及び第2レンズ群
L2は、副観察光軸や光路上に配設される各レンズのレ
イアウトの必要に応じて、光束分割素子や反射光学素子
が各々のレンズ群中に含まれるように構成しても何ら支
障はない。Further, the first lens group L1 and the second lens group L2 are each provided with a light beam splitting element and a reflective optical element depending on the layout of each lens disposed on the sub-observation optical axis or optical path. There is no problem even if it is configured to be included in the lens group.
【0015】[0015]
【実施例】図面を参照して実施例を説明する。第1実施例 図1は本実施例の構成を示す図である。図1において、
対物レンズ2を射出した平行光束は光束分割素子M1に
入射し、該光束分割素子M1により一部の光束が偏向さ
れて第1レンズ群L1へ向かい、偏向を受けない光束は
そのまま透過して結像レンズTLへ向かう。結像レンズ
TLに入射した光束は一旦集光して中間像を結像し、こ
の像が接眼レンズ3を介して主観察者により観察され
る。一方、第1レンズ群L1に入射した光束は、一旦集
光された後、該第1レンズ群L1と共にアフォーカルな
等倍リレー系を構成している第2レンズ群L2に入射
し、該第2レンズ群L2により再び平行光束に変換せし
められる。第2レンズ群L2を射出した平行光束は、反
射光学素子M2により、主観察光軸7に対して平行とな
るように偏向受けて結像レンズL3に導かれる。そし
て、結像レンズL3に入射した光束は一旦集光して中間
像を結像し、この像が接眼レンズ3を介して副主観察者
により観察される。また、副観察光軸8側の反射光学素
子M2と結像レンズL3との間隔は可変であり、且つ、
結像レンズTLの焦点距離fT1と結像レンズL3の焦点
距離fT2は、fT1=fT2となるように構成されている。Embodiments will be described with reference to the drawings. First Embodiment FIG. 1 is a diagram showing the configuration of this embodiment. In FIG.
The parallel light flux emitted from the objective lens 2 is incident on the light flux dividing element M1, and a part of the light flux is deflected by the light flux dividing element M1 toward the first lens group L1. Head toward the image lens TL. The light flux incident on the imaging lens TL is once condensed to form an intermediate image, and this image is observed by the main observer through the eyepiece lens 3. On the other hand, the light flux that has entered the first lens unit L1 is once condensed and then enters the second lens unit L2 that constitutes an afocal unity relay system together with the first lens unit L1. It is converted again into a parallel light flux by the two lens unit L2. The parallel light flux emitted from the second lens group L2 is deflected by the reflective optical element M2 so as to be parallel to the main observation optical axis 7, and is guided to the imaging lens L3. Then, the light flux that has entered the imaging lens L3 is once condensed to form an intermediate image, and this image is observed by the sub-main observer via the eyepiece lens 3. The distance between the reflective optical element M2 on the side of the sub-observation optical axis 8 and the imaging lens L3 is variable, and
The focal length fT1 of the imaging lens TL and the focal length fT2 of the imaging lens L3 are configured such that fT1 = fT2.
【0016】図2は、図1に示した光学系に基づいて構
成された対向型のディスカッション顕微鏡の構成を示す
図である。図中、11は顕微鏡本体、12はランプハウ
ス、13はコンデンサレンズ、14は粗微動ネジ、15
はステージ、16a,16bは夫々主観察者側及び副観
察者側の接眼部、17はプリズムである。ランプハウス
12から発した光は、コンデンサレンズ13により集光
されてステージ15に載置された標本を照射する。主観
察者は、粗微動ネジ14を操作し、ステージ15を上下
動せしめて標本面1の像のピントを調整しつつ接眼部1
6aよりこの像を観察し、また、副観察者は第1レンズ
群L1及び第2レンズ群L2を介して接眼部16bに導
かれた像を観察するようになっている。FIG. 2 is a diagram showing the configuration of an opposed-type discussion microscope constructed based on the optical system shown in FIG. In the figure, 11 is a microscope main body, 12 is a lamp house, 13 is a condenser lens, 14 is a coarse and fine adjustment screw, and 15 is a screw.
Is a stage, 16a and 16b are eyepieces on the main observer side and the sub-observer side, respectively, and 17 is a prism. The light emitted from the lamp house 12 is condensed by the condenser lens 13 and illuminates the sample mounted on the stage 15. The main observer operates the coarse and fine adjustment screw 14 to move the stage 15 up and down to adjust the focus of the image on the specimen surface 1 and to the eyepiece unit 1.
