JPH06201659A - Apparatus for measuring crystal grain size - Google Patents

Apparatus for measuring crystal grain size

Info

Publication number
JPH06201659A
JPH06201659A JP5000892A JP89293A JPH06201659A JP H06201659 A JPH06201659 A JP H06201659A JP 5000892 A JP5000892 A JP 5000892A JP 89293 A JP89293 A JP 89293A JP H06201659 A JPH06201659 A JP H06201659A
Authority
JP
Japan
Prior art keywords
grain size
subject
crystal grain
probe
sound velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5000892A
Other languages
Japanese (ja)
Other versions
JP2973759B2 (en
Inventor
Yukimichi Iizuka
幸理 飯塚
Daijiro Yuasa
大二郎 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5000892A priority Critical patent/JP2973759B2/en
Publication of JPH06201659A publication Critical patent/JPH06201659A/en
Application granted granted Critical
Publication of JP2973759B2 publication Critical patent/JP2973759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide an apparatus wherein an object, to be inspected, whose crystal grain size is larger than a sheet thickness can be measured quickly in a production line out of apparatuses wherein the crystal grain size is measured nondestructively by an ultrasonic method. CONSTITUTION:A probe 1 is formed to be of a convergence type, and the convergence diameter of ultrasonic pulses is made sufficiently narrower than a crystal grain size. An object 5 to be inspected is scanned fine by a scanning mechanism 2. A sound-velocity operation device 4 measures a longitudinal-wave sound velocity continuously, and a difference in the sound velocity by a crystal orientation is analyzed. Even when a horizontal distance is changed a little, the sound velocity can be measured. As a result, the object to be inspected can be measured accurately not only in a case where it stands still but also in a case where it is moved at high speed while it is being vibrated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属材料の結晶粒度測定
装置に係わり、特に、比較的大きな結晶粒径をもつ薄板
の測定に好適な超音波式の結晶粒度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain size measuring apparatus for metallic materials, and more particularly to an ultrasonic grain size measuring apparatus suitable for measuring a thin plate having a relatively large grain size.

【0002】[0002]

【従来の技術】超音波式で金属材料の結晶粒度を測定す
るには、超音波顕微鏡による方法と、超音波の減衰測定
方法があり、いづれも超音波パルス反射法によるもので
ある。これは,送信器が一定周期(パルス繰返し周波
数)で電気的な高周波パルスを探触子に送り、探触子が
超音波パルスをだし、その後各部位から反射し、探触子
が受信したパルス信号(エコー)を受信器で増幅して各
種信号処理を行う方法である。また、探触子と被検体と
の間には通常、超音波の伝ぱ媒体の水があるので、この
距離を以下「水距離」という。
2. Description of the Related Art In order to measure the crystal grain size of a metal material by an ultrasonic method, there are an ultrasonic microscope method and an ultrasonic attenuation measurement method, both of which are based on an ultrasonic pulse reflection method. This is because the transmitter sends an electric high frequency pulse to the probe at a constant cycle (pulse repetition frequency), the probe emits an ultrasonic pulse, and then the pulse is reflected from each part and received by the probe. In this method, a signal (echo) is amplified by a receiver and various signal processing is performed. In addition, since there is usually water as a transmission medium of ultrasonic waves between the probe and the subject, this distance is hereinafter referred to as “water distance”.

【0003】超音波顕微鏡による結晶粒度測定装置の一
例を図6に示す。送受信器3 は通常100MHz以上の高周波
パルスを探触子1 に送り、探触子から出る波は探触子内
部の音響レンズの働きによって、被検体5 の面上で結晶
粒より細く収束する超音波パルスとなる。被検体に入っ
た超音波は音響レンズの強い収束効果により表面波が主
体となって被検体の表面を伝ぱする。高周波パルスが継
続する時間的長さ(パルス幅)を十分長くしてやると、
結晶粒界で反射して探触子に返ってきた表面波と探触子
内部で反射した波が同時に観測されるようになる。反射
表面波の位相は伝ぱ距離で変化するので、入射点から特
定位置に粒界があった時、粒界反射波と探触子内部反射
波が負の干渉となってエコー高さが低下する現象が起き
る部位がある。走査機構2 で探触子を直線状に送りなが
ら、エコー高さの演算器4 でこの干渉がおきる部位のエ
コー高さをとりだし、走査機構の位置信号とともに任意
の2次元の出力装置6 に表示すると、エコー高さの低下
点として結晶粒界の位置が分かり、その走査線が切断し
た結晶粒子の数が求められる。
FIG. 6 shows an example of a crystal grain size measuring device using an ultrasonic microscope. The transmitter / receiver 3 normally sends a high frequency pulse of 100 MHz or more to the probe 1, and the wave emitted from the probe is converged finer than the crystal grains on the surface of the object 5 by the function of the acoustic lens inside the probe. It becomes a sound wave pulse. The ultrasonic waves entering the subject propagate mainly on surface waves due to the strong focusing effect of the acoustic lens and propagate on the surface of the subject. If the time length (pulse width) of the high-frequency pulse is made sufficiently long,
The surface waves reflected at the grain boundaries and returned to the probe and the waves reflected inside the probe can be observed simultaneously. Since the phase of the reflected surface wave changes depending on the propagation distance, when there is a grain boundary at a specific position from the incident point, the grain boundary reflected wave and the probe internal reflected wave become negative interference and the echo height decreases. There is a part where the phenomenon occurs. While the scanning mechanism 2 sends the probe linearly, the echo height calculator 4 takes out the echo height of the part where this interference occurs, and displays it on the arbitrary two-dimensional output device 6 together with the position signal of the scanning mechanism. Then, the position of the crystal grain boundary is known as the point where the echo height decreases, and the number of crystal grains whose scanning line is cut is obtained.

【0004】結晶粒度nは測定面における1mm2 あたり
の結晶粒子数と定義される。光学顕微鏡による粒度測定
の JIS規格は、直交2方向に走査した時の各長さL1
2と、それぞれの長さが切断した粒子数n1 ,n2
ら、( n1 ・n2 ) /(L1・L2 ) に係数を掛けてn
を求める方法を規定している。また結晶粒径に換算する
には、粒子の形状が等方性の場合、n1/2 に逆比例した
値となる。これらの係数は材料の性質によって決まるも
のである。
The grain size n is 1 mm 2 on the measuring surface. It is defined as the number of crystal particles per unit. The JIS standard for particle size measurement with an optical microscope is that each length L 1 when scanning in two orthogonal directions,
From L 2 and the number of particles n 1 and n 2 cut in each length, (n 1 · n 2 ) / (L 1 · L 2 ) is multiplied by a coefficient to obtain n.
Stipulates the method of asking for. In addition, to convert to a crystal grain size, when the particle shape is isotropic, n 1/2 The value is inversely proportional to. These coefficients are determined by the nature of the material.

【0005】超音波顕微鏡の探触子内部で反射する波の
位相は探触子の位置によらず一定だが、粒界から反射す
る波の位相は入射点から粒界までの距離と水距離が波長
の単位で影響する。したがって、干渉効果を正しく測定
するには走査中の水距離の変化を水中の超音波の波長よ
り十分小さくおさえる必要がある。この値は水の縦波音
速( 約1,500m/s) とパルスの周波数( 100MHz以上) によ
って15μm 程度であるから、静止状態の被検体の測定は
可能だが、被検体に通常2-3mm の振動があるオンライン
での測定に適用できないという問題がある。
The phase of the wave reflected inside the probe of the ultrasonic microscope is constant regardless of the position of the probe, but the phase of the wave reflected from the grain boundary depends on the distance from the incident point to the grain boundary and the water distance. Affects in units of wavelength. Therefore, in order to correctly measure the interference effect, it is necessary to keep the change in water distance during scanning sufficiently smaller than the wavelength of ultrasonic waves in water. Since this value is about 15 μm depending on the longitudinal sound velocity of water (about 1,500 m / s) and the pulse frequency (100 MHz or more), it is possible to measure a stationary subject, but the vibration of the subject is usually 2-3 mm. There is a problem that is not applicable to online measurement.

【0006】つぎに、超音波の減衰測定による装置の一
例を図7に示す。探触子1 は超音波パルスを収束させな
い標準型のものであって、被検体5 に垂直に超音波パル
スを入射させる。被検体に入った超音波は大部分がとじ
こめられて、被検体の表面と底面との間で繰り返し反射
するいわゆる多重反射状態となる。超音波が結晶体を伝
ぱするとき、結晶粒界による散乱で超音波が減衰するこ
とが知られている。この多重反射状態を式で現わすと、
時間あたりの超音波音圧の減衰率をαとおき、第1回目
の底面反射エコーの高さをP1とすると、P1から t時間後
にあらわれた n回目の底面反射エコー高さPnは Pn =
P1・exp (-αt) となる。エコー高さの演算器4 で探触
子側にごく一部もれてきた超音波パルスのエコー高さの
包絡線をもとめ、単位時間あたりの減衰率αに換算し、
あらかじめ光学顕微鏡で求めておいた結晶粒径の大きさ
と減衰率の相関を利用して粒度を求める。
Next, FIG. 7 shows an example of an apparatus for measuring the attenuation of ultrasonic waves. The probe 1 is a standard type that does not converge the ultrasonic pulse, and makes the ultrasonic pulse enter the subject 5 vertically. Most of the ultrasonic waves that have entered the subject are trapped in a so-called multiple reflection state in which they are repeatedly reflected between the surface and the bottom of the subject. It is known that when an ultrasonic wave propagates through a crystal, the ultrasonic wave is attenuated due to scattering by a grain boundary. When this multiple reflection state is expressed by an equation,
If the attenuation rate of ultrasonic sound pressure per time is α and the height of the first bottom reflected echo is P1, the nth bottom reflected echo height Pn appearing t hours after P1 is Pn =
P1 · exp (-αt). Using the echo height calculator 4, find the envelope of the echo height of the ultrasonic pulse that was only partially leaked to the probe side, and convert it to the attenuation rate α per unit time,
The grain size is obtained by utilizing the correlation between the size of the crystal grain size and the attenuation rate, which has been obtained in advance with an optical microscope.

