JPH06201602A - Inspection of phase shift mask - Google Patents

Inspection of phase shift mask

Info

Publication number
JPH06201602A
JPH06201602A JP24666793A JP24666793A JPH06201602A JP H06201602 A JPH06201602 A JP H06201602A JP 24666793 A JP24666793 A JP 24666793A JP 24666793 A JP24666793 A JP 24666793A JP H06201602 A JPH06201602 A JP H06201602A
Authority
JP
Japan
Prior art keywords
phase
wavelength
equation
phase shift
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24666793A
Other languages
Japanese (ja)
Other versions
JP2685164B2 (en
Inventor
Burn J Lin
バーン・ジェン・リン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPH06201602A publication Critical patent/JPH06201602A/en
Application granted granted Critical
Publication of JP2685164B2 publication Critical patent/JP2685164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/50Optics for phase object visualisation
    • G02B27/52Phase contrast optics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE: To improve the sensitivity to phase-shifting errors to easily detect phase-shifting mask errors by using an adjustable phase shifter that is capable of shifting the phase of zero-order light or reference light by an angle θ. CONSTITUTION: A phase-contrast microscope 8 for inspecting a phase-shifting mask 10 is designed to include a quarter wavelength plate 30 within a pupillary plane 20 and among other elements. The thickness of the wavelength plate 30 is λθ/2π. A typical phase-contrast objective lens 42 consisting of elements 40, 46 of a combination lens and a transfer plate 30 for zero-order beams are provided. The angle θ and the wavelength λ are adjustable. The wavelength λand the angle θ are optimized by formulae I, II. The maximum sensitivity can be obtained by setting the deviation of a zero-order inspecting beam at the optimum angle θ. Further, when the wavelength λ is set to the desired wavelength for an illumination source, a detecting light ray, and a detector, the angle θ can be set to maximize the sensitivity. An optimum operating point is desirable, but inspection can also be made at an operating point that is slightly off the optimum point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフォトリソグラフィ用の
移相マスクを検査する方法に関し、より詳しくは検査に
よって位相エラーを改善することに関する。
FIELD OF THE INVENTION The present invention relates to a method of inspecting a phase shift mask for photolithography, and more particularly to improving phase error by inspection.

【0002】[0002]

【従来の技術】B.J.リン(Lin)の発表Proceedings o
f the 10th Annual Symposium on Microlithography, p
p.54-79, SPIE, Vol.1496(1990年9月)に記載されている
ように、移相マスク技術を用いると、光学撮像システム
の撮像性能が改善されることがわかっている。しかし、
製造への適用を容易にするにはいくつかの問題を克服し
なければならない。重要な問題の1つは、パターン化ま
たは移相(位相ずれともいう)のエラーについて移相マ
スク(PSM)を検査することである。横方向の多くの
移相エラーは、境界が存在するから、従来型の強度マス
ク用の既存の検査機器を使って容易に検査できるが、位
相エラーは検査が難しい。原則として、M.ボーン(Bor
n)及びE.ウルフ(Wolf)の論文"Principles of Optic
s", PergamonPress, 3rd Ed., pp.300, 424(1964年)に
記載されている位相差顕微鏡技術では、位相変化を強度
分配に変換して、定量的評価を可能にする。
B. Background Art J. Announced by Lin Proceedings o
f the 10th Annual Symposium on Microlithography, p
It has been found that the use of phase shift mask techniques improves the imaging performance of optical imaging systems, as described in p.54-79, SPIE, Vol.1496 (September 1990). But,
Several problems must be overcome to facilitate manufacturing applications. One of the key issues is inspecting the phase shift mask (PSM) for patterning or phase shift (also called phase shift) errors. Many lateral phase shift errors are easily inspected using existing inspection equipment for conventional intensity masks due to the boundaries, but phase errors are difficult to inspect. In principle, M. Bor
n) and E. Wolf's Paper "Principles of Optic
The phase contrast microscopy technique described in s ", PergamonPress, 3rd Ed., pp.300, 424 (1964) converts phase changes into intensity distributions to enable quantitative evaluation.

【0003】[0003]

【発明が解決しようとする課題】大部分の移相マスク
は、撮像の改善を最大にするためにπ位相ずれを必要と
するが、π位相ずれは位相エラー検出に最適の位相ずれ
ではない。
Most phase shift masks require a π phase shift to maximize imaging improvement, but the π phase shift is not the optimum phase shift for phase error detection.