This image is observed from 6a, and the sub-observer observes the image guided to the eyepiece 16b via the first lens unit L1 and the second lens unit L2.
【0017】本実施例によれば、結像レンズTL,L3
を顕微鏡鏡筒(接眼部16a,16b)側に一体に構成
することにより、主観察者側,副観察者側共に中間鏡筒
類の挿脱を自在に行うことが可能である。According to this embodiment, the imaging lenses TL and L3
It is possible to freely insert and remove the intermediate lens barrels on both the main observer side and the sub-observer side by integrally configuring the lens barrel on the side of the microscope barrel (eyepieces 16a, 16b).
【0018】第2実施例 図3は本実施例の構成を示す図である。本実施例は、対
向型と並列型を組み合わせて複数の副観察光軸8を構成
し、各副観察光軸8毎に結像レンズL3を配設してあ
る。また、本実施例の光学系中には、合計で偶数個の光
束分割素子M1及び反射光学素子M2が配設されてい
て、各副観察光軸8に配設された結像レンズL3の焦点
距離と主観察光軸7に配設された結像レンズTLの焦点
距離は等しくなっている。本実施例も第1実施例と同
様、主観察者側,副観察者側共に中間鏡筒類の挿脱を自
在に行うことが可能である。 Second Embodiment FIG. 3 is a diagram showing the configuration of this embodiment. In this embodiment, a plurality of sub-observation optical axes 8 are formed by combining the opposed type and the parallel type, and the imaging lens L3 is arranged for each sub-observation optical axis 8. Further, in the optical system of the present embodiment, a total of an even number of light beam splitting elements M1 and reflective optical elements M2 are provided, and the focus of the imaging lens L3 provided on each sub-observation optical axis 8 is set. The distance and the focal length of the imaging lens TL arranged on the main observation optical axis 7 are equal. In this embodiment, as in the first embodiment, the intermediate lens barrels can be freely inserted and removed on both the main observer side and the sub-observer side.
【0019】[0019]
【発明の効果】以上、本発明のディスカッション顕微鏡
光学系によれば、像のばしレンズを用いることなく主観
察者側及び副観察者側において自由に中間鏡筒の挿脱が
可能である。従って、観察に不必要な中間倍率がかかる
ことはないので、主観察者側,副観察者側の双方で明瞭
な観察像を得ることができると共に、顕微鏡システムの
拡張に対して効果的である。As described above, according to the discussion microscope optical system of the present invention, the intermediate lens barrel can be freely inserted and removed on the main observer side and the sub-observer side without using an image expanding lens. Therefore, since unnecessary intermediate magnification is not applied to the observation, clear observation images can be obtained on both the main observer side and the sub-observer side, and it is effective for expansion of the microscope system. .
【図1】本発明のディスカッション顕微鏡光学系の第1
実施例の構成を示す図である。FIG. 1 is a first discussion microscope optical system of the present invention.
It is a figure which shows the structure of an Example.
【図2】図1に示した光学系に基づいて構成された対向
型のディスカッション顕微鏡の構成を示す図である。FIG. 2 is a diagram showing a configuration of an opposed-type discussion microscope configured based on the optical system shown in FIG.
【図3】本発明のディスカッション顕微鏡光学系の第2
実施例の構成を示す図である。FIG. 3 is a second discussion microscope optical system of the present invention.
It is a figure which shows the structure of an Example.
【図4】従来の有限遠補正光学系の略構成を示す図であ
る。FIG. 4 is a diagram showing a schematic configuration of a conventional finite distance correction optical system.
【図5】従来のディスカッション顕微鏡光学系の構成を
示す図である。FIG. 5 is a diagram showing a configuration of a conventional discussion microscope optical system.
1・・・標本面 2・・・対物レンズ 3・・・接眼レンズ 4・・・像のばしレン
ズ 7・・・主観察光軸 8・・・副観察光軸 11・・・顕微鏡本体 16a,16b・・・
接眼部 M1・・・光束分割素子 M2・・・反射光学素
子 TL,L3・・・結像レンズ L1・・・第1レンズ
群 L2・・・第2レンズ群DESCRIPTION OF SYMBOLS 1 ... Sample surface 2 ... Objective lens 3 ... Eyepiece lens 4 ... Image extension lens 7 ... Main observation optical axis 8 ... Sub-observation optical axis 11 ... Microscope main body 16a, 16b ...
Eyepiece M1 ... Beam splitting element M2 ... Reflective optical element TL, L3 ... Imaging lens L1 ... First lens group L2 ... Second lens group
Claims (1)
物レンズと結像レンズとの間隔が可変の無限遠補正の顕
微鏡光学系において、 前記対物レンズと結像レンズによって主観察光軸を構成
し、前記対物レンズと結像レンズとの間の平行光束中に
設置されていて対物レンズからの光束を前記主観察光軸
と異なる方向へ偏向させる光束分割素子と、該偏向され
た光束を一旦集光させて前記対物レンズによる像を結像
せしめる第1レンズ群と、該第1レンズ群によって集光
された光束を平行光束に変換せしめる第2レンズ群と、
該第2レンズ群からの平行光束を偏向させて前記主観察
光軸に対して平行となる副観察光軸を構成する反射光学
素子と、該反射光学素子により偏向された光束を集光さ
せて前記対物レンズによる像を結像せしめる結像レンズ
とを備え、 前記副観察光軸側の反射光学素子と結像レンズとの間隔
が可変であって、且つ、前記主観察光軸側の結像レンズ
の焦点距離と前記副観察光軸側の結像レンズの焦点距離
が等しくなるように構成されていることを特徴とするデ
ィスカッション顕微鏡光学系。1. An infinity-corrected microscope optical system having an objective lens and an imaging lens, wherein the distance between the objective lens and the imaging lens is variable, wherein a main observation optical axis is provided by the objective lens and the imaging lens. And a light beam splitting element which is installed in a parallel light beam between the objective lens and the imaging lens and deflects the light beam from the objective lens in a direction different from the main observation optical axis, and the deflected light beam. A first lens group for once condensing and forming an image by the objective lens, and a second lens group for converting the light beam condensed by the first lens group into a parallel light beam.
A parallel optical beam from the second lens group is deflected to form a sub-observation optical axis parallel to the main observation optical axis, and a light beam deflected by the reflective optical element is condensed. An image forming lens for forming an image by the objective lens, wherein the distance between the reflective optical element on the side of the sub-observation optical axis and the image forming lens is variable, and the image on the side of the main observation optical axis is formed. A discussion microscope optical system, wherein the focal length of the lens and the focal length of the imaging lens on the side of the sub-observation optical axis are equal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34834492A JP3354613B2 (en) | 1992-12-28 | 1992-12-28 | Discussion microscope optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34834492A JP3354613B2 (en) | 1992-12-28 | 1992-12-28 | Discussion microscope optical system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06201997A true JPH06201997A (en) | 1994-07-22 |
JP3354613B2 JP3354613B2 (en) | 2002-12-09 |
Family
ID=18396401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34834492A Expired - Fee Related JP3354613B2 (en) | 1992-12-28 | 1992-12-28 | Discussion microscope optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3354613B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013066404A (en) * | 2011-09-21 | 2013-04-18 | Kiyohara Optics Inc | Device for observing crystallization plate |
-
1992
- 1992-12-28 JP JP34834492A patent/JP3354613B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013066404A (en) * | 2011-09-21 | 2013-04-18 | Kiyohara Optics Inc | Device for observing crystallization plate |
Also Published As
Publication number | Publication date |
---|---|
JP3354613B2 (en) | 2002-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7274517B2 (en) | Micromirror array lens with focal length gradient | |
US5729385A (en) | Microscope optical system | |
US4232933A (en) | Optical system of colposcope | |
US3945034A (en) | Optical system for a color television camera | |
GB2065325A (en) | Binocular viewing device | |
WO2019124081A1 (en) | Projection lens system and image projection device | |
US4547047A (en) | Microscope tube system | |
US4673262A (en) | Compact finder | |
US20080252965A1 (en) | Epi-illumination optical system for microscopes | |
KR0133445B1 (en) | Zoom lens of rear focus type having unification with optic | |
JPH06201997A (en) | Discussion microscope optical system | |
EP0173345B1 (en) | Method and apparatus for simultaneously observing a transparent object from two directions | |
US5847866A (en) | Lens-barrel optical system and microscope apparatus | |
JPH075397A (en) | Schlieren microscope device | |
JP3454851B2 (en) | Stereo microscope | |
JPWO2019124082A1 (en) | Projection lens system and image projection device | |
RU2768520C1 (en) | Optical assembly, optical instrument and method | |
JP2004070357A (en) | Objective lens with illumination | |
JPH0784187A (en) | Pupil projection optical system | |
JPH11271848A (en) | Finder optical system | |
KR100509369B1 (en) | Fixed Focus Finder Optics | |
JPS6119017B2 (en) | ||
JPH06214165A (en) | Microscope | |
JP5062008B2 (en) | telescope | |
JPS60134214A (en) | Relay optical system for microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020910 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080927 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080927 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090927 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |