JPH0518833A - Residual stress measuring method and lens used for the same - Google Patents

Residual stress measuring method and lens used for the same

Info

Publication number
JPH0518833A
JPH0518833A JP3228091A JP22809191A JPH0518833A JP H0518833 A JPH0518833 A JP H0518833A JP 3228091 A JP3228091 A JP 3228091A JP 22809191 A JP22809191 A JP 22809191A JP H0518833 A JPH0518833 A JP H0518833A
Authority
JP
Japan
Prior art keywords
wave
residual stress
measured
stress
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3228091A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3228091A priority Critical patent/JPH0518833A/en
Publication of JPH0518833A publication Critical patent/JPH0518833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable distribution of a residual stress on a surface of a material to be evaluated quantitatively by obtaining an amount of change in a speed of a surface acoustic wave under presence of a stress for the speed of the surface acoustic wave while a surface of an object to be measured is not subjected to stress. CONSTITUTION:An ultrasonic wave is emitted while an acoustic lens 112 is scanned in depth direction of a measurement material 111 in stress state, an interference wave which is generated due to a mirror-surface reflection wave and an excitation surface acoustic wave at an irradiation region and an internal excitation wave are transmitted to a computer 211 through a circulator 113 and an interface 114. and then a periodical change in interference wave intensity from an amplified irradiation excitation wave is displayed 212 as a V(Z) curve. Then, this curve is subjected to a high-speed Fourier transformation by a conversion portion 213, thus obtaining a surface acoustic wave speed VSAW. A difference in reference to the speed VSAW when no stress is being applied to namely an amount of change, is obtained for each scanning position, thus obtaining a distribution in axial direction of a junction body and that in interface direction. Therefore, a residual stress distribution can be measured highly accurately since a distribution of the speed VSAW can be obtained accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、残留応力測定方法とそ
れに用いるレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual stress measuring method and a lens used therefor.

【0002】[0002]

【従来の技術】セラミックスは、軽量で高硬度であると
いう特徴を有し、この硬さによる高強度、耐摩耗性が積
極的に利用されている。さらに、セラミックスの優れた
点は、1000℃以上の高温領域で発揮される。例えば、窒
化ケイ素では1200℃、炭化ケイ素では1500℃近くまでの
耐熱性を有し、金属では耐えられない温度領域での使用
により、熱効率の大幅な向上が期待できる。
2. Description of the Related Art Ceramics are characterized by being lightweight and having high hardness, and high strength and wear resistance due to this hardness are positively utilized. Furthermore, the advantages of ceramics are exhibited in the high temperature range of 1000 ° C or higher. For example, silicon nitride has a heat resistance up to 1200 ° C, and silicon carbide has a heat resistance up to around 1500 ° C, and it can be expected to greatly improve the thermal efficiency when used in a temperature range where a metal cannot withstand.

【0003】しかし、セラミックスは本来脆性材料であ
るため、単体では使用し難く、特性が必要な部位にのみ
セラミックスを用いる等、他の材料と組合せて用いる方
法が合理的である。このようなセラミックスの接合技術
としては、機械的結合や有機接着剤を用いた手法、ある
いは界面における構成元素の拡散、固溶、反応生成物の
形成等、何等かの反応を伴う化学的接合法等が試みられ
ている。
However, since ceramics are inherently brittle materials, it is difficult to use them alone, and it is rational to use them in combination with other materials, such as using the ceramics only in the parts where the characteristics are required. As such a joining technique of ceramics, a method using mechanical bonding or an organic adhesive, or a chemical joining method involving some reaction such as diffusion of constituent elements at the interface, solid solution, formation of reaction product, etc. Etc. have been tried.

【0004】セラミックスの化学的接合法としては、構
造用セラミックスの場合、介在物なしに直接的に接合す
る固相接合法や、セラミックスと反応しやすいインサ―
ト材を用いる活性金属法等が主流であり、また半導体基
板等にはメタライズ法が用いられている。そして、この
ような接合構造体の残留応力分布を調べるために、通
常、微小束X線法、インデンテーションフラクチャー
法、歪ゲージ法等の方法が用いられている。
As the chemical bonding method of ceramics, in the case of structural ceramics, a solid phase bonding method of directly bonding without inclusions, or an inserter that easily reacts with the ceramics.
The active metal method using a metal material is the mainstream, and the metallizing method is used for semiconductor substrates. Then, in order to investigate the residual stress distribution of such a bonded structure, methods such as a micro-bundle X-ray method, an indentation fracture method, and a strain gauge method are usually used.

【0005】[0005]

【発明が解決しようとする課題】ところで、セラミック
スは金属に比較して熱膨張率が小さく、なかでも構造用
セラミックスとして有用な、耐熱性に優れた窒化ケイ
素、炭化ケイ素等は非常に熱膨張率が小さい。このた
め、セラミックスと金属材料との接合に際して、接合後
の冷却過程で熱膨張差に起因する残留応力が発生し、様
々な問題を引起こす原因となっている。
By the way, the coefficient of thermal expansion of ceramics is smaller than that of metals, and among them, particularly useful as structural ceramics, silicon nitride, silicon carbide and the like having excellent heat resistance have a very high coefficient of thermal expansion. Is small. Therefore, when the ceramic and the metal material are joined, residual stress is generated due to the difference in thermal expansion during the cooling process after joining, which causes various problems.

【0006】すなわち、接合部近傍、特に接合界面にお
ける特異点近傍に大きな残留応力が生じ、外部応力との
相乗によって接合強度が大幅に低下したり、接合後の冷
却過程、あるいは熱サイクルによって主応力の最大点か
らクラックが発生し、セラミックスの破壊を引き起こす
等の問題があった。
That is, a large residual stress is generated in the vicinity of the joint, particularly in the vicinity of a singular point at the joint interface, and the joint strength is significantly reduced due to the synergistic effect with the external stress, or the main stress is caused by the cooling process after the joint or the thermal cycle. There was a problem that cracks were generated from the maximum point and the ceramics was destroyed.

【0007】このような現状において、セラミックス表
面の残留応力をより微視的な観点から定量的に評価する
方法が望まれている。
Under these circumstances, a method for quantitatively evaluating the residual stress on the ceramic surface from a microscopic viewpoint is desired.

【0008】本発明は、このような課題を解決するため
になされたもので、材料表面における残留応力の分布を
定量的に評価することのできる残留応力測定方法と、こ
れに用いるレンズを提供することを目的とする。
The present invention has been made in order to solve such a problem, and provides a residual stress measuring method capable of quantitatively evaluating the distribution of residual stress on the material surface, and a lens used therefor. The purpose is to

【0009】[0009]

【課題を解決するための手段】本発明の残留応力測定方
法は、被測定物の平滑表面に、この表面と該表面におけ
る照射域に異方性のある超音波を発する音響レンズとの
距離を変化させて超音波を照射し、この超音波の深さ方
向の照射距離に対する、その照射域における前記超音波
の鏡面反射波と励起される表面弾性波と内部の励起波と
の干渉波の強さの関係を表すV(Z)曲線を求め、この
V(Z)曲線における曲線周期から応力状態にある被測
定物表面の照射励起域における表面弾性波速度を求め、
前記被測定物表面の無応力状態における表面弾性波速度
を基準速度とし、応力存在下での表面弾性波速度と前記
基準速度との変化量を求め、この変化量の分布をもと
に、較正曲線を用いて前記超音波照射域の長辺方向にお
ける残留応力値に変換して特定方向の分布を求めること
を特徴としている。
According to the residual stress measuring method of the present invention, a smooth surface of an object to be measured is provided with a distance between the surface and an acoustic lens that emits ultrasonic waves having anisotropy in an irradiation area on the surface. The ultrasonic wave is radiated while being changed, and the intensity of the interference wave between the specular reflection wave of the ultrasonic wave, the surface acoustic wave excited, and the internal excitation wave in the irradiation area with respect to the irradiation distance in the depth direction of the ultrasonic wave. V (Z) curve representing the relationship between the heights is calculated, and the surface acoustic wave velocity in the irradiation excitation region of the surface of the measured object in the stress state is calculated from the curve period of the V (Z) curve.
Using the surface acoustic wave velocity in the stress-free state of the measured object surface as a reference velocity, the amount of change between the surface acoustic wave velocity in the presence of stress and the reference velocity is obtained, and based on the distribution of this amount of change, calibration is performed. It is characterized in that a curve is used to convert into a residual stress value in the long side direction of the ultrasonic wave irradiation region to obtain a distribution in a specific direction.

【0010】また、本発明のレンズは、超音波顕微鏡に
よる測定に用いられ、被測定物の表面焦点時における超
音波の縦横比が 1.5以上となる異方性の超音波を与え、
長方形または楕円形状であることを特徴としている。
Further, the lens of the present invention is used for measurement by an ultrasonic microscope, and gives anisotropic ultrasonic waves having an aspect ratio of 1.5 or more at the time of focusing on the surface of an object to be measured,
It is characterized by a rectangular or elliptical shape.

【0011】本発明において、測定試料は例えば図4の
ようにセットされる。ステージ1上に載置された試料2
の表面を水等のカップラー3でカップリングし、超音波
Sをカップラー3を通して試料に伝達する。もし、この
ようなカップラーなしで超音波を直接空気中に通した場
合、超音波の速度が減衰して測定値にばらつきを生じさ
せるため、良好な測定結果が得られない。試料から反射
された鏡面反射波Rは、このとき試料表面に励起される
表面弾性波および干渉波と共に、音響レンズ4を通って
トランスデューサ5で信号に変換される。
In the present invention, the measurement sample is set as shown in FIG. 4, for example. Sample 2 placed on stage 1
The surface of is coupled with a coupler 3 such as water, and ultrasonic waves S are transmitted to the sample through the coupler 3. If ultrasonic waves are directly passed through the air without such a coupler, the speed of the ultrasonic waves is attenuated and the measured values vary, so that good measurement results cannot be obtained. The specular reflection wave R reflected from the sample passes through the acoustic lens 4 and is converted into a signal by the transducer 5 together with the surface acoustic wave and the interference wave excited on the sample surface at this time.