【0004】[0004]

【課題を解決するための手段】本発明は、0次光又は基
準光をθだけ移相させることのできる調節可能な移相器
を使用することからなる、位相エラーの改善により、フ
ォトリソグラフィ用移相マスクを検査する方法を提供す
るものである。本発明においては、位相差法又は干渉法
を使う。本発明者は、本発明の方法を使用することによ
り、位相エラー検出に所定の最適波長を使用できること
を発見した。さらに本発明によれば、波長を変更する必
要はないが、所与の位相ずれ角を検査するために最適の
検査用位相ずれ角が使用できる。本発明の方法は、ウェ
ハ上の移相マスクを露光するのに使用する波長と同じ又
は異なる所望の波長を使用する。検査用波長は調節可能
である。θは最適化されて固定される。波長又はθある
いはその両方は、下記の方程式7及び8によって最適化
され、
SUMMARY OF THE INVENTION The present invention provides an improved phase error for photolithography by using an adjustable phase shifter capable of shifting the 0th order light or reference light by θ. A method of inspecting a phase shift mask is provided. In the present invention, the phase difference method or the interference method is used. The inventor has discovered that by using the method of the invention, a predetermined optimum wavelength can be used for phase error detection. Furthermore, according to the present invention, it is not necessary to change the wavelength, but the optimum inspection phase shift angle can be used for inspecting a given phase shift angle. The method of the present invention uses a desired wavelength that is the same as or different from the wavelength used to expose the phase shift mask on the wafer. The inspection wavelength is adjustable. θ is optimized and fixed. Wavelength and / or θ are optimized by equations 7 and 8 below,

【数7】 [Equation 7]

【数8】θoptimum=2φ−(1±2m)π 新しい波長λ'が下記の方程式9に従って選ばれる。Θoptimum = 2φ− (1 ± 2m) π A new wavelength λ ′ is selected according to equation 9 below.

【数9】 また、下記の方程式10、11、12によって最適化さ
れてもよい。
[Equation 9] It may also be optimized by the following equations 10, 11, 12.

【数10】 [Equation 10]

【数11】θoptimum=2φ−(1±2m)π[Equation 11] θoptimum = 2φ− (1 ± 2m) π

【数12】θoptimum=φ+(2m−1)π/2[Equation 12] θoptimum = φ + (2m−1) π / 2

【0005】[0005]

【実施例】本発明は、よりよい検査のための位相エラー
改善技術を提供する。位相エラーの感度が改善されて、
移相マスクを検査する際のエラーの検出が容易になる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a phase error correction technique for better inspection. Improved phase error sensitivity,
It facilitates detection of errors when inspecting the phase shift mask.

【0006】本発明に適用される位相エラー検出感度の
議論は次の通りである。位相差イメージの強度は、下記
の式13で与えられる。
The discussion of the phase error detection sensitivity applied to the present invention is as follows. The intensity of the phase difference image is given by Equation 13 below.

【数13】I(φ)=E(φ)*E(φ)[Equation 13] I (φ) = E (φ) * E (φ)

【0007】関数E(φ)は、下記の式14で表される
マスク上の電界分布をとり、下記の式15で表される0
次成分を分離し、次いで0次成分にλ/4位相ずれを加
えて、次式16で表される位相差操作を実行することに
よって誘導される。
The function E (φ) is the electric field distribution on the mask expressed by the following expression 14, and 0 expressed by the following expression 15 is obtained.
It is derived by separating the second component and then adding a λ / 4 phase shift to the zeroth component and performing the phase difference operation represented by Equation 16 below.

【数14】 [Equation 14]

【数15】 [Equation 15]

【数16】 [Equation 16]

【0008】位相差強度は次式17のようになる。The phase difference intensity is expressed by the following equation 17.

【数17】 [Equation 17]

【0009】位相差強度の感度は、次式18のように位
相ずれ変化の関数として変化する。
The sensitivity of the phase difference intensity changes as a function of the phase shift change, as shown in the following equation (18).

