JPH0620143B2 - Tunnel injection static induction transistor - Google Patents

Tunnel injection static induction transistor

Info

Publication number
JPH0620143B2
JPH0620143B2 JP59164824A JP16482484A JPH0620143B2 JP H0620143 B2 JPH0620143 B2 JP H0620143B2 JP 59164824 A JP59164824 A JP 59164824A JP 16482484 A JP16482484 A JP 16482484A JP H0620143 B2 JPH0620143 B2 JP H0620143B2
Authority
JP
Japan
Prior art keywords
region
gate
tunnel injection
channel region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59164824A
Other languages
Japanese (ja)
Other versions
JPS6143479A (en
Inventor
潤一 西澤
薫 本谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP59164824A priority Critical patent/JPH0620143B2/en
Priority to GB08519851A priority patent/GB2163002B/en
Priority to FR858512117A priority patent/FR2569056B1/en
Priority to DE19853528562 priority patent/DE3528562A1/en
Publication of JPS6143479A publication Critical patent/JPS6143479A/en
Priority to GB08723051A priority patent/GB2194677B/en
Priority to US07/147,656 priority patent/US4870469A/en
Priority to JP2317984A priority patent/JP2587722B2/en
Publication of JPH0620143B2 publication Critical patent/JPH0620143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、トンネル注入型静電誘導トランジスタに関す
る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a tunnel injection static induction transistor.

〔先行技術とその問題点〕[Prior art and its problems]

静電誘導型トランジスタ(以下、SITと略す)は、ゲ
ートとゲートの間で空乏層がつながって生じている電位
障壁の高さを変化させて、ソース・ドレイン間の電流を
制御するトランジスタである。
An electrostatic induction transistor (hereinafter abbreviated as SIT) is a transistor that controls the current between a source and a drain by changing the height of a potential barrier generated by connecting a depletion layer between gates. .

このとき、電位の制御が空乏層の静電容量を通して行な
われることから、バイポーラトランジスタにおけるベー
ス層の蓄積容量がないものに相当し、FETと比べてみ
ても非常に高速、低雑音で動作するという優れた特性を
有している。
At this time, since the potential is controlled through the capacitance of the depletion layer, it corresponds to a bipolar transistor having no storage capacitance in the base layer, and operates at very high speed and low noise as compared with an FET. It has excellent characteristics.

しかし、従来のSITはソース・ドレイン間、特にソー
ス・ゲート間の寸法が割合と大きな構造になっていたた
め、キャリアが結晶格子の散乱を受け、上限周波数が制
限される問題点があった。
However, the conventional SIT has a structure in which the size between the source and the drain, particularly between the source and the gate is relatively large, so that there is a problem that carriers are scattered by the crystal lattice and the upper limit frequency is limited.

前述の欠点を除去するために、キャリアが結晶格子の散
乱を受けずに熱電子速度で動くことのできる熱電子放射
型SITが先に本願発明者等によって提案された。
In order to eliminate the above-mentioned drawbacks, a thermionic emission type SIT in which carriers can move at a thermoelectron velocity without being scattered by a crystal lattice was previously proposed by the present inventors.

このときの電熱密度Jは下式(1)で与えられる。The electrothermal density J at this time is given by the following equation (1).

ここでqは単位電荷、kはボルツマン定数、Tは絶対温
度、mはキャリアの有効質量、nsはソースの不純物
密度、Φgsはゲート領域とソース領域の拡散電位、V
gはゲートに加えた電圧である。
Here, q is unit charge, k is Boltzmann constant, T is absolute temperature, m * is effective carrier mass, ns is source impurity density, Φgs is diffusion potential of gate region and source region, V
g is the voltage applied to the gate.

キャリアの注入状態が熱電子放射状態になったときのS
ITのしや断周波数fcは、電位障壁の幅をWgとした
ときに、SITを従属接続して2段目の入力容量を考慮
したときには下記(2)式で与えられる。
S when the carrier injection state becomes the thermionic emission state
When the width of the potential barrier is set to Wg, the IT interruption frequency fc is given by the following equation (2) when the SIT is connected in cascade and the second stage input capacitance is considered.

従って、GaAsを用いた場合で電位障壁の幅Wgを
0.1μmとしたときに、しゃ断周波数fcはほぼ78
0GHz程度となる。
Therefore, when GaAs is used and the width Wg of the potential barrier is 0.1 μm, the cutoff frequency fc is about 78.
It will be about 0 GHz.

以上のことから熱電子放射型のSITのfcは高々80
0GHzであり、それ以上の高いしゃ断周波数fcが得
られなかった。
From the above, the fc of the thermionic emission type SIT is at most 80.
It was 0 GHz, and a higher cutoff frequency fc was not obtained.

〔発明の目的〕[Object of the Invention]

本発明は、上記の熱電子放射型SITの限界を越える量
子効果のトンネル注入を用いた、トンネル注入型SIT
を提供することを目的とする。
The present invention uses a tunnel injection SIT that uses quantum effect tunnel injection that exceeds the limit of the thermionic emission SIT described above.
The purpose is to provide.

〔発明の概要〕[Outline of Invention]

このため本発明のトンネル注入型SITは、第1導電型
の高不純物密度のドレイン領域と、このドレイン領域上
に形成された前記第1導電型と反対の第2導電型の半導
体領域を少なくとも一部分に有するチャンネル領域と、
このチャンネル領域上に形成された前記第1導電型のト
ンネル注入領域と、このトンネル注入領域上に形成され
た前記第2導電型の高不純密度のソース領域と、前記チ
ャンネル領域の第2導電型半導体領域に接触し、かつ、
前記チャンネル領域内の真のゲート領域とソース領域間
の距離をキャリアの平均自由行程以下とする位置に形成
された前記チャンネル領域よりも禁制帯幅の大きい半導
体よりなるゲート領域を備えると共に、そのゲート領域
の間隔がチャンネル領域の不純物密度より決まるデバイ
長λDに対して、2λD以内に形成されていることを特徴
としている。
Therefore, in the tunnel injection type SIT of the present invention, at least a part of the first conductivity type drain region of high impurity density and the second conductivity type semiconductor region formed on the drain region and opposite to the first conductivity type are formed. A channel region having
The first conductivity type tunnel injection region formed on the channel region, the second conductivity type high impurity density source region formed on the tunnel injection region, and the second conductivity type of the channel region. Contacting the semiconductor region, and
The gate region is provided with a gate region made of a semiconductor having a forbidden band width larger than that of the channel region formed at a position where the distance between the true gate region and the source region in the channel region is equal to or less than the mean free path of carriers. The feature is that the interval between regions is formed within 2λ D with respect to the Debye length λ D determined by the impurity density of the channel region.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係るトンネル注入型SIT
の断面図を示したものである。図において、1はn+
GaAs基板でドレインとなる領域、10はp層のチャ
ンネルとなる領域、3,4はチャンネル領域10に接し
て設けられたn+、p+層のトンネル注入層でそのうち4
はソースとなる領域、5はGa1-xAlxAsで形成され
るゲートとなる領域である。9はゲート領域、ドレイン
領域間容量Cgdを減少させるために設けられた絶縁物
である。この絶縁物としては、SiO2、Si34膜、
またはポリイミド樹脂等が良い。GaAsの誘電率11
に対して、Si34は5.5、SiO2は3.8、ポリ
イミドは3.2位であるので、CgdはGaAsが存在
する場合にくらべて半分以下となる。6はドレイン電
極、7はソース電極、8は前記ゲート領域のうち、表面
に露出された部分に形成されたゲート電極である。
FIG. 1 is a tunnel injection type SIT according to an embodiment of the present invention.
2 is a sectional view of FIG. In the figure, 1 is a region of the n + GaAs substrate that serves as a drain, 10 is a region of the p layer channel, and 3 and 4 are n + and p + layer tunnel injection layers provided in contact with the channel region 10. 4 of them
Is a source region, and 5 is a gate region made of Ga 1-x Al x As. Reference numeral 9 is an insulator provided to reduce the capacitance Cgd between the gate region and the drain region. As the insulator, SiO 2 , Si 3 N 4 film,
Alternatively, a polyimide resin or the like is preferable. Dielectric constant of GaAs 11
On the other hand, since Si 3 N 4 is 5.5, SiO 2 is 3.8, and polyimide is 3.2, Cgd is less than half that in the case where GaAs is present. Reference numeral 6 is a drain electrode, 7 is a source electrode, and 8 is a gate electrode formed on the exposed portion of the gate region.

この構成から判るように、GaAsのように良好な絶縁
膜が得られない化合物半導体においては、ゲート領域を
GaAsよりも禁制帯幅の大きな例えばGa1-xAlx
sのような混晶で形成することによって、ゲート領域を
絶縁ゲート類似することができる。
As can be seen from this configuration, in a compound semiconductor such as GaAs in which a good insulating film cannot be obtained, the gate region has a larger forbidden band width than GaAs, for example, Ga 1-x Al x A
By forming a mixed crystal such as s, the gate region can resemble an insulated gate.

また、図の構成で、ゲート領域5の間を通り、ソース領
域4とドレイン領域1の間にできるチャンネル領域10
中には電位障壁のピークが生じるが、これを真のゲート
領域と呼んでいる。チャンネル長(チャンネル領域中の
ソース領域とドレイン領域間の寸法)が短い場合は、こ
の真のゲート領域の生じる位置は殆どドレイン電圧には
影響されることなく、p層のチャンネル領域10中のソ
ース領域寄りにできる。従って、実質的にソース領域4
とゲート領域5との間の距離、即ちn+トンネル注入領
域3の厚みを平均自由行程以下にすることにより、真の
ゲート領域とソース領域4間の寸法をキャリアの平均自
由行程以下とすることができ、これによって高速のトン
ネル注入型SITが得られるようになる。
Further, in the configuration shown in the figure, a channel region 10 formed between the source region 4 and the drain region 1 passing between the gate regions 5 is formed.
There is a potential barrier peak inside, which is called the true gate region. When the channel length (dimension between the source region and the drain region in the channel region) is short, the position where the true gate region is generated is hardly affected by the drain voltage, and the source in the channel region 10 of the p layer is Can be closer to the area. Therefore, substantially the source region 4
The distance between the gate region 5 and the gate region 5, that is, the thickness of the n + tunnel injection region 3 is equal to or less than the mean free path, so that the dimension between the true gate region and the source region 4 is equal to or less than the mean free path of carriers. This makes it possible to obtain a high-speed tunnel injection type SIT.

動作時、ゲート領域に電圧を印加していくとゲート領域
とチャンネル領域のp層が反転状態になり、p層のゲー
ト領域5と接触している領域がn層になったときに、ソ
ース領域より電子がドレイン領域へトンネル注入されて
動作する。この場合に、ゲート領域の間隔と厚み、チャ
ンネル領域の不純物密度の大きさを変化させることによ
って、ノーマリオンとノーマリオフの動作とすることが
できる。ゲート領域となるGa1-xAlxAsのxの値は
例えばx=0.3とする。不純物密度はアンドープとす
ることも良い。
In operation, when a voltage is applied to the gate region, the p layer of the gate region and the channel region are inverted, and when the region of the p layer in contact with the gate region 5 becomes the n layer, More electrons are tunnel-injected into the drain region to operate. In this case, normally-on and normally-off operations can be performed by changing the distance and thickness of the gate region and the impurity density of the channel region. The value of x of Ga 1-x Al x As that becomes the gate region is, for example, x = 0.3. The impurity density may be undoped.

このように構成されるトンネル注入型SITにおいてし
ゃ断周波数fcは次式(3)で与えられる。
In the tunnel injection type SIT configured as described above, the cutoff frequency fc is given by the following equation (3).

(3),(4)式より となる。ここで、トンネル遷移時間ftはτの逆数であ
る。
From equations (3) and (4) Becomes Here, the tunnel transition time ft is the reciprocal of τ.

トンネル遷移時間は次式(6)で与えられる。The tunnel transition time is given by the following equation (6).

ここで、 はプランク定数を2πで除したもの(1.0546×1
-34J・sec)、Eはトンネル接合の電界強度、aは格
子定数である。格子定数aとしてGaAsの場合を考え
て5.6533Åとし、電界強度Eを106V/cm、5
×106V/cm、7×106V/cm、107V/cmとした
ときのfcは(5),(6)式より、それぞれ、1.37×
1013Hz、6.83×1013Hz、9.56×1013
Hz、1.37×1014Hzとなり、遮断周波数は、1
00THz程度となる。この値は出願人が先に提案した
熱電子放射型SITのおおよそ100倍位であって、熱
電子注入よりも、量子効果に基づくトンネル注入を用い
ればSITの遮断周波数fcを非常に高くし得ることが
わかる。
here, Is the Planck constant divided by 2π (1.0546 × 1
0-34 J · sec), E is the electric field strength of the tunnel junction, and a is the lattice constant. Considering the case of GaAs, the lattice constant a is set to 5.6533Å and the electric field strength E is 10 6 V / cm, 5
The fc at the time of × 10 6 V / cm, 7 × 10 6 V / cm, and 10 7 V / cm is 1.37 × from the equations (5) and (6), respectively.
10 13 Hz, 6.83 × 10 13 Hz, 9.56 × 10 13
Hz, 1.37 × 10 14 Hz, cutoff frequency is 1
It becomes about 00 THz. This value is about 100 times that of the thermistor emission type SIT previously proposed by the applicant, and the cutoff frequency fc of the SIT can be made extremely high by using tunnel injection based on the quantum effect rather than thermionic injection. I understand.

ソース領域よりドレイン領域までの長さ即ちチャンネル
領域長は例えば100Åというような値に制御すること
はできるが、ゲート領域間隔即ちチャンネル領域幅は、
デバイ長を目安として決定する必要がある。そのデバイ
長は次式(7)で与えられる。
The length from the source region to the drain region, that is, the channel region length can be controlled to a value such as 100Å, but the gate region interval, that is, the channel region width, is
It is necessary to decide based on the Debye length. The Debye length is given by the following equation (7).

ここでnはチャンネル領域の不純物密度、εは誘導率で
ある。
Here, n is the impurity density of the channel region, and ε is the inductivity.

上式(7)でnが1012cm-3のときにλDが3.95μ
m、1014cm-3のとき0.4μm、また、1016cm-3
ときには0.04μm位となる。
In the above formula (7), when n is 10 12 cm -3 , λ D is 3.95μ
m is 10 14 cm -3 , 0.4 μm, and 10 16 cm -3 is 0.04 μm.

ソース領域からドレイン領域に向かう電子をゲート領域
に印加する電圧によって有効に制御するためには、おお
まかに言ってチャンネル領域幅を2λD以下とする必要
がある。しかし、チャンネル領域長の寸法制御に比べ
て、チャンネル領域幅の寸法制御はフォトリソグラフィ
の精度で決まるので、チャンネル領域幅の寸法は製作技
術との兼ね合いで決定する必要がある。現状の電子ビー
ムリソグラフィでは0.07μmまでの加工が可能なの
で、不純物密度n=1016cm-3のチャンネル領域幅0.
08μmは十分に製造可能であり、リソグラフィ技術の
進歩により更に高不純物密度の薄型チャンネル領域の製
造も可能になることは言うまでもない。
In order to effectively control the electrons traveling from the source region to the drain region by the voltage applied to the gate region, it is necessary to roughly set the channel region width to 2λ D or less. However, as compared with the dimension control of the channel region length, the dimension control of the channel region width is determined by the accuracy of photolithography, and therefore the dimension of the channel region width needs to be determined in consideration of the manufacturing technique. Since the current electron beam lithography can process up to 0.07 μm, the channel region width of the impurity density n = 10 16 cm −3 is 0.
It is needless to say that 08 μm can be sufficiently manufactured, and the progress of the lithography technique enables the manufacture of a thin channel region having a higher impurity density.

第2図はソース領域からの電子を、更に能率良く、ゲー
ト領域に制限するために、第1図の実施例のpチャンネ
ル領域中に高不純物密度の埋込領域11を形成した実施
例である。埋込領域11はソース領域側の電子に対して
電位障壁が高いので、電子はチャンネル領域の埋込領域
の両側を通るようになる。実際に動作する部分がゲート
領域を形成しているpチャンネル領域とソース電極7は
例えば0.5μm〜1μmとしても良いことになり製作
は容易になる。
FIG. 2 