【0012】またこの際、図5に示すように、測定試料
2を恒温装置内に配置した状態で、超音波Sを照射する
ことが好ましい。図5に示す恒温装置は、ヒータ内臓の
ステージ11、保温マントル12および測温熱電対13
から主として構成されている。ヒータ内臓のステージ1
1上に載置された保温マントル12内には、熱伝達媒体
14として例えば水が収容されており、この水14の中
に測定試料2が配置されている。この水14は、カップ
ラー(3)としても機能するものである。また、保温マ
ントル12の上方は、音響レンズ4および測温熱電対1
3の挿入口15a、15bを有する保温蓋15によって
覆われている。そして、熱伝達媒体14の温度を随時測
温熱電対13によって測定し、この測定温度に基づいて
ヒータ内臓のステージ11をPID制御することによ
り、熱伝達媒体14中に配置された測定試料2表面の温
度分布は、ほぼ一定に制御される。この際の測定試料2
表面の温度は、±0.05℃以内に制御することが好まし
い。
Further, at this time, as shown in FIG. 5, it is preferable to irradiate the ultrasonic wave S with the measurement sample 2 placed in a thermostat. The thermostatic device shown in FIG. 5 includes a stage 11 with a built-in heater, a heat insulating mantle 12, and a temperature measuring thermocouple 13.
It is mainly composed of Stage 1 with built-in heater
For example, water is contained as a heat transfer medium 14 in the heat insulation mantle 12 placed on the measurement sample 2, and the measurement sample 2 is arranged in the water 14. This water 14 also functions as a coupler (3). The acoustic lens 4 and the temperature measuring thermocouple 1 are located above the heat insulating mantle 12.
It is covered with a heat retaining lid 15 having three insertion openings 15a and 15b. Then, the temperature of the heat transfer medium 14 is measured at any time by the temperature measuring thermocouple 13, and the stage 11 having the heater therein is PID-controlled on the basis of the measured temperature, whereby the surface of the measurement sample 2 arranged in the heat transfer medium 14 is measured. The temperature distribution of is controlled to be substantially constant. Measurement sample 2 at this time
The surface temperature is preferably controlled within ± 0.05 ° C.

【0013】本発明において、被測定物に照射する超音
波は、異方性の超音波であり、被測定物の表面焦点時に
おける縦横比が 1.5以上、より好ましくは 5以上となる
よう調整する。また、本発明において測定試料の表面は
鏡面であることが好ましい。試料表面が粗いと、音波を
乱反射するため測定精度が低下するからである。
In the present invention, the ultrasonic waves applied to the object to be measured are anisotropic ultrasonic waves, and are adjusted so that the aspect ratio of the object to be measured at the surface focus is 1.5 or more, more preferably 5 or more. . Further, in the present invention, the surface of the measurement sample is preferably a mirror surface. This is because if the surface of the sample is rough, the sound waves are diffusely reflected and the measurement accuracy is reduced.

【0014】また、本発明において、接合構造体に照射
する超音波は、200MHz〜1500MHz 程度の超音波が用いら
れ、この超音波を発生する音響レンズと被測定物との距
離Zと、各照射域における超音波の鏡面反射波と表面弾
性波との干渉波の強さ(出力V(dB)として表す)との関
係をV(Z)曲線としてグラフ化する。ここで、例えば
セラミックス−金属接合体等の接合構造体から得られた
V(Z)曲線の信号処理には、FFT(fast Fourier t
ransformation )によるスペクトル解析法が用いられ
る。この手順としては一般のスペクトル解析の場合と同
様に、(1) バックグラウンド、すなわち着目している
変動より大きな周期のトレンドを除去し、(2) 細かい
変動、すなわちノイズをフィルタリングし、(3) 窓関
数の選定と積分区分を決定し、(4) FFT演算とパワ
ースペクトルのピーク位置から周期を計算し、音速を求
める。
Further, in the present invention, ultrasonic waves of about 200 MHz to 1500 MHz are used as ultrasonic waves for irradiating the bonded structure, and the distance Z between the acoustic lens for generating the ultrasonic waves and the object to be measured and each irradiation. The relationship between the intensity of the interference wave between the specular reflection wave of the ultrasonic wave and the surface acoustic wave (expressed as the output V (dB)) in the region is graphed as a V (Z) curve. Here, for example, signal processing of a V (Z) curve obtained from a bonded structure such as a ceramic-metal bonded body is performed by FFT (fast Fourier t).
ransformation) spectral analysis method is used. As in the case of general spectrum analysis, this procedure is as follows: (1) The background, that is, the trend with a period larger than the fluctuation of interest is removed, (2) the fine fluctuation, that is, noise, The window function is selected and the integration segment is determined, and (4) FFT calculation and the period are calculated from the peak position of the power spectrum to obtain the sound velocity.

【0015】ことによって行われる。また、スペクトル
の半値幅から減衰を求める。
It is carried out by: Also, the attenuation is obtained from the half width of the spectrum.

【0016】このようなV(Z)曲線のスペクトル解析
手順の一例を図6に示す。同図(a)は測定した生デー
タ、(b)は移動平均フィルタによってレンズ反射波と
の干渉によるリップルを除去した結果、(c)は弾性表
面波音速が小さくV(Z)曲線への寄与の無い成分のV
(Z)曲線、(d)は(c)のV(Z)曲線をバックグ
ラウンドとして引いた結果、そして(e)はFFTによ
って求めた(d)の波形のパワースペクトルである。
FIG. 6 shows an example of a spectrum analysis procedure for such a V (Z) curve. In the figure, (a) is the measured raw data, (b) is the result of removing the ripple due to the interference with the lens reflected wave by the moving average filter, and (c) is the acoustic velocity of the surface acoustic wave is small and it contributes to the V (Z) curve. No component V
(Z) curve, (d) is the result of subtracting the V (Z) curve of (c) as the background, and (e) is the power spectrum of the waveform of (d) obtained by FFT.

【0017】このパワースペクトルは、音響レンズと測
定試料との距離によって、図7に示す例のように変化す
るもので、V(Z)曲線から試料の応力状態に特有の周
期ΔZを求め、さらに、表面弾性波速度が次式に基づい
て決定される。
This power spectrum changes as in the example shown in FIG. 7 depending on the distance between the acoustic lens and the sample to be measured. The period ΔZ peculiar to the stress state of the sample is obtained from the V (Z) curve, and , The surface acoustic wave velocity is determined based on the following equation.

【0018】 式:VR =VW /{1-(1-VW /2fΔZ)2 1/2 ……(1) (式中、VW は媒質(水)の音速(40℃において約1525
m/sec )を、 fは周波数を示す)そして、本発明に使用
するレンズは、超音波顕微鏡による測定に用いられ、被
測定物の表面焦点時における超音波の縦横比が 1.5以上
となる異方性の超音波を与え、長方形または楕円形状で
あることを特徴としており、このような細長い形状のレ
ンズを用いることによって、方向性を持ったデータを得
ることができる。
Formula: V R = V W / {1- (1-V W / 2fΔZ) 2 } 1/2 (1) (where V W is the speed of sound of the medium (water) (about 40 ° C.) 1525
m / sec), and f is the frequency) and the lens used in the present invention is used for the measurement by an ultrasonic microscope, and the aspect ratio of the ultrasonic wave at the time of the surface focus of the measured object is 1.5 or more. It is characterized by having a rectangular or elliptical shape by giving an ultrasonic wave of direction, and by using such an elongated lens, it is possible to obtain directional data.

【0019】[0019]

【作用】本発明の残留応力測定方法によれば、超音波の
入射が可能な物質であれば測定試料として用いることが
でき、従来のX線検査では回折ピークが得られないため
に測定不可能であったガラス等にも適用することができ
る。
According to the residual stress measuring method of the present invention, any substance capable of injecting an ultrasonic wave can be used as a measuring sample, and a diffraction peak cannot be obtained by a conventional X-ray inspection, so that measurement is impossible. It can also be applied to glass and the like.

【0020】また、長方形や楕円形状等のライン状のレ
ンズを使用することによって、一定面積の情報が得ら
れ、点音源では得られない方向性をもった情報を得るこ
とができ、試料表面における残留応力の分布を特定方向
に対して定量的に評価することができる。これにより、
接合構造体の品質管理精度を向上させ、信頼性の向上を
図ることができる。さらに、測定試料の表面温度分布を
±0.05℃以内というように、正確に制御することによっ
て、表面弾性波の測定精度が向上し、よって残留応力分
布をより正確に求めることが可能となる。
Further, by using a line-shaped lens such as a rectangle or an ellipse, information of a certain area can be obtained, and information having directionality that cannot be obtained by a point sound source can be obtained, and the information on the sample surface can be obtained. The residual stress distribution can be quantitatively evaluated in a specific direction. This allows
The quality control accuracy of the bonded structure can be improved, and the reliability can be improved. Further, by accurately controlling the surface temperature distribution of the measurement sample to be within ± 0.05 ° C., the measurement accuracy of the surface acoustic wave is improved, and thus the residual stress distribution can be obtained more accurately.

【0021】[0021]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0022】図1は、本発明の残留応力測定方法を適用
した残留応力測定システムの一例の概要を示す図であ
る。同図に示す残留応力測定システム(超音波顕微鏡分
析システム)は、200MHz〜 1500MHzの範囲で周波数を変
動させることのできる超音波顕微鏡部100と、干渉に
よって生じた超音波の増幅器の出力端に接続されたコン
ピュータユニット200とから主として構成されてい
る。
FIG. 1 is a diagram showing an outline of an example of a residual stress measuring system to which the residual stress measuring method of the present invention is applied. The residual stress measurement system (acoustic microscope analysis system) shown in the figure is connected to an ultrasonic microscope unit 100 capable of varying the frequency in the range of 200 MHz to 1500 MHz and an output end of an amplifier of ultrasonic waves generated by interference. It is mainly composed of a computer unit 200 which is a computer.

【0023】超音波顕微鏡部100において、測定試料
111には音響レンズ112によって超音波が照射さ
れ、測定試料111の照射域における超音波の鏡面反射
波と励起される表面弾性波、および内部の励起波によっ
て生じる干渉波がサーキュレータ113を通って信号変
換され、インターフェイス114からコンピュータユニ
ット200へ伝達される。
In the ultrasonic microscope 100, the measurement sample 111 is irradiated with ultrasonic waves by the acoustic lens 112, and specular reflection waves of ultrasonic waves in the irradiation area of the measurement sample 111, surface acoustic waves excited, and internal excitation. The interference wave generated by the wave is converted into a signal through the circulator 113 and transmitted from the interface 114 to the computer unit 200.

【0024】コンピュータユニット200において、増
幅された照射励起域からの干渉波強度の周期的変化は、
コンピュータ211によってV(Z)曲線としてディス
プレイ212に表示される。このV(Z)曲線は、次い
で変換部213においてFFT処理され、照射域内の表
面弾性波速度VSAW として精度よく求められる。
In the computer unit 200, the periodic change in the intensity of the interference wave from the amplified irradiation excitation region is
It is displayed on the display 212 as a V (Z) curve by the computer 211. This V (Z) curve is then subjected to FFT processing in the conversion unit 213, and is accurately obtained as the surface acoustic wave velocity V SAW within the irradiation area.

【0025】この実施例では、測定試料111として30
mm×40mm×3mmtのSi3 N 4 /Cu/S45C系のセラミックス−
金属接合体を使用した。なお、このセラミックス−金属
接合体は、緩衝材として窒化ケイ素セラミックスと金属
との間にCuが介挿され、接合体表面は研磨処理が施され
ている。
In this embodiment, the measurement sample 111 is 30
mm × 40mm × 3mmt Si 3 N 4 / Cu / S45C series ceramics −
A metal bonded body was used. In this ceramics-metal bonded body, Cu was inserted between the silicon nitride ceramics and the metal as a buffer material, and the surface of the bonded body was subjected to polishing treatment.

【0026】音響レンズとして、表面フォーカス時 2.6
μm ×0.86mmのラインフォーカスレンズ(line focus l
ens )を使用し、周波数400MHz、水温60℃にて実効深さ
約50μm まで測定を行った。この際、測定試料111は
図5に示したような恒温装置内に配置し、恒温装置内の
水の温度が40℃±0.05℃となるように制御した。
As an acoustic lens, 2.6 during surface focusing
μm x 0.86mm line focus lens (line focus l
ens) at a frequency of 400 MHz and a water temperature of 60 ° C. to an effective depth of about 50 μm. At this time, the measurement sample 111 was placed in a thermostat as shown in FIG. 5, and the temperature of the water in the thermostat was controlled to be 40 ° C. ± 0.05 ° C.

【0027】ここで、この実施例におけるラインフォー
カスレンズと音場の形状を図2に示す。ラインフォーカ
スレンズ21は、カップラー(水)22を介して測定試
料23に対して超音波を照射するが、この照射により測
定試料23のA領域に音場が励起形成される。そして、
レンズ21は試料深さ方向(Z方向)に走査される。な
お、レンズ21を接合界面に近付け過ぎると、超音波が
隣接する他の部材から反射されてしまうため、一定以上
の距離をおいて走査開始地点を決めることが好ましい。
Here, the shapes of the line focus lens and the sound field in this embodiment are shown in FIG. The line focus lens 21 irradiates the measurement sample 23 with ultrasonic waves via the coupler (water) 22, and a sound field is excited and formed in the area A of the measurement sample 23 by this irradiation. And
The lens 21 is scanned in the sample depth direction (Z direction). Note that if the lens 21 is brought too close to the bonding interface, ultrasonic waves will be reflected from other adjacent members, so it is preferable to set the scanning start point at a certain distance or more.

【0028】その後、FFT処理により表面弾性波の音
速(VSAW )を求め、無応力時の表面弾性波速度VSAW
(0) との差ΔVSAW =VSAW −VSAW (0) 、すなわち変
化量を、各走査位置に対して求め、接合体軸方向分布お
よび界面方向分布を求めた。その結果を図3に示す。同
図においては、この実施例で得た表面弾性波速度の接合
体軸方向分布(ΔVy)および界面方向分布(ΔVx)
を実線で示し、かつ同時に微小X線法により測定した残
留応力である垂直応力値(σRy、σRx)を一点鎖線で示
した。
After that, the sound velocity (V SAW ) of the surface acoustic wave is obtained by FFT processing, and the surface acoustic wave velocity V SAW without stress is obtained.
Difference from (0) ΔV SAW = V SAW −V SAW (0), that is, the change amount was obtained for each scanning position, and the axial distribution of the bonded body and the interfacial direction distribution were obtained. The result is shown in FIG. In the figure, the surface acoustic wave velocity distribution (ΔVy) and interface direction distribution (ΔVx) obtained in this example are shown.
Is shown by a solid line, and at the same time, vertical stress values (σRy, σRx), which are residual stress measured by the micro X-ray method, are shown by a chain line.

【0029】図3から明らかなように、この実施例によ
る超音波顕微鏡を用いた測定結果と、微小X線法による
測定結果とは傾向としてよい一致を示し、接合構造体の
残留応力の分布を方向性と共に定量的に評価することが
できた。
As is apparent from FIG. 3, the measurement results using the ultrasonic microscope according to this example and the measurement results using the micro X-ray method tend to be in good agreement, and the distribution of the residual stress of the bonded structure is shown. It could be evaluated quantitatively along with the directionality.

【0030】この結果によれば、残留応力が高いほど表
面弾性波は速くなっている。これは音速を得る式からも
支持される。すなわち、音速Vは
According to this result, the higher the residual stress, the faster the surface acoustic wave. This is also supported by the formula for obtaining the speed of sound. That is, the sound velocity V is

【0031】[0031]

【数1】 [Equation 1]

【0032】で示される。上記 (2)式中、密度を表すρ
の値は試料に残留している応力の変化に伴って変化す
る。つまり、試料に引っ張り応力が働いていればその部
位の密度は小さくなり、上記(2) 式から密度が減少すれ
ば音速Vは増加することがわかる。逆に、試料に圧縮応
力が働いていれば、その部位の密度は増大し、音速Vは
小さくなる。
It is shown by. In equation (2) above, ρ that represents the density
The value of changes with changes in the stress remaining in the sample. In other words, if tensile stress acts on the sample, the density of that portion becomes smaller, and from the above equation (2), it is understood that the sound velocity V increases as the density decreases. Conversely, if compressive stress acts on the sample, the density of that portion increases and the sound velocity V decreases.

【0033】したがって、窒化ケイ素−S45C材接合体に
おいて、窒化ケイ素側はS45C材よりも熱膨張係数が小さ
いために、接合時に軸方向に大きな引っ張り応力を受け
ることになり、これが残留応力として接合体に残留す
る。すると、窒化ケイ素側の密度は本来の値よりも小さ
くなり、このような表面を超音波顕微鏡を用いて測定し
た場合、表面弾性波は速くなる。つまり、無応力時の基
準速度との差(ΔVSAW )が大きくなる。そして、残留
応力は接合界面に近いほど大きいため、超音波の照射域
が接合界面から遠ざかるにつれて表面弾性波の速度は遅
くなり、無応力時の基準速度との差は小さくなる。
Therefore, in the silicon nitride-S45C material joined body, since the silicon nitride side has a smaller thermal expansion coefficient than the S45C material, a large tensile stress is applied in the axial direction at the time of joining. Remains in. Then, the density on the silicon nitride side becomes smaller than the original value, and when such a surface is measured using an ultrasonic microscope, the surface acoustic wave becomes faster. That is, the difference (ΔV SAW ) from the reference speed when there is no stress increases. Since the residual stress increases as it approaches the bonding interface, the velocity of the surface acoustic wave becomes slower as the ultrasonic irradiation area moves away from the bonding interface, and the difference from the reference velocity when there is no stress becomes smaller.

【0034】これらのことから図3のグラフが、軸方向
のy成分においては音波の照射位置が接合界面から離れ
るにつれて減少し、界面方向のx成分については界面の
中央部分で表面弾性波の速さが速くなるような曲線を描
いているのは、妥当であるといえる。
From these facts, the graph of FIG. 3 decreases in the y component in the axial direction as the irradiation position of the sound wave moves away from the bonding interface, and in the x component in the interface direction, the velocity of the surface acoustic wave at the central portion of the interface. It is reasonable to draw a curve that makes the speed faster.

【0035】また、上記実施例においては、測定試料を
40℃±0.05℃の温水内に配置して測定を行ったため、水
中の音速VH2O が1525m/sec±2m/sec(at40℃)とな
り、よって表面弾性波速度VSAW の誤差は±4m/sec以内
におさえられた。これによって、表面弾性波速度の分布
(ΔVyおよびΔVx)をより正確に求めることが可能
となることから、残留応力分布をより高精度に測定する
ことができる。
In the above embodiment, the measurement sample is
Since the measurement was performed by arranging in warm water of 40 ° C ± 0.05 ° C, the sound velocity V H2O in water was 1525 m / sec ± 2 m / sec (at 40 ° C), so the error of the surface acoustic wave velocity V SAW was ± 4 m / sec. It was suppressed within. This makes it possible to more accurately determine the distribution of surface acoustic wave velocities (ΔVy and ΔVx), so that the residual stress distribution can be measured with higher accuracy.

【0036】なお、この実施例のラインフォーカスレン
ズに対する比較として、図8に示すようなポイントフォ
ーカスレンズ(point focus lens)を用いて等方性音波
のもとでセラミックス−金属接合体の残留応力を測定し
た。ポイントフォーカスレンズ31は、カップラー32
を介して測定試料33に等方性の音場Bを形成する。こ
のようなレンズの場合、点音源であるために測定面積が
小さい範囲に限定され、かつ値が平均化されるため、方
向性のある詳細なデータを得ることができす、表面波速
度の評価精度もそれほど良好ではなかった。
As a comparison with the line focus lens of this embodiment, the residual stress of the ceramic-metal bonded body was measured under isotropic sound waves using a point focus lens as shown in FIG. It was measured. The point focus lens 31 is a coupler 32.
An isotropic sound field B is formed in the measurement sample 33 via. In the case of such a lens, since it is a point sound source, the measurement area is limited to a small range and the values are averaged, so detailed data with directionality can be obtained. The accuracy was also not very good.

【0037】このように、この実施例ではライン形状の
レンズを用いた超音波顕微鏡を用いることにより、セラ
ミックス−金属接合体の残留応力を、定量的かつ方向性
を有する分布として非破壊的に評価することができ、接
合構造体の信頼性を向上させることができた。
As described above, in this embodiment, the residual stress of the ceramic-metal bonded body is non-destructively evaluated as a quantitative and directional distribution by using the ultrasonic microscope using the line-shaped lens. Therefore, the reliability of the bonded structure could be improved.

【0038】[0038]

【発明の効果】以上説明したように、本発明の残留応力
測定方法は、超音波顕微鏡および被測定物の表面に異方
性の超音波を与えるレンズを用い、表面弾性波の速度変
化を利用して、材料表面における残留応力分布を定量的
かつ方向性を有する値としてとらえ、残留応力の評価方
法を新たな視点から向上させることができる。したがっ
て、種々の材料の品質管理に大きく貢献し、ひいては接
合構造体の信頼性を大きく向上させるものである。
As described above, the residual stress measuring method of the present invention uses an ultrasonic microscope and a lens that gives anisotropic ultrasonic waves to the surface of an object to be measured, and utilizes the velocity change of surface acoustic waves. Thus, the residual stress distribution on the material surface can be regarded as a quantitative and directional value, and the residual stress evaluation method can be improved from a new perspective. Therefore, it greatly contributes to the quality control of various materials and, in turn, greatly improves the reliability of the bonded structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の残留応力測定システムの概
要を示す図である。
FIG. 1 is a diagram showing an outline of a residual stress measuring system according to an embodiment of the present invention.

【図2】本発明の実施例に用いたラインフォーカスレン
ズを示す図である。
FIG. 2 is a diagram showing a line focus lens used in an example of the present invention.

【図3】本発明の実施例によって得た残留応力分布を示
す図である。
FIG. 3 is a diagram showing a residual stress distribution obtained according to an example of the present invention.

【図4】本発明における測定試料のセッティング例を示
す図である。
FIG. 4 is a diagram showing an example of setting a measurement sample according to the present invention.

【図5】測定試料を恒温装置内に配置した例を示す図で
ある。
FIG. 5 is a diagram showing an example in which a measurement sample is placed in a thermostat.

【図6】V(Z)曲線のスペクトル解析手順の一例を示
す図である。
FIG. 6 is a diagram showing an example of a spectrum analysis procedure of a V (Z) curve.

【図7】音響レンズと測定試料との距離によって変化す
る試料の応力状態に特有の周期ΔZを説明するための図
である。
FIG. 7 is a diagram for explaining a cycle ΔZ peculiar to the stress state of the sample that changes depending on the distance between the acoustic lens and the measurement sample.

【図8】本発明との比較として掲げたポイントフォーカ
スレンズを示す図である。
FIG. 8 is a diagram showing a point focus lens provided as a comparison with the present invention.

【符号の説明】[Explanation of symbols]

1……ステージ 2……測定試料 3……カップラ− 4……音響レンズ 5……トランスデューサ 21……ラインフォーカスレンズ 100……超音波顕微鏡部 200……コンピュータユニット 1 ... stage 2 ... Measurement sample 3 ... Coupler 4 ... Acoustic lens 5 ... Transducer 21 ... Line focus lens 100 ... Ultrasonic microscope section 200 ... Computer unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の平滑表面に、この表面と該表
面における照射域に異方性のある超音波を発する音響レ
ンズとの距離を変化させて超音波を照射し、 この超音波の深さ方向の照射距離に対する、その照射域
における前記超音波の鏡面反射波と励起される表面弾性
波と内部の励起波との干渉波の強さの関係を表すV
(Z)曲線を求め、 このV(Z)曲線における曲線周期から応力状態にある
被測定物表面の照射励起域における表面弾性波速度を求
め、 前記被測定物表面の無応力状態における表面弾性波速度
を基準速度とし、応力存在下での表面弾性波速度と前記
基準速度との変化量を求め、 この変化量の分布をもとに、前記超音波照射域の長辺方
向における残留応力値に変換して特定方向の分布を求め
ることを特徴とする残留応力測定方法。
1. An ultrasonic wave is radiated on a smooth surface of an object to be measured by changing the distance between this surface and an acoustic lens that emits ultrasonic waves having anisotropy in the irradiation area on the surface. V representing the relationship between the irradiation distance in the depth direction and the intensity of the interference wave between the specular reflection wave of the ultrasonic wave, the surface acoustic wave excited and the internal excitation wave in the irradiation area V
The (Z) curve is obtained, and the surface acoustic wave velocity in the irradiation excitation region of the surface of the measured object in the stress state is obtained from the curve period in the V (Z) curve. Using the velocity as the reference velocity, determine the amount of change between the surface acoustic wave velocity and the reference velocity in the presence of stress, and based on the distribution of this amount of change, determine the residual stress value in the long-side direction of the ultrasonic irradiation area. A method for measuring residual stress, which comprises converting and obtaining a distribution in a specific direction.
【請求項2】 前記照射域に異方性をもたせた超音波
は、前記被測定物の表面焦点時における縦横比が 1.5以
上である請求項1記載の残留応力測定方法。
2. The residual stress measuring method according to claim 1, wherein the ultrasonic wave having anisotropy in the irradiation area has an aspect ratio of 1.5 or more when the surface of the object to be measured is in focus.
【請求項3】 前記被測定物表面の温度分布は、±0.05
℃以内に制御されている請求項1記載の残留応力測定方
法。
3. The temperature distribution on the surface of the object to be measured is ± 0.05.
The residual stress measuring method according to claim 1, wherein the residual stress is controlled to within ℃.
【請求項4】 前記被測定物はセラミックスであり、こ
のセラミックスは金属と接合された構造体である請求項
1記載の残留応力測定方法。
4. The residual stress measuring method according to claim 1, wherein the object to be measured is a ceramic, and the ceramic is a structure bonded to a metal.
【請求項5】 超音波顕微鏡による測定に用いられ、被
測定物の表面焦点時における超音波の縦横比が 1.5以上
となる異方性の超音波を与え、長方形または楕円形状で
あることを特徴とするレンズ。
5. An anisotropic ultrasonic wave, which is used for measurement with an ultrasonic microscope and has an aspect ratio of 1.5 or more when the surface of an object to be measured is in focus, is rectangular or elliptical in shape. Lens to be.
JP3228091A 1990-09-19 1991-09-09 Residual stress measuring method and lens used for the same Pending JPH0518833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3228091A JPH0518833A (en) 1990-09-19 1991-09-09 Residual stress measuring method and lens used for the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24980790 1990-09-19
JP2-249807 1990-09-19
JP3228091A JPH0518833A (en) 1990-09-19 1991-09-09 Residual stress measuring method and lens used for the same

Publications (1)

Publication Number Publication Date
JPH0518833A true JPH0518833A (en) 1993-01-26

Family

ID=26528045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3228091A Pending JPH0518833A (en) 1990-09-19 1991-09-09 Residual stress measuring method and lens used for the same

Country Status (1)

Country Link
JP (1) JPH0518833A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792038A (en) * 1993-09-28 1995-04-07 Hitachi Ltd Method and device for evaluating stress
JP2006102871A (en) * 2004-10-05 2006-04-20 Toshiba Plant Systems & Services Corp Residual stress part reduction method and residual stress part reduction device
JP4664504B2 (en) * 1999-02-26 2011-04-06 明治製菓株式会社 Pharmacological effect promoter for agricultural chemicals
CN105547544A (en) * 2016-01-04 2016-05-04 西南交通大学 Ultrasonic wave residual stress test method for macro outer deformation flat weldment
JP2018179718A (en) * 2017-04-12 2018-11-15 株式会社神戸製鋼所 Residual stress measurement method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792038A (en) * 1993-09-28 1995-04-07 Hitachi Ltd Method and device for evaluating stress
US6240784B1 (en) 1993-09-28 2001-06-05 Hitachi, Ltd. Stress evaluation method and apparatus therefor
JP4664504B2 (en) * 1999-02-26 2011-04-06 明治製菓株式会社 Pharmacological effect promoter for agricultural chemicals
JP2006102871A (en) * 2004-10-05 2006-04-20 Toshiba Plant Systems & Services Corp Residual stress part reduction method and residual stress part reduction device
JP4578918B2 (en) * 2004-10-05 2010-11-10 東芝プラントシステム株式会社 Residual stress portion reducing method and residual stress portion reducing device
CN105547544A (en) * 2016-01-04 2016-05-04 西南交通大学 Ultrasonic wave residual stress test method for macro outer deformation flat weldment
JP2018179718A (en) * 2017-04-12 2018-11-15 株式会社神戸製鋼所 Residual stress measurement method

Similar Documents

Publication Publication Date Title
Kushibiki et al. Development of the line-focus-beam ultrasonic material characterization system
JPS6239705B2 (en)
US4137778A (en) Method and apparatus for producing ultrasonic waves in light absorbing surfaces of workpieces
Periyannan et al. Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method
US20040173024A1 (en) Method and apparatus for temperature-controlled ultrasonic inspection
Ohara et al. Ultrasonic phased array with surface acoustic wave for imaging cracks
Kirk et al. Ultrasonic arrays for monitoring cracks in an industrial plant at high temperatures
Treiber et al. Correction for partial reflection in ultrasonic attenuation measurements using contact transducers
US5406849A (en) Method and apparatus for detecting guided leaky waves in acoustic microscopy
JPH0518833A (en) Residual stress measuring method and lens used for the same
Hayashi Defect imaging for plate-like structures using diffuse field
Shpil’noi et al. Specific features of nondestructive testing of polymer and composite materials using air-coupled ultrasonic excitation and laser vibrometry
Kozhushko et al. Laser-induced focused ultrasound for nondestructive testing and evaluation
JP4471714B2 (en) Crystal grain size distribution measuring method and apparatus
Cornwell et al. Noncontact determination of the bending stiffness of paper using laser ultrasonics and wavelet analysis: effects of moisture and temperature
Ihara et al. C-scan imaging in molten zinc by focused ultrasonic waves
JP4104487B2 (en) Grain aspect ratio measuring apparatus and grain aspect ratio measuring method
JP2521626B2 (en) Method for measuring fracture toughness of brittle materials
Ghosh et al. A new method for measuring surface acoustic wave speeds by acoustic microscopes and its application in characterizing laterally inhomogeneous materials
JPH0658915A (en) Physically property measuring device
Slotwinski et al. Ultrasonic measurement of the dynamic elastic moduli of small metal samples
JP2560219B2 (en) Ultrasonic imaging method and apparatus for nondestructive inspection
Fitzpatrick et al. Acoustical imaging of near surface properties at the Rayleigh critical angle
Kim et al. Nondestructive testing of ceramic coatings on steel by photoacoustic, photothermal and high-frequency ultrasound techniques
Song et al. Evaluation of CVD diamond coating layer using leaky Rayleigh wave