【数18】 [Equation 18]

【0010】検出感度を最大にするには、φ+3π/4
が±π/2の奇数倍でなければならない。すなわち、次
式19が成立する。
To maximize the detection sensitivity, φ + 3π / 4
Must be an odd multiple of ± π / 2. That is, the following expression 19 is established.

【数19】φoptimum=(4m−1)π/4 ただし、m=0,±1,±2,... φoptimum=−5π/4,−π/4,3π/4,7π/4...Φoptimum = (4m−1) π / 4 where m = 0, ± 1, ± 2 ,. . . φoptimum = −5π / 4, −π / 4, 3π / 4, 7π / 4. . .

【0011】検出感度の利得は次のように表される。大
部分の移相マスクではそうであるがφ=πの場合、dI
/dφ=2であり、φがその最適値の1つであるとき、
すなわち次式20の値よりも40%小さい。
The detection sensitivity gain is expressed as follows. As with most phase shift masks, if φ = π, dI
/ Dφ = 2 and φ is one of its optimal values,
That is, it is 40% smaller than the value of the following expression 20.

【数20】 [Equation 20]

【0012】本発明は、移相式撮像が最善になるように
φをπに保ちながら、φを検査のための最適値に変化さ
せる方法を示す。本発明の方法は、撮像用移相波長をλ
に保ちながら、検査用波長をλからλ'に増大させるこ
とによる、位相ずれφの減少を利用する。移相材料の屈
折率が一定のままである場合、波長λを波長λ'に増加
させると、位相ずれの量がφからφ'に減少する。
The present invention shows a method of changing φ to an optimum value for inspection while keeping φ at π for the best phase shift imaging. The method of the present invention sets the imaging phase shift wavelength to λ
While maintaining, the decrease of the phase shift φ by increasing the inspection wavelength from λ to λ ′ is utilized. If the refractive index of the phase-shifting material remains constant, increasing the wavelength λ to the wavelength λ ′ reduces the amount of phase shift from φ to φ ′.

【0013】したがって、次式21のように置くことに
よってφをφoptimumに設定することができる。
Therefore, φ can be set to φoptimum by setting as in the following expression 21.

【数21】 [Equation 21]

【0014】新しい波長λ'で反射率が変化する場合、
最適の動作点が得られるようにλ'を微細同調すること
ができる。そうすると、新しい波長λ'は、次式22に
従って選ばれることになる。
If the reflectivity changes at the new wavelength λ ',
Λ'can be fine tuned to obtain the optimum operating point. Then, the new wavelength λ ′ will be selected according to the following equation 22.

【数22】 [Equation 22]

【0015】上式22に従ってφoptimumを達成するた
めに波長を増減することができる。
The wavelength can be increased or decreased to achieve φoptimum according to equation 22 above.

【0016】別法として、検査用波長λを変化させる代
りに、位相差顕微鏡技術で0次ビームに適用される位相
ずれθを調整することもできる。上式16を一般化し
て、0次ビームでλ/4の代りにθのずれが可能なよう
にすると、次式23が得られる。
Alternatively, instead of changing the inspection wavelength λ, the phase shift θ applied to the 0th order beam can be adjusted by phase contrast microscopy techniques. When the above equation 16 is generalized to allow the deviation of θ in place of λ / 4 in the 0th-order beam, the following equation 23 is obtained.

【数23】 [Equation 23]

【0017】そうすると、上式17は次式24のように
なる。
Then, the above equation 17 becomes the following equation 24.

【数24】 [Equation 24]

【0018】したがって、波長は変化しないままとな
る。0次検査ビームのずれをθoptimumに設定すること
によって、最大検出感度を得ることができる。
Therefore, the wavelength remains unchanged. The maximum detection sensitivity can be obtained by setting the deviation of the 0th-order inspection beam to θoptimum.

【0019】さらに、波長λを照明源、検出用光線及び
検出器に関して所望の波長に設定するとき、検出感度が
最大になるようにθを設定することができる。
Further, when the wavelength λ is set to a desired wavelength for the illumination source, the detection light beam and the detector, θ can be set so that the detection sensitivity is maximized.

【0020】最適動作点が望ましいが、本発明の趣旨
は、最適点から僅かに外れた動作点でも実施できる。
Although an optimum operating point is desirable, the spirit of the invention can be practiced at operating points slightly off the optimum point.

【0021】図1に、本発明の例示的実施例である位相
差顕微鏡8を示す。他の位相検出方式も同様に利用でき
る。図1には、移相マスク10と、ひとみ面20内に四
分の一波長板30を他の要素の間に含む顕微鏡8とが示
されている。波長板30の厚さはλθ/2πである。図
1には、複合レンズの要素40と46からなる典型的な
位相差対物レンズ42と、0次ビーム用の移相板30が
示されている。角θと波長λは本発明の趣旨に従って調
節可能である。
FIG. 1 shows a phase contrast microscope 8 which is an exemplary embodiment of the present invention. Other phase detection schemes can be used as well. FIG. 1 shows a phase shift mask 10 and a microscope 8 that includes a quarter wave plate 30 in a pupil plane 20 between other elements. The thickness of the wave plate 30 is λθ / 2π. FIG. 1 shows a typical phase-contrast objective lens 42 consisting of elements 40 and 46 of a compound lens and a phase shift plate 30 for the 0th order beam. The angle θ and the wavelength λ can be adjusted according to the spirit of the invention.

【0022】図2は、本発明の趣旨を干渉顕微鏡に適用
したものである。検査用ビーム160がビーム・スプリ
ッタ154でビーム161と171とに分離され、それ
ぞれ鏡152と170で反射されて、第2のビーム・ス
プリッタ150で再結合される。レンズ163と140
は、スプリット・ビーム162用の複合対物レンズを形
成し、レンズ146と140はもう一方のスプリット・
ビーム172用のもう1つの複合対物レンズを形成す
る。鏡152は、破線の鏡152'で示すように移動し
て、θをその最適値に変えることができる。波長λは、
光源の選択により、あるいはフィルタをその最適値に変
えることによって変化させることができる。
FIG. 2 is a diagram in which the gist of the present invention is applied to an interference microscope. Inspection beam 160 is split into beams 161 and 171 at beam splitter 154, reflected at mirrors 152 and 170, respectively, and recombined at second beam splitter 150. Lenses 163 and 140
Form a compound objective lens for split beam 162, lenses 146 and 140 being the other split
Form another compound objective for beam 172. The mirror 152 can be moved to change θ to its optimum value, as shown by the dashed mirror 152 '. The wavelength λ is
It can be varied by the choice of light source or by changing the filter to its optimum value.

【0023】図2の干渉計の場合、基準アームの位相ず
れはθ、移相マスク(PSM)の位相ずれはφである。
最適検査位相ずれθoptimumは、次式25のように計算
される。
In the case of the interferometer of FIG. 2, the phase shift of the reference arm is θ and the phase shift of the phase shift mask (PSM) is φ.
The optimum inspection phase shift θoptimum is calculated as in the following Expression 25.

【数25】 [Equation 25]

【0024】上式でφは移相マスクの位相ずれ角であ
り、通常は前と同様に撮像波長でπである必要がある。
In the above equation, φ is the phase shift angle of the phase shift mask, which normally needs to be π at the imaging wavelength as before.

【0025】この場合、次式26が成立する。In this case, the following equation 26 is established.

【数26】 θoptimum=φ+(2m−1)π/2 ただし、m=0,1,2,...[Equation 26] θoptimum = φ + (2m−1) π / 2 where m = 0, 1, 2 ,. . .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を例示する位相差顕微鏡
を示す図である。
FIG. 1 is a diagram showing a phase contrast microscope illustrating a first embodiment of the present invention.

【図2】本発明の第2の実施例を例示する干渉計を示す
図である。
FIG. 2 is a diagram showing an interferometer illustrating a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

8 位相差顕微鏡 10 移相マスク 20 ひとみ板 30 四分の一波長板 42 位相差対物レンズ 140 レンズ 146 レンズ 150 ビーム・スプリッタ 152 鏡 154 ビーム・スプリッタ 163 レンズ 170 鏡 8 phase contrast microscope 10 phase shift mask 20 pupil plate 30 quarter wavelength plate 42 phase difference objective lens 140 lens 146 lens 150 beam splitter 152 mirror 154 beam splitter 163 lens 170 mirror

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】0次光または基準光をθだけ移相させるこ
とのできる調節可能な移相器を使用することからなる位
相エラーの改善により、フォトリソグラフィ用移相マス
クを検査する方法。
1. A method for inspecting a phase shift mask for photolithography by improving a phase error, which comprises using an adjustable phase shifter capable of shifting a 0th order light or a reference light by θ.
【請求項2】ウェハ上の前記移相マスクを露光するのに
使用する波長と同じまたは異なる所望の波長を使用する
ことを特徴とする、請求項1に記載の方法。
2. A method according to claim 1, characterized in that a desired wavelength which is the same as or different from the wavelength used for exposing the phase shift mask on the wafer is used.
【請求項3】検査用波長が調節可能であることを特徴と
する、請求項1に記載の方法。
3. Method according to claim 1, characterized in that the inspection wavelength is adjustable.
【請求項4】θが固定されているが、最適化されている
ことを特徴とする、請求項1に記載の方法。
4. Method according to claim 1, characterized in that θ is fixed, but optimized.
【請求項5】波長またはθあるいはその両方は、下記の
方程式1及び2によって最適化され、 【数1】 【数2】θoptimum = 2φ−(1±2m)π 新しい波長λ'が下記の方程式3に従って選ばれること
を特徴とする、請求項1、2、3又は4に記載の方法。 【数3】
5. Wavelength and / or θ are optimized according to equations 1 and 2 below: The method according to claim 1, 2, 3 or 4, characterized in that θoptimum = 2φ- (1 ± 2m) π new wavelength λ'is chosen according to equation 3 below. [Equation 3]
【請求項6】波長またはθあるいはその両方が下記の方
程式4、5、6によって最適化されることを特徴とす
る、請求項1、2、3又は4に記載の方法。 【数4】 【数5】θoptimum = 2φ−(1±2m)π 【数6】θoptimum = φ+(2m−1)π/2
6. A method according to claim 1, 2, 3 or 4, characterized in that the wavelength and / or theta or both are optimized by the following equations 4, 5, 6 [Equation 4] [Equation 5] θoptimum = 2φ− (1 ± 2m) π [Equation 6] θoptimum = φ + (2m−1) π / 2
JP24666793A 1992-10-30 1993-10-01 Method for inspecting phase shift mask for photolithography Expired - Lifetime JP2685164B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/968,745 US5446540A (en) 1992-10-30 1992-10-30 Method of inspecting phase shift masks employing phase-error enhancing
US968745 1992-10-30

Publications (2)

Publication Number Publication Date
JPH06201602A true JPH06201602A (en) 1994-07-22
JP2685164B2 JP2685164B2 (en) 1997-12-03

Family

ID=25514710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24666793A Expired - Lifetime JP2685164B2 (en) 1992-10-30 1993-10-01 Method for inspecting phase shift mask for photolithography

Country Status (3)

Country Link
US (1) US5446540A (en)
EP (1) EP0599361A1 (en)
JP (1) JP2685164B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN201295A0 (en) * 1995-03-28 1995-04-27 Commonwealth Scientific And Industrial Research Organisation Simplified conditions and configurations for phase-contrast imaging with hard x-rays
US5807647A (en) * 1996-07-03 1998-09-15 Kabushiki Kaisha Toshiba Method for determining phase variance and shifter stability of phase shift masks
US6018392A (en) * 1998-10-23 2000-01-25 Taiwan Semiconductor Manufacturing Company Apparatus and method for inspecting phase shifting masks
US6396944B1 (en) * 1999-01-19 2002-05-28 Taiwan Semiconductor Manufacturing Company Inspection method for Levenson PSM mask
US6134014A (en) * 1999-02-08 2000-10-17 Taiwan Semiconductor Manufacturing Company Apparatus and method of inspecting phase shift masks using comparison of a mask die image to the mask image database
US6819435B2 (en) 2000-04-12 2004-11-16 Nano Or Technologies Inc. Spatial and spectral wavefront analysis and measurement
US7365858B2 (en) * 2001-12-18 2008-04-29 Massachusetts Institute Of Technology Systems and methods for phase measurements
US7557929B2 (en) 2001-12-18 2009-07-07 Massachusetts Institute Of Technology Systems and methods for phase measurements
EP1476715B1 (en) * 2002-01-24 2018-10-10 Icos Vision Systems N.V. Improved spatial wavefront analysis and 3d measurement
US8662962B2 (en) * 2008-06-30 2014-03-04 3M Innovative Properties Company Sandpaper with non-slip coating layer and method of using

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289015A (en) * 1988-09-26 1990-03-29 Shigeo Minami Method and device for image processing of microsample
JPH04177111A (en) * 1990-11-13 1992-06-24 Mitsubishi Electric Corp Apparatus for inspecting phase shift mask
JPH0521621A (en) * 1991-07-15 1993-01-29 Matsushita Electric Works Ltd Package substrate for semiconductor device
JPH05216211A (en) * 1992-02-04 1993-08-27 Fujitsu Ltd Method and device for inspecting mask

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB131900A (en) * 1917-04-28
US2685228A (en) * 1949-05-13 1954-08-03 American Optical Corp Phase contrast optical instrument
FR1016752A (en) * 1950-04-26 1952-11-21 Vente Des Instr De Geodesie He Variable and colored phase contrast optical device
AT335766B (en) * 1969-11-21 1977-03-25 Anvar ARRANGEMENT FOR OBSERVATION WITH VARIABLE ACHROMATIC PHASE CONTRAST
NL8103505A (en) * 1981-07-24 1983-02-16 Philips Nv DEVICE FOR POINT SCANNING OF AN OBJECT.
US5124927A (en) * 1990-03-02 1992-06-23 International Business Machines Corp. Latent-image control of lithography tools
JPH0527410A (en) * 1991-07-18 1993-02-05 Nikon Corp Device for inspecting photomask
US5246801A (en) * 1991-09-20 1993-09-21 At&T Bell Laboratories Method of repairing indentations in phase-shifting lithographic masks
JPH05119468A (en) * 1991-10-29 1993-05-18 Nikon Corp Mask inspecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289015A (en) * 1988-09-26 1990-03-29 Shigeo Minami Method and device for image processing of microsample
JPH04177111A (en) * 1990-11-13 1992-06-24 Mitsubishi Electric Corp Apparatus for inspecting phase shift mask
JPH0521621A (en) * 1991-07-15 1993-01-29 Matsushita Electric Works Ltd Package substrate for semiconductor device
JPH05216211A (en) * 1992-02-04 1993-08-27 Fujitsu Ltd Method and device for inspecting mask

Also Published As

Publication number Publication date
JP2685164B2 (en) 1997-12-03
EP0599361A1 (en) 1994-06-01
US5446540A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
KR102523532B1 (en) Methods and instrumentation for determining the properties of structures
US5715089A (en) Exposure method and apparatus therefor
JP4832477B2 (en) Lithographic projection apparatus and polarizer device
US6266147B1 (en) Phase-shifting point diffraction interferometer phase grating designs
US20040227923A1 (en) Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
JP2018515782A (en) Topographic phase control for overlay measurement
US20050237527A1 (en) Illumination optical system, exposure apparatus and device fabrication method
JP2006023307A (en) Microscope focusing system, and method especially for inspecting mask for emulating high-aperture focusing system
US6563573B1 (en) Method of evaluating imaging performance
JP2003059821A (en) Optical imaging system having polarizer and quartz plate used therefor
JP2003077827A (en) Microlithographic illumination method and projection lens for carrying out the same
JPH02166719A (en) Projecting aligner
US20190128823A1 (en) Optical system and method for measurements of samples
JPH06201602A (en) Inspection of phase shift mask
US5717218A (en) Focal plane phase-shifting lithography
KR100597039B1 (en) Stationary and dynamic radial transverse electric polarizer device for high numerical aperture systems, lithographic projection apparatus and manufacturing method of the same
US7440104B2 (en) Exposure system, test mask for monitoring polarization, and method for monitoring polarization
JPH09244210A (en) Mask for exposure and its production
JPH06244082A (en) Projection exposure device
JP6917477B2 (en) Lithography equipment and lithography method
JP2006250858A (en) Surface accuracy measuring method, interferometer, surface accuracy measuring instrument, and projection optical system manufacturing method
JPH07147223A (en) Pattern forming method
JP2008541130A (en) Apparatus and method for measuring optical system flare in-situ and other than in-situ
US6195169B1 (en) Phase-shifting point diffraction interferometer grating designs
JP4936499B2 (en) Exposure apparatus and exposure method