【0007】この方法は干渉を用いていないので、水距
離の変化が測定に直接影響せず、オンライン適用が可能
である。しかし、減衰の大きさはパルスの周波数によっ
て大きく変化するので、減衰を正確に測定するには1つ
のパルスに含まれる超音波の波数を5〜6波以上に取る
必要がある。通常使用されるパルスの周波数は5MHzで金
属材料の縦波音速が約6,000m/sだから、被検体中の超音
波の波長は約1.2mm である。板厚を一往復する距離がそ
のパルスの継続する長さ(6-7.2mm) 以下になると、前後
のパルスが干渉するのでエコー高さを正確にとらえるこ
とができず、この方法は板厚 3mm以下の薄板に対して適
用できないという問題点がある。もしパルスの周波数を
より上げると、より薄い板厚まで適用できる。しかし、
減衰の大きさが結晶粒径とよい相関をもつのは、被検体
中の超音波の波長に比べて結晶粒径が十分小さいとき
(レイリー散乱域)であって、結晶粒径が波長に近づく
と正確に測定できない。たとえば、パルスの周波数を50
MHz まで上げれば、板厚0.3mm 以上の薄板に適用可能と
なるが、このとき測定できる結晶粒径は0.1mm 以下の場
合にかぎられる。
Since this method does not use interference, changes in water distance do not directly affect the measurement, and it can be applied online. However, since the magnitude of the attenuation greatly changes depending on the frequency of the pulse, it is necessary to set the wave number of the ultrasonic wave contained in one pulse to 5 to 6 waves or more in order to accurately measure the attenuation. The frequency of the pulse that is normally used is 5 MHz, and the longitudinal sound velocity of metallic materials is about 6,000 m / s, so the wavelength of ultrasonic waves in the subject is about 1.2 mm. If the distance for one round trip of the plate thickness is less than the length of the pulse (6-7.2 mm) or less, the echo height cannot be detected accurately because the preceding and following pulses interfere with each other. There is a problem that it cannot be applied to the following thin plates. If the frequency of the pulse is increased, a thinner plate thickness can be applied. But,
The degree of attenuation has a good correlation with the crystal grain size when the crystal grain size is sufficiently smaller than the wavelength of the ultrasonic wave in the subject (Rayleigh scattering region), and the crystal grain size approaches the wavelength. And cannot be measured accurately. For example, set the pulse frequency to 50
If it is increased to MHz, it can be applied to thin plates with a thickness of 0.3 mm or more, but the crystal grain size that can be measured at this time is limited to 0.1 mm or less.

【0008】[0008]

【発明が解決しようとする課題】電気的な特性を改善し
た板厚0.3mm 程度の薄板は、結晶粒径が板厚より大きく
なるものがある。粒径が品質の指標になるので、被検体
から切り出した試験片で粒度を測定するのみならず、被
検体に振動のある生産ライン上で全長測定して品質を管
理する必要がある。本発明は、このような薄板につい
て、オンラインで測定できる超音波式の結晶粒度測定装
置を提供することを目的とする。
Some thin plates having a plate thickness of about 0.3 mm with improved electrical characteristics have a crystal grain size larger than the plate thickness. Since the particle size serves as an index of quality, it is necessary to control the quality not only by measuring the particle size with a test piece cut out from the subject but also by measuring the entire length on a production line where the subject vibrates. It is an object of the present invention to provide an ultrasonic crystal grain size measuring device capable of performing online measurement on such a thin plate.

【0009】[0009]

【課題を解決するための手段】上記の課題は、結晶粒径
よりも細く収束する超音波パルスをだす探触子と、探触
子を被検体に垂直に向けて一定距離を保ったまま相対移
動する走査機構と、多重反射エコーの時間差と板厚によ
って被検体の各点の音速値を演算する演算器とを具備
し、探触子が一定長さを移動する時に音速値が変化した
箇所を結晶粒界と規定して結晶粒の数を求めるようにし
た結晶粒度の測定装置を用いることによって解決され
る。この装置はさらに空間周波数演算器、同期走査機構
などと組み合わせて粒度分布を自動的に評価することが
できる。
[Means for Solving the Problems] The above-mentioned problem is caused by a probe that emits an ultrasonic pulse that converges finer than the crystal grain size, and the probe is oriented perpendicularly to the subject while maintaining a constant distance. A scanning mechanism that moves, and a calculator that calculates the sound velocity value at each point of the subject by the time difference of multiple reflection echoes and the plate thickness, and the place where the sound velocity value changes when the probe moves a certain length. Is defined as a crystal grain boundary, and the problem can be solved by using a crystal grain size measuring device that determines the number of crystal grains. This device can be combined with a spatial frequency calculator, a synchronous scanning mechanism, etc. to automatically evaluate the particle size distribution.

【0010】[0010]

【作用】結晶の方位は結晶粒ごとに異なり、超音波の音
速は伝ぱする方位によって異なることが知られている。
結晶粒径よりも十分細く収束する超音波パルスをだす探
触子を被検体に垂直にむけて被検体面上を走査する。超
音波の入射点で超音波パルスが多重反射し、探触子にか
えってきたエコーの時間差を測定する。この時間差は被
検体の各点の音速と板厚の積に比例し、板厚が既知なの
で音速の変化を求めることができる。探触子の走査距離
に対応して各点の音速値を表示し、音速値の均一範囲と
してその走査線における結晶粒の拡がりを読み取る。探
触子の直線走査を平行して繰り返し、音速の値を適切な
範囲に区分すれば、目視観測に適する粒の形状表示とす
る方法もできる。通常の品質管理は、被検体に対する線
分の方向と長さをきめて、前述した粒度で寸法の分布を
評価する方が管理しやすい。
It is known that the crystal orientation differs depending on the crystal grain, and the sound velocity of ultrasonic waves varies depending on the propagation direction.
A probe that emits an ultrasonic pulse that converges sufficiently finer than the crystal grain size is directed perpendicularly to the subject, and the surface of the subject is scanned. The ultrasonic pulse is multiple-reflected at the ultrasonic wave incident point, and the time difference between the echoes returned to the probe is measured. This time difference is proportional to the product of the sound velocity at each point of the subject and the plate thickness. Since the plate thickness is known, the change in the sound velocity can be obtained. The sound velocity value at each point is displayed corresponding to the scanning distance of the probe, and the spread of crystal grains on the scanning line is read as a uniform range of the sound velocity value. By linearly scanning the probe in parallel and dividing the value of the sound velocity into an appropriate range, a method of displaying the shape of the grain suitable for visual observation can also be used. For normal quality control, it is easier to control the direction and length of the line segment with respect to the subject and evaluate the size distribution with the above-mentioned grain size.

【0011】[0011]

【実施例】本発明による結晶粒度測定装置の構成の一例
を図1に示す。これはオフラインで装置の基本特性を見
るのに適した構成であって、被検体5 に垂直にむけた収
束型の探触子1 、直線状の走査機構2 、送受信器3 、音
速の演算器4 で構成している。この演算結果は板厚値な
どの適切な倍率をかけて、走査機構の位置信号とともに
記録計などの出力装置6 に表示する。以下は、板厚0.3m
m で光学顕微鏡の観察による結晶粒径が0.42mmの被検体
aと、板厚0.5mm で同じく結晶粒径が0.71mmの被検体b
に適する構成を例にして説明する。
FIG. 1 shows an example of the structure of a grain size measuring apparatus according to the present invention. This is a configuration suitable for viewing the basic characteristics of the device off-line, and includes a convergent probe 1 oriented vertically to the subject 5, a linear scanning mechanism 2, a transceiver 3, and a sound velocity calculator. It consists of 4. This calculation result is multiplied by an appropriate magnification such as a plate thickness value and displayed on the output device 6 such as a recorder together with the position signal of the scanning mechanism. The following is a plate thickness of 0.3 m
Subject a with a crystal grain size of 0.42 mm observed by an optical microscope at m, and subject b with a plate thickness of 0.5 mm and a crystal grain size of 0.71 mm.
A configuration suitable for the above will be described as an example.

【0012】探触子1 はパルスの周波数 50MHz, 口径 6
mm, 水中における焦点距離 25mm のもので、被検体の板
厚の中央に焦点が位置するように水距離を23mmとする。
このように設定すれば焦点付近において水距離が 2-3mm
変動しても、常に結晶粒径より小さく収束した超音波パ
ルスが得られる。水中における超音波パルスの収束径φ
は、水中における超音波の波長をλ、焦点距離をf,探
触子の口径をDとするとき、近似的にφ=λ・f/Dで
現わせるので、この場合d〜0.12mmとなる。被検体の結
晶粒径の変動範囲があらかじめ分かっているときは最小
粒径の1/5 程度の収束径となる探触子を選定するとよ
い。後述するように、粒径の評価のやり方によっては、
収束径が粒径と同等であっても測定できるので、必ずし
も収束径が小さいほどよいというものではない。
The probe 1 has a pulse frequency of 50 MHz and a diameter of 6
mm, the focal length in water is 25 mm, and the water distance is 23 mm so that the focal point is located in the center of the plate thickness of the subject.
With this setting, the water distance is 2-3mm near the focal point.
Even if it fluctuates, it is possible to obtain an ultrasonic pulse that is always smaller than the crystal grain size and converges. Convergence diameter φ of ultrasonic pulse in water
Is expressed as φ = λ · f / D, where λ is the wavelength of ultrasonic waves in water, f is the focal length, and D is the aperture of the probe. In this case, d ~ 0.12 mm Become. If the variation range of the crystal grain size of the sample is known in advance, it is advisable to select a probe with a convergent diameter that is about 1/5 of the minimum grain size. As will be described later, depending on how the particle size is evaluated,
Since it can be measured even if the convergent diameter is equal to the particle diameter, the smaller the convergent diameter is not necessarily the better.

【0013】音速の演算器4 は基本的に被検体の表面・
底面間で多重反射する任意の連続する2パルスの時間差
を計測し、板厚の2倍の値を時間差で割って音速をもと
める。被検体と探触子の垂直度が取れていないときは多
重反射が現れない。逆に多重反射が長く何度も現れるよ
うに設定すれば正しく垂直に設定できたことになる。パ
ルスが長く続くときは連続する5〜6パルス以上の時間
差を用いて平均化すればさらに正確な音速になるときが
ある。板厚が場所によって変化する時は別に測定した板
厚の実測値を使う。均一な板厚なら定数としてよい。ま
た本発明は、音速の絶対値ではなく、結晶粒による音速
の違いを現わす相対値が有意なので、時間差から基準値
を引いたものを音速値としてもよい。送受信器3 と音速
の演算器4 は広帯域の超音波探傷器とゲート装置、また
は超音波厚さ計を使うことができる。 走査機構2 は一
定速度で被検体と相対移動するものであればよい。パル
ス繰返し周波数 200Hz (5ms 周期) で被検体の約10mmの
長さを4mm/s の速さで走査すると、0.02mmごと 512点の
音速値を得る。これらの値は結晶粒の寸法(0.42mm)に
比べて十分小さい寸法単位(0.02mm)と十分大きい走査線
の長さ(10mm)であればよい。走査距離と音速値を観察
しやすい適当な倍率で記録すると、音速値が有意に変化
した部分として結晶粒界の位置が分かり、その走査線が
切断した結晶粒子の数が求められる。音速演算器のなか
に音速値の移動平均を計算する機能をもたせておいて、
走査中にそれまでの平均から一定値だけ上下にずれたと
きをもって結晶粒界とする結晶粒子数の積算方法もあ
る。結晶粒度の計算は、切断した結晶粒子数と走査長さ
によって例えば JISに規定された方法で行うことができ
る。また比較法・計算法など他の光学顕微鏡による結晶
粒度測定値との換算が必要な場合には材料の性質ごとに
両者の多数の測定によって相関をもとめ係数をきめる。
この方式は干渉を用いていないので、多少の水距離の
変化があっても、音速の違いを正確に測定できる。水距
離の変化速度は、水中の音速の大きさにくらべて通常無
視できるほど小さいので問題にならない。1パルス中の
超音波の波数はエコー高さを用いるのでないから1〜2
波あればよい。したがって、被検体中の縦波波長の2〜
4倍の板厚 (パルスの周波数が 50MHzのとき 0.24-0.48
mm) まで干渉が起きず、また多少の干渉がおきても既知
の厚さ計の波形処理方法を用いれば正確な時間差が測定
できるので、十分薄い板厚まで測定できる。この直線走
査によって得られた音速分布を図2に示す。図2のaは
結晶粒径が0.42mmに対応するもので,bは同じく0.71mm
のもので、いずれもよい対応を示している。
The speed of sound calculator 4 is basically the surface of the subject.
The time difference between any two consecutive pulses that are multiply reflected between the bottom surfaces is measured, and the sound velocity is calculated by dividing the value of twice the plate thickness by the time difference. Multiple reflection does not appear when the test object and the probe are not perpendicular. On the contrary, if it was set so that multiple reflections would appear long and many times, it would have been set correctly vertically. When the pulse continues for a long time, more accurate sound velocity may be obtained by averaging using continuous time differences of 5 to 6 pulses or more. When the plate thickness changes depending on the location, use the measured value of the plate thickness measured separately. If the plate thickness is uniform, a constant may be used. Further, in the present invention, since the relative value representing the difference in sound velocity due to the crystal grains is significant, not the absolute value of sound velocity, the sound velocity value may be obtained by subtracting the reference value from the time difference. For the transceiver 3 and the sound velocity calculator 4, a broadband ultrasonic flaw detector and gate device, or an ultrasonic thickness gauge can be used. The scanning mechanism 2 may be one that moves relative to the subject at a constant speed. When the pulse repetition frequency is 200Hz (5ms cycle), a length of about 10mm of the subject is scanned at a speed of 4mm / s, and a sound velocity value of 512 points is obtained every 0.02mm. These values may be sufficiently smaller than the size of the crystal grain (0.42 mm) (0.02 mm) and sufficiently large scanning line length (10 mm). When the scanning distance and the sound velocity value are recorded at an appropriate magnification that is easy to observe, the position of the crystal grain boundary can be found as a portion where the sound velocity value has changed significantly, and the number of crystal grains cut by the scanning line can be obtained. Having a function to calculate the moving average of sound velocity values in the sound velocity calculator,
There is also a method of integrating the number of crystal grains that becomes a crystal grain boundary when the average is shifted up and down by a constant value during scanning. The calculation of the crystal grain size can be performed by the method defined in JIS, for example, according to the number of cut crystal grains and the scanning length. Further, when it is necessary to convert the crystal grain size measured by other optical microscopes such as the comparison method and the calculation method, the coefficient is determined by correlating the material with many measurements for each property.
Since this method does not use interference, the difference in sound velocity can be accurately measured even if the water distance changes slightly. The speed of change of water distance is usually negligible compared to the speed of sound in water, so it does not matter. The wave number of the ultrasonic wave in one pulse does not use the echo height, so 1-2
I want the waves. Therefore, the longitudinal wavelength of 2 to 2
4 times the plate thickness (0.24-0.48 when the pulse frequency is 50MHz)
(mm) interference does not occur, and even if there is some interference, it is possible to measure the accurate time difference by using the known waveform processing method of the thickness gauge, so it is possible to measure even a sufficiently thin plate thickness. The sound velocity distribution obtained by this linear scanning is shown in FIG. 2a corresponds to a crystal grain size of 0.42 mm, and b corresponds to 0.71 mm.
, And all show good correspondence.

【0014】粒界の位置がわかれば、結晶粒の分布状態
を評価するためにいくつかの方法が考えられる。例え
ば、粒径の最大値・最小値・標準偏差・移動平均などの
統計処理を各種の演算器で実施することができる。この
うち自動評価に適する周波数分析器を用いた構成の一例
を図3に示す。被検体5 に垂直にむけた収束型の探触子
1 、送受信器3 、音速の演算器4 は図1と同一構成であ
る。この例では、探触子1 は固定で、走査機構2 が被検
体5 を直線状に動かすようにしている。具体的には、コ
ンベアやローラなどで一定速度・方向に被検体を搬送し
ているラインに探触子を取り付ければよい。走査機構は
被検体の移動量の0.02mmごとに位置信号を出し、粒度分
布を自動評価する周波数分析器7 の一つの入力とする。
一方、音速の演算器4 は前述したように被検体の表面・
底面で反射した超音波パルスの時間差を計算し、適当な
係数補正をおこなって被検体の縦波音速値をもとめ、周
波数分析器のもう一つの入力とする。
If the positions of the grain boundaries are known, several methods can be considered for evaluating the distribution state of crystal grains. For example, statistical processing such as maximum value / minimum value of particle diameter, standard deviation, and moving average can be carried out by various arithmetic units. An example of a configuration using a frequency analyzer suitable for automatic evaluation is shown in FIG. Convergence type probe oriented vertically to the subject 5
1, the transmitter / receiver 3, and the sound velocity calculator 4 have the same configuration as in FIG. In this example, the probe 1 is fixed, and the scanning mechanism 2 moves the subject 5 linearly. Specifically, the probe may be attached to a line that conveys the subject at a constant speed and direction by a conveyor or rollers. The scanning mechanism outputs a position signal for each 0.02 mm of the amount of movement of the subject, which is one input of the frequency analyzer 7 for automatically evaluating the particle size distribution.
On the other hand, the sound velocity calculator 4 is
The time difference of the ultrasonic pulse reflected on the bottom surface is calculated, the appropriate coefficient correction is performed, and the longitudinal wave sound velocity value of the subject is obtained, which is used as another input of the frequency analyzer.

【0015】周波数分析器7 は各走査位置と音速値とを
対応させて記憶し、連続した512 点ごと( 被検体の長さ
約10mmごと) に音速値を距離の逆数、すなわち空間周波
数の領域にフーリエ変換することによって、結晶粒径の
空間周波数分布を求める。この結果は変換のつど空間周
波数を他の軸とする出力装置6 に表示してスペクトルの
ピーク位置や広がりを求めることができる。もし結晶粒
径が一定ならば音速値が2回変化する被検体の移動距離
の逆数にスペクトルのピークが現れるので、周波数分析
のスペクトルのピークが求められたら、その空間周波数
の逆数の 1/2を代表粒径とするのが妥当である。この係
数(1/2) は別な測定方法による値と関連をとるため任意
の値にとることもできる。フーリエ変換している間に次
の10mm分を別に記憶して変換を繰り返せば、被検体の全
長の代表粒径を10mmごとに連続して自動的に測定でき
る。
The frequency analyzer 7 stores each scanning position and the sound velocity value in association with each other, and the sound velocity value is reciprocal every distance of 512 points (every 10 mm of the subject), that is, the spatial frequency region. The spatial frequency distribution of the crystal grain size is obtained by performing a Fourier transform on. This result can be displayed on the output device 6 having the spatial frequency as the other axis each time the conversion is performed, and the peak position and spread of the spectrum can be obtained. If the crystal grain size is constant, the peak of the spectrum appears in the reciprocal of the moving distance of the object where the sound velocity value changes twice. Therefore, if the spectrum peak of the frequency analysis is obtained, 1/2 of the reciprocal of the spatial frequency It is appropriate to use This coefficient (1/2) can be set to any value because it is related to the value obtained by another measurement method. If another 10 mm portion is stored separately during the Fourier transformation and the transformation is repeated, the representative particle size of the entire length of the subject can be continuously and automatically measured every 10 mm.

【0016】図4にこの方法による空間周波数分析出力
の一例をしめす。図4のaは図2のaに、図4のbは図
2のbに対応するもので、顕微鏡観察のデータとも良い
一致を示している。この方法によれば測定データの全部
をつかった精度のよい評価が可能である。探触子の収束
径は結晶粒度より小さければ、極小さくても同等でも同
じピーク周波数が現れるので、広い範囲から探触子を選
定することができる。また、この装置によれば、粒のピ
ッチが同じで粒界の幅が変わった時でも代表粒径が変動
なしに評価できる利点がある。
FIG. 4 shows an example of the spatial frequency analysis output by this method. 4a corresponds to FIG. 2a, and FIG. 4b corresponds to FIG. 2b, and shows good agreement with the data of the microscope observation. According to this method, it is possible to perform an accurate evaluation using all the measurement data. If the convergent diameter of the probe is smaller than the crystal grain size, the same peak frequency appears even if it is extremely small or equal, so that the probe can be selected from a wide range. Further, according to this apparatus, there is an advantage that even when the grain pitch is the same and the grain boundary width is changed, the representative grain size can be evaluated without variation.

【0017】パルス繰返し周波数は水距離の大きさや被
検体中の残響エコーなどで制約され、無制限に高くする
ことができない。パルス繰返し周波数が最大 10kHz(0.1
ms周期) まで上げられ、0.02mmごとの音速値を基準にと
る場合、0.2m/s(0.02mm/0.1ms ) のライン速度までは探
触子固定で全長測定できる。これよりさらに高速のライ
ンに同一の条件を適用するために、同期走査機構を組み
合わせた装置構成の一例を図5に示す。被検体5 に垂直
にむけた収束型の探触子1 、送受信器3 、音速の演算器
4 は図1と同一構成である。被検体5 は図示していない
別の駆動機構によって一定速度で直線状に動く。被検体
5 の速度を検出するための速度検出器8と被検体の基準
点(例えば先端) からの位置を検出する位置検出器9 を
配置する。被検体の結晶粒度を評価する周波数分析器7
の変換速度は 1,024点で3ms の高速フーリエ変換器を使
って構成した例である。
The pulse repetition frequency cannot be increased indefinitely because it is restricted by the size of the water distance and the reverberation echo in the subject. Maximum pulse repetition frequency is 10 kHz (0.1
When the sound velocity value for each 0.02 mm is used as the reference, the total length can be measured with the probe fixed up to a line speed of 0.2 m / s (0.02 mm / 0.1 ms). FIG. 5 shows an example of an apparatus configuration in which a synchronous scanning mechanism is combined in order to apply the same condition to a line higher in speed than this. Convergence type probe 1, which is oriented vertically to the subject 5, transceiver 3, sound velocity calculator
4 has the same configuration as that in FIG. The subject 5 linearly moves at a constant speed by another driving mechanism (not shown). Subject
A velocity detector 8 for detecting the velocity of 5 and a position detector 9 for detecting the position of the subject from a reference point (for example, the tip) are arranged. Frequency analyzer 7 for evaluating the grain size of the object
The conversion speed of is 1,024 points and is an example configured using a 3 ms fast Fourier transformer.

【0018】同期走査機構10は速度検出器8 の出力を基
準として、探触子が被検体に対して0.2m/sのすべり速度
となるように探触子を走査するものである。ライン速度
が例えば1m/s とすると、ラインの正逆方向に0.8m/sの
一定速度で往復走査する方法がある。測定中の探触子か
らみれば被検体が0.2m/sの速度で移動していることにな
る。0.02mmごと 1,024点のデータを取るには約 100msの
時間がかかり、この間に探触子の動く距離は約80mmであ
るから、往復走査はパルスモータなどを使って実現でき
る。探触子を元の位置に戻す間は非測定時間となるが、
被検体の全長にわたって約0.2m(200ms) ごとに測定され
た値は通常、被検体全長に対して十分な分解能といえ
る。これによって高速のラインにおいても空間周波数分
析した代表粒径を用いて、被検体全長の結晶粒径を測定
することができる。
The synchronous scanning mechanism 10 scans the probe with reference to the output of the velocity detector 8 so that the probe has a sliding velocity of 0.2 m / s with respect to the subject. If the line speed is 1 m / s, for example, there is a method of reciprocating scanning at a constant speed of 0.8 m / s in the forward and reverse directions of the line. From the perspective of the probe being measured, the subject is moving at a velocity of 0.2 m / s. It takes about 100 ms to obtain 1,024 points of data for every 0.02 mm, and the moving distance of the probe is about 80 mm during this time, so reciprocal scanning can be realized using a pulse motor or the like. Although it is a non-measurement time while returning the probe to its original position,
A value measured every 0.2 m (200 ms) over the entire length of the subject is usually sufficient for the entire length of the subject. As a result, the crystal grain size of the entire length of the subject can be measured using the representative grain size subjected to the spatial frequency analysis even in a high-speed line.

【0019】[0019]

【発明の効果】【The invention's effect】

1.結晶粒径より細く収束する超音波パルスをだす探触
子と、走査機構、音速の演算器を組み合わせたので、板
厚より大きい結晶粒径の被検体について、水距離変化が
あっても正確な結晶粒度測定ができる。このため、被検
体の静止状態に限らず、被検体に振動のあるオンライン
測定が可能である。 2.さらに、周波数分析器と組み合わせたので、精度の
良い粒度分布の統計処理が自動的にできる。 3.さらに、同期走査機構により、高速の生産ラインで
粒度分布の全長測定が可能である。
1. Since a probe that emits an ultrasonic pulse that converges finer than the crystal grain size, a scanning mechanism, and a sonic velocity calculator are combined, it is possible to accurately measure an object with a crystal grain size larger than the plate thickness even if the water distance changes. Can measure grain size. Therefore, it is possible to perform online measurement in which the subject vibrates, not limited to the stationary state of the subject. 2. Furthermore, since it is combined with a frequency analyzer, it is possible to automatically perform accurate statistical processing of the particle size distribution. 3. Furthermore, the synchronous scanning mechanism enables full-length measurement of particle size distribution on a high-speed production line.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による結晶粒度定装置の一例を示す
図。
FIG. 1 is a diagram showing an example of a grain size determining apparatus according to the present invention.

【図2】 本発明による結晶粒度の測定結果を示す図。FIG. 2 is a diagram showing a measurement result of crystal grain size according to the present invention.

【図3】 本発明による結晶粒度測定装置の一例を示す
図。
FIG. 3 is a diagram showing an example of a crystal grain size measuring device according to the present invention.

【図4】 本発明による結晶粒度の測定結果を示す図。FIG. 4 is a diagram showing the measurement results of crystal grain size according to the present invention.

【図5】 本発明による結晶粒度測定装置の一例を示す
図。
FIG. 5 is a diagram showing an example of a grain size measuring apparatus according to the present invention.

【図6】 従来の超音波顕微鏡による結晶粒度測定装置
の一例を示す図。
FIG. 6 is a diagram showing an example of a conventional crystal grain size measuring device using an ultrasonic microscope.

【図7】 従来の減衰測定による結晶粒度測定装置の一
例を示す図。
FIG. 7 is a diagram showing an example of a conventional crystal grain size measuring device by attenuation measurement.

【符号の説明】[Explanation of symbols]

1・・探触子 2・・走査機構 3・・送受信器
4・演算器 5・・被検体 6・・出力装置 7・・周波数分析
器 8・速度検出器 9・・位置検出器 10・同期走査機構
1 ... Probe 2 ... Scanning mechanism 3 ... Transceiver
4 ・ Calculator 5 ・ ・ Subject 6 ・ ・ Output device 7 ・ ・ Frequency analyzer 8 ・ Velocity detector 9 ・ ・ Position detector 10 ・ Synchronous scanning mechanism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平行な表裏面をもつ被検体の結晶粒径よ
りも細く収束する超音波パルスをだす探触子と、その探
触子を被検体の表面に垂直に向け、被検体と一定距離を
保ったまま相対移動させる走査機構と、その被検体から
反射され探触子に返ってきた複数の超音波パルスの時間
差と板厚によって被検体の各点の音速値を演算する演算
器とを具備し、その演算器は前記走査機構が一定距離を
走査する間に当該音速値が変化した箇所を結晶粒界と規
定して結晶粒の数を求めるようにした結晶粒度の測定装
置。
1. A probe that emits ultrasonic pulses that have a parallel front and back surface and that converges finer than the crystal grain size of the subject, and that probe is oriented perpendicular to the surface of the subject and is constant with the subject. A scanning mechanism that relatively moves while maintaining a distance, and a calculator that calculates the sound velocity value of each point of the subject by the time difference and the plate thickness of the plurality of ultrasonic pulses reflected from the subject and returned to the probe And a calculator for determining the number of crystal grains by defining a portion where the sound velocity value changes while the scanning mechanism scans a certain distance as a crystal grain boundary.
【請求項2】 前記走査機構の位置信号と,これに対応
する前記演算器の音速値とを入力とし、その位置・音速
値分布を空間周波数領域に変換してスペクトルのピーク
値を求め、そのピーク周波数の逆数を代表粒径として出
力する空間周波数演算器を付加した請求項1記載の結晶
粒度の測定装置。
2. A position signal of the scanning mechanism and a sound velocity value of the computing unit corresponding to the position signal are input, and the position / sound velocity value distribution is converted into a spatial frequency domain to obtain a peak value of the spectrum. The crystal grain size measuring apparatus according to claim 1, further comprising a spatial frequency calculator that outputs the reciprocal of the peak frequency as a representative grain size.
【請求項3】 前記走査機構は、被検体の移動速度に一
定のすべり速度で前記探触子を動かす手段を備えた請求
項1または請求項2記載の結晶粒度の測定装置。
3. The crystal grain size measuring apparatus according to claim 1, wherein the scanning mechanism includes means for moving the probe at a sliding speed that is constant with respect to the moving speed of the subject.
JP5000892A 1993-01-07 1993-01-07 Grain size measuring device Expired - Fee Related JP2973759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5000892A JP2973759B2 (en) 1993-01-07 1993-01-07 Grain size measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5000892A JP2973759B2 (en) 1993-01-07 1993-01-07 Grain size measuring device

Publications (2)

Publication Number Publication Date
JPH06201659A true JPH06201659A (en) 1994-07-22
JP2973759B2 JP2973759B2 (en) 1999-11-08

Family

ID=11486337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5000892A Expired - Fee Related JP2973759B2 (en) 1993-01-07 1993-01-07 Grain size measuring device

Country Status (1)

Country Link
JP (1) JP2973759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021930A (en) * 2010-07-16 2012-02-02 Chubu Electric Power Co Inc Thickness measuring method
EP2860520A4 (en) * 2012-06-08 2016-08-24 Nuclear Fuel Ind Ltd Material diagnostic method
JP2020085642A (en) * 2018-11-26 2020-06-04 株式会社日立パワーソリューションズ Ultrasonic inspection method and ultrasonic inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633404B2 (en) * 2011-02-02 2014-12-03 Jfeスチール株式会社 Metal structure measurement method and metal structure measurement apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021930A (en) * 2010-07-16 2012-02-02 Chubu Electric Power Co Inc Thickness measuring method
EP2860520A4 (en) * 2012-06-08 2016-08-24 Nuclear Fuel Ind Ltd Material diagnostic method
US10345274B2 (en) 2012-06-08 2019-07-09 Nuclear Fuel Industries, Limited Material diagnostic method
JP2020085642A (en) * 2018-11-26 2020-06-04 株式会社日立パワーソリューションズ Ultrasonic inspection method and ultrasonic inspection device

Also Published As

Publication number Publication date
JP2973759B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
US7353709B2 (en) Method and system for determining material properties using ultrasonic attenuation
US6057927A (en) Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties
KR101281273B1 (en) Method and system for determining material properties using ultrasonic attenuation
US5922961A (en) Time and polarization resolved acoustic microscope
US6883376B2 (en) Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
Moreau et al. On-line measurement of texture, thickness and plastic strain ratio using laser-ultrasound resonance spectroscopy
Wolf et al. Investigation of Lamb waves having a negative group velocity
US4524621A (en) Method for measurement of velocity of surface acoustic wave
Chen et al. Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V (z, t) data from time-resolved acoustic microscopy
JP2973759B2 (en) Grain size measuring device
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JP2006084447A (en) Ultrasonic nondestructive measuring method and ultrasonic nondestructive measuring apparatus used therefor
Athanassiadis et al. Broadband leaky Lamb waves excited by optical breakdown in water
Dean-Ben et al. Phase and group velocity measurement of ultrasonic guided wavetrains in plates by pulsed TV holography
US5373742A (en) Ultrasonic interferometer
JP2001343366A (en) Crystal grain measuring method and device for metal sheet
CA2511629C (en) Method and system for determining material properties using ultrasonic attenuation
Lodeiro Feasibility of Using Scanning Acoustic Microscopy to Provide Large Area, High Spatial and Thickness Resolution Measurements of Flexible Polymeric Thin Films
JPH05333003A (en) Method and apparatus for measuring attenuating amount of ultrasonic wave in body to be inspected
JP2003528316A (en) Method for evaluating the elastic strain energy of a welded assembly and analyzer for measuring the velocity of ultrasonic surface waves
JPH06258297A (en) Ultrasonic material testing device and material testing method by using ultrasonic wave
JPH1062395A (en) Ultrasoinc flaw detecting method and device
JPH06300550A (en) Layer thickness measurement method for layer structure material using ultrasonic wave
JP4392497B2 (en) Shape analysis method using ultrasonic interference fringes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees