JPH06201551A - Method for measuring fracture toughness value of brittle material - Google Patents

Method for measuring fracture toughness value of brittle material

Info

Publication number
JPH06201551A
JPH06201551A JP1594493A JP1594493A JPH06201551A JP H06201551 A JPH06201551 A JP H06201551A JP 1594493 A JP1594493 A JP 1594493A JP 1594493 A JP1594493 A JP 1594493A JP H06201551 A JPH06201551 A JP H06201551A
Authority
JP
Japan
Prior art keywords
crack
heating
test piece
fracture toughness
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1594493A
Other languages
Japanese (ja)
Other versions
JP2521626B2 (en
Inventor
Hideki Morita
英毅 森田
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP5015944A priority Critical patent/JP2521626B2/en
Publication of JPH06201551A publication Critical patent/JPH06201551A/en
Application granted granted Critical
Publication of JP2521626B2 publication Critical patent/JP2521626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To measure the fracture toughness value of brittle material by using a relatively small test piece of indefinite form. CONSTITUTION:This method is comprising the following steps. A part from a cut part located at the outer periphery of a test piece to the vicinity of the tip of the cut part is locally heated, and a crack is generated and grown in the first step. The vicinity of the tip of the crack is locally heated again by using laser and the like when the temperature distribution of the test piece becomes uniform, and the time from the start of the heating to the start of the crack growing is measured in the second step. The thermal physical property of the material, the heating area, the heating amount and the size of the test piece are substituted into a conversion expression in the third step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス等構造用
脆性材料の破壊靭性値の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the fracture toughness value of brittle materials for structures such as ceramics.

【0002】[0002]

【従来の技術】従来は、主として、日本工業規格「ファ
インセラミックスの破壊靭性試験方法」JIS−R16
07−1990に規定されている方法等で破壊靭性値K
1Cを求めている。
2. Description of the Related Art Conventionally, the Japanese Industrial Standard "Fracture toughness test method for fine ceramics" is mainly JIS-R16.
Fracture toughness value K according to the method specified in 07-1990
Seeking 1C .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法で破壊靭性値を求める場合、次のような問題があっ
た。予亀裂の発生起点にビッカース圧こん、(又はヌー
プ圧こん)又は切り欠きを導入し、特別の予亀裂導入ジ
グを用いて予亀裂を発生させる必要があった。又、精密
に加工した特別の試験片が必要であった。又、フィルム
状の材料あるいは、各種機械のセラミック部材、例えば
小型のターボファン、及びその軸受けなどの供試体か
ら、JIS−R1607−1990に規定されている試
験片を採取することは実際上不可能であった。そのため
に、破壊靭性値の測定が出来ない不具合があった。本発
明は、上記の不具合に鑑みてなされたもので、比較的小
さな不定形な試験片の採取により、破壊靭性値を測定で
きる測定法を提供することを目的とする。
However, when the fracture toughness value is obtained by the conventional method, there are the following problems. It was necessary to introduce a Vickers indentation (or Knoop indentation) or a notch at the starting point of the pre-crack and to generate the pre-crack by using a special pre-crack introducing jig. Also, a specially processed special test piece was required. In addition, it is practically impossible to collect a test piece specified in JIS-R1607-1990 from a film-shaped material or a ceramic member of various machines, for example, a small turbofan and a test piece such as a bearing thereof. Met. Therefore, there was a problem that the fracture toughness value could not be measured. The present invention has been made in view of the above problems, and an object of the present invention is to provide a measuring method capable of measuring a fracture toughness value by collecting a relatively small amorphous test piece.

【0004】[0004]

【課題を解決するための手段】本発明は、セラミックス
部材の破壊靭性値を測定するため、被供試体から、例え
ば板厚約3mmの10mm×10mm程度の不定形の試験片を
通常1〜2個採取し、外周縁に簡単な切り欠きを施し、
切り欠き先端近傍を局部的に加熱して予亀裂を発生進展
させる第1工程と、試験片の温度分布が均一になった後
で、再び予亀裂先端近傍を出力及び照射面積が既知のレ
ーザー等により局部的に加熱し、加熱開始から亀裂進展
開始までの時間をたとえばレーザー照射開始時刻と試験
片に取り付けたアコースティックエミッションセンサー
等からの亀裂進展開始信号を受信した時刻とから計測す
る第2工程と、供試体から試験片を採取し比熱、熱伝導
率、ヤング率、密度、レーザー吸収率を公知の方法で測
定した測定値と第2工程より求めた亀裂進展開始までに
必要とした加熱熱量及び加熱時間を換算式に代入する第
3工程とからなることを特徴とする破壊靭性値測定方法
である。
According to the present invention, in order to measure the fracture toughness value of a ceramic member, for example, an unfixed test piece of about 10 mm × 10 mm having a plate thickness of about 3 mm is usually used for 1 to 2 pieces. Collect individual pieces, make a simple notch on the outer periphery,
The first step of locally heating the vicinity of the notch tip to generate and develop a pre-crack, and after the temperature distribution of the test piece becomes uniform, output the vicinity of the pre-crack tip again and laser with known irradiation area, etc. A second step of locally heating by means of, for example, the time from the start of heating to the start of crack growth from the laser irradiation start time and the time when a crack growth start signal from an acoustic emission sensor or the like attached to the test piece is received. The measurement values of specific heat, thermal conductivity, Young's modulus, density, and laser absorptivity obtained by collecting a test piece from the specimen by a known method, and the heating calorie required until the crack growth start obtained from the second step and And a third step of substituting the heating time into the conversion formula, which is a fracture toughness value measuring method.

【0005】[0005]

【作用】本発明は、前述の構成により、次のように作用
する。予め、既知の方法で試験片の板厚、外形寸法等の
形状及び比熱、熱伝導率、密度、ヤング率、レーザー吸
収率等の材料物性値を求める。又、予め亀裂の先端付近
を局部的に加熱した時の熱応力拡大係数と加熱熱量の相
関曲線を求める。次に、試験片に切り欠きを導入しその
先端付近を例えばレーザー等により局部的に加熱し適当
な長さに亀裂を進展させ予亀裂とする。次に、予亀裂先
端近傍にレーザーを照射し、加熱を開始し、亀裂が進展
を開始するまでの時間を実験により計測し、その時のレ
ーザーの出力とレーザー照射面積、及びレーザー照射時
間等から試験片の加熱熱量を求める。この加熱熱量をも
とに先の相関曲線から熱応力拡大係数を求め、この値を
材料の破壊靭性値とみなすことにより破壊靭性値を求め
る。
The present invention has the above-described construction and operates as follows. In advance, the physical properties of the test piece such as the plate thickness, the shape such as the outer dimension, the specific heat, the thermal conductivity, the density, the Young's modulus, and the laser absorptivity are obtained by known methods. Further, a correlation curve between the thermal stress intensity factor and the heating calorific value when the vicinity of the tip of the crack is locally heated is obtained in advance. Next, a notch is introduced into the test piece, and the vicinity of the tip thereof is locally heated by, for example, a laser or the like to propagate the crack to an appropriate length to form a precrack. Next, irradiate a laser near the tip of the pre-crack, start heating, and measure the time until the crack starts to propagate by experiment, and test from the laser output and laser irradiation area at that time, laser irradiation time, etc. Calculate the heating value of the piece. The thermal stress intensity factor is obtained from the above correlation curve based on this heating heat quantity, and the fracture toughness value is obtained by regarding this value as the fracture toughness value of the material.

【0006】[0006]

【実施例】亀裂進展開始時間の測定には、公称板厚2,
4,8mmの板ガラスを50mm×100mmに切断したもの
を試験片として用いた。この試験片には長手方向の中央
の切り欠きから辺に直角にレーザーにより亀裂を10mm
進展させておいた。又、試験材のガラスの熱拡散率、比
熱、密度、線膨張係数、縦弾性係数をそれぞれ0.68
×10-6m2/s、1.06×103J/kgK、2.49
×103kg/m3、7.71×10-61/k、34.6G
Paと求めておいた。又、破壊靭性値は比較のために三
点曲げ試験により、0.25〜0.28MPam1/2
求めておいた。従って、K1C/Eの値は、0.7〜0.
8×10-51/2である。実験では、レーザービーム半
径Rと、亀裂先端と照射中心との距離Dの比であるR/
Dを0.5と一定に保ち、Dを4〜15mm、レーザー出
力を3〜10wに変化させて加熱し、き裂が進展を開始
するまでの時間を計測した。レーザーの出力モードは、
通常のTEM00モードではガウス型分布に近くなるの
で、加熱エネルギーが面内で一様分布しているという熱
伝導解析の仮定に近づけるため、共振器のミラーを変更
してTEM01モードを用いた。炭酸ガスレーザーのガ
ラス表面からの反射熱量をレーザーパワーメータを用い
て測定したところ、照射レーザー出力の8.5%であっ
たので、残りの91.5%がガラスに吸収されたと考
え、これを加熱量とした。ここで、レーザー等の局部加
熱により亀裂先端付近を加熱した場合の熱応力拡大係数
の換算式を例えば(1)式のように求めておく。
Example: Nominal plate thickness of 2,
A test piece was obtained by cutting a plate glass of 4,8 mm into 50 mm × 100 mm. The test piece was cracked 10 mm from the center notch in the longitudinal direction by a laser at a right angle to the side.
I made progress. The thermal diffusivity, specific heat, density, linear expansion coefficient, and longitudinal elastic coefficient of the test material glass were each 0.68.
× 10 -6 m 2 / s, 1.06 × 10 3 J / kgK, 2.49
× 10 3 kg / m 3 , 7.71 × 10 -6 1 / k, 34.6G
I asked for Pa. The fracture toughness value was determined to be 0.25 to 0.28 MPam 1/2 by a three-point bending test for comparison. Therefore, the value of K 1C / E is 0.7 to 0.
It is 8 × 10 −5 m 1/2 . In the experiment, the ratio of the laser beam radius R and the distance D between the crack tip and the irradiation center is R /
D was kept constant at 0.5, D was changed to 4 to 15 mm, laser output was changed to 3 to 10 w, and heating was performed, and the time until the crack started to grow was measured. The output mode of the laser is
Since the normal TEM00 mode is close to the Gaussian distribution, the mirror of the resonator is changed to use the TEM01 mode in order to approach the assumption of the heat conduction analysis that the heating energy is uniformly distributed in the plane. When the amount of reflected heat from the glass surface of the carbon dioxide laser was measured using a laser power meter, it was 8.5% of the irradiation laser output, so it was considered that the remaining 91.5% was absorbed by the glass. The heating amount was used. Here, the conversion formula of the thermal stress intensity factor when the vicinity of the crack tip is heated by local heating such as a laser is obtained, for example, as in formula (1).

【数1】 ここで、α、E、a、c、ρはそれぞれ材料の線膨張
率、縦弾性係数、熱拡散率、比熱、密度であり、熱源は
半径Rにエネルギー密度90で均等に分布していると仮
定している。Dは亀裂先端から熱源中心までの距離、S
は亀裂先端からの亀裂上の任意の点までの距離を表す変
数、ξはS/D、Lは(S+D)、rは亀裂上の任意の
点から熱源半径内の任意の点までの距離を表す変数、r
1はLcosθ−(R2−L2sinθ)1/2、r2はLc
osθ+(R2−L2sinθ)1/2、θ1はsin-1(R
/L)、θ2はsin-1(−R/L)、tは加熱時間、
zはr2/4at、E1(z)はつぎの積分指数関数であ
る。
[Equation 1] Here, α, E, a, c, and ρ are the linear expansion coefficient, longitudinal elastic modulus, thermal diffusivity, specific heat, and density of the material, respectively, and the heat sources are evenly distributed at radius R with energy density 90. I'm assuming. D is the distance from the crack tip to the center of the heat source, S
Is a variable that represents the distance from the crack tip to any point on the crack, ξ is S / D, L is (S + D), r is the distance from any point on the crack to any point within the heat source radius. Variable to represent, r
1 is Lcos θ− (R 2 −L 2 sin θ) 1/2 , r 2 is Lc
os θ + (R 2 −L 2 sin θ) 1/2 , θ 1 is sin −1 (R
/ L), θ 2 is sin −1 (−R / L), t is heating time,
z is the integral exponential function of r 2 / 4at, E 1 ( z) Hatsugi.

【数2】 ここで、[]につけたr=r1,r=r2は、[]内の値
の、r=r1からr=r2の増分を表す。この換算式の、
加熱熱量q0と亀裂進展開始までの時間tが先の実験に
より与えられるので、亀裂進展開始時の熱応力拡大係数
が得られる。この応力拡大係数を材料の破壊靭性値K1C
と見なすことによって破壊靭性値が得られる。加熱量に
レーザー加熱熱量を板厚bで除した値を用いて、板厚平
均レーザー加熱熱量と応力拡大係数を縦弾性係数Eで除
した値K1C/Eで整理すると、図2.3.4のようにな
る。板厚1.75mm場合は三点曲げ試験で求めたK1C
E値に近いことが分かる。ところで、この実験では炭酸
ガスレーザーのエネルギーは、ガラス表面近くでほとん
ど吸収されるので、板厚が厚くなるに従い、(1)式を
導出するときに用いた板厚方向の温度変化がないと言う
仮定が成立しなくなって、K1C/E値が小さめに測定さ
れる。従って、(1)式の換算式を用いて破壊靭性値を
測定する場合は板厚が比較的薄い場合に適している。ま
た、き裂先端から加熱中心までの距離DによるK1C/E
値の違いはあまり現れておらず、破壊靭性値を測定する
場合に、加熱位置を精密にコントロールする必要がない
ので、計測に便利である。
[Equation 2] Here, r = r 1 and r = r 2 attached to [] represent increments of values in [] from r = r 1 to r = r 2 . In this conversion formula,
Since the heating heat quantity q 0 and the time t until the crack growth start are given by the previous experiment, the thermal stress intensity factor at the crack growth start can be obtained. This stress intensity factor is the fracture toughness value K 1C of the material.
The fracture toughness value can be obtained by assuming that Using the value obtained by dividing the laser heating heat quantity by the plate thickness b as the heating amount, and arranging by the value K 1C / E obtained by dividing the plate thickness average laser heating heat quantity and the stress intensity coefficient by the longitudinal elastic modulus E, FIG. 2.3. It becomes like 4. When the plate thickness is 1.75 mm, K 1C / determined by three-point bending test
It can be seen that it is close to the E value. By the way, in this experiment, since the energy of the carbon dioxide laser is almost absorbed near the glass surface, it is said that there is no temperature change in the plate thickness direction used when deriving equation (1) as the plate thickness increases. The assumption no longer holds, and the K 1C / E value is measured undersized. Therefore, when the fracture toughness value is measured using the conversion formula (1), it is suitable when the plate thickness is relatively thin. Also, K 1C / E depending on the distance D from the crack tip to the heating center
The difference in the values does not appear so much and it is convenient for the measurement because it is not necessary to precisely control the heating position when measuring the fracture toughness value.

【0007】[0007]

【発明の効果】本発明は、規格に定められた試験片が切
り出せないような比較的少量の試験片により、セラミッ
クス等の硬脆材料の破壊靭性値を測定でき産業の発展に
寄与する。
INDUSTRIAL APPLICABILITY The present invention can measure the fracture toughness value of hard and brittle materials such as ceramics with a comparatively small amount of test pieces that cannot be cut out according to the standard and contribute to the development of industry.

【図面の簡単な説明】[Brief description of drawings]

【第1図】この発明の実施例を示し、試験片、切り欠
き、予亀裂、レーザー装置、アコースティックエミッシ
ョンセンサー、亀裂進展開始時間計測装置の構成を示
す。
FIG. 1 shows an embodiment of the present invention and shows the configurations of a test piece, a notch, a pre-crack, a laser device, an acoustic emission sensor, and a crack growth start time measuring device.

【第2図】板厚1.75mmのガラスの破壊靭性値測定例[Fig.2] Example of fracture toughness measurement of 1.75 mm thick glass

【第3図】板厚3.90mmのガラスの破壊靭性値測定例[Fig. 3] Example of measuring fracture toughness of glass with a plate thickness of 3.90 mm

【第4図】板厚7.65mmのガラスの破壊靭性値測定例[Fig. 4] Example of measuring fracture toughness of glass with a thickness of 7.65 mm

【符号の説明】[Explanation of symbols]

1.破壊靭性値測定装置 2.移動台 2a.移動台制御回路 3.加熱装置 3a.レーザー発信器 3b.電源回路 3c.出力コントローラ装置 3d.ミラー 3e.レンズ 3f.ミラー駆動モータ 4.AEセンサー 4a.アンプ 4b.ディスクリミネータ 4c.発信頻度係数装置 4d.振幅分布計測装置 4e.相対エネルギー計測装置 4f.ブザー 5.き裂進展開始時間測定装置 5a.脆性材料 1. Fracture toughness value measuring device 2. Mobile platform 2a. Mobile platform control circuit 3. Heating device 3a. Laser oscillator 3b. Power supply circuit 3c. Output controller device 3d. Mirror 3e. Lens 3f. Mirror drive motor 4. AE sensor 4a. Amplifier 4b. Discriminator 4c. Transmission frequency coefficient device 4d. Amplitude distribution measuring device 4e. Relative energy measuring device 4f. Buzzer 5. Crack propagation start time measuring device 5a. Brittle material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板状の外周縁にある切欠きから切欠き先
端近傍を局部的に加熱して亀裂を発生進展させる第1工
程と試験片の温度分布が均一になった後で、亀裂の先端
近傍をレーザー等を用いて局部的に再度加熱し、加熱開
始から亀裂進展開始までの時間を測定する第2工程と、
材料の熱物性と加熱面積と加熱量、試験片寸法を換算式
に代入する第3工程とからなる破壊靭性値の測定方法
1. The first step of locally heating the vicinity of the notch to the vicinity of the tip of the notch on the outer peripheral edge of the plate to develop a crack and after the temperature distribution of the test piece becomes uniform, A second step in which the vicinity of the tip is locally reheated using a laser or the like, and the time from the start of heating to the start of crack growth is measured,
Method of measuring fracture toughness value comprising thermophysical properties of material, heating area and heating amount, and third step of substituting test piece dimensions into conversion formula
JP5015944A 1993-01-06 1993-01-06 Method for measuring fracture toughness of brittle materials Expired - Lifetime JP2521626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015944A JP2521626B2 (en) 1993-01-06 1993-01-06 Method for measuring fracture toughness of brittle materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015944A JP2521626B2 (en) 1993-01-06 1993-01-06 Method for measuring fracture toughness of brittle materials

Publications (2)

Publication Number Publication Date
JPH06201551A true JPH06201551A (en) 1994-07-19
JP2521626B2 JP2521626B2 (en) 1996-08-07

Family

ID=11902879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015944A Expired - Lifetime JP2521626B2 (en) 1993-01-06 1993-01-06 Method for measuring fracture toughness of brittle materials

Country Status (1)

Country Link
JP (1) JP2521626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132929A (en) * 1997-10-31 1999-05-21 Central Glass Co Ltd Measuring method/device for stress enlargement coefficient for flat glass
CN103743628A (en) * 2014-01-21 2014-04-23 天津工业大学 Thermal analysis method for testing low-temperature toughness of plastics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110686A (en) * 1976-03-15 1977-09-16 Showa Denko Kk Method of determining breaking toughness for thermal shock

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110686A (en) * 1976-03-15 1977-09-16 Showa Denko Kk Method of determining breaking toughness for thermal shock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132929A (en) * 1997-10-31 1999-05-21 Central Glass Co Ltd Measuring method/device for stress enlargement coefficient for flat glass
CN103743628A (en) * 2014-01-21 2014-04-23 天津工业大学 Thermal analysis method for testing low-temperature toughness of plastics

Also Published As

Publication number Publication date
JP2521626B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
Kushibiki et al. Development of the line-focus-beam ultrasonic material characterization system
Tsai et al. Fracture mechanism of laser cutting with controlled fracture
Carstensen et al. Finite amplitude effects on the thresholds for lesion production in tissues by unfocused ultrasound
Fukuoka et al. Acoustoelastic stress analysis of residual stress in a patch-welded disk: Sing-around measurements of transit time of ultrasonic shear waves are used to measure residual-stress distributions in a patch-welded circular plate made of mild steel
US20010028460A1 (en) Optical stress generator and detector
Wadley et al. Ultrasonic measurement of internal temperature distribution
WO1997027466A1 (en) Improved optical stress generator and detector
JPH10128567A (en) Laser beam splitting method
JPH06201551A (en) Method for measuring fracture toughness value of brittle material
Burgholzer et al. Non-contact determination of elastic moduli of continuous fiber reinforced metals
JPH0518833A (en) Residual stress measuring method and lens used for the same
Marchand et al. Determination of the elastic constants of materials, in the form of plates, by a free vibration method
JP3396287B2 (en) Method and apparatus for measuring residual stress
Lematre et al. Acoustic microscopy measurement of elastic constants by using an optimization method on measured and calculated SAW velocities: effect of initial cij values on the calculation convergence and influence of the LFI transducer parameters on the determination of the SAW velocity
Bertolotti et al. Thermal wave resonator: in situ investigation by photothermal deflection technique
Rosinger et al. A systematic study of the room temperature elastic moduli of silicon carbide
JPH02192888A (en) Incision depth monitoring device and incising device
Alder et al. Communication. Temperature compensation of a surface acoustic wave sensor using an integral temperature sensor
JP2005300356A (en) Method and apparatus for measuring diameter distribution of crystal grain
Maddalena Determination of Young's modulus of thin films
JP5082168B2 (en) Measuring method and apparatus for heat receiving effect of fireproof building by ultrasonic wave
Spicer et al. Laser ultrasonic monitoring of aluminium alloy microstructural evolution
Jagannadham Determination of Modulus of Metal Films Using Thermoreflectance
Arnold et al. Crack depth estimation by photoacoustic microscopy
Khuri-Yakub et al. Measurement of surface machining damage in ceramics

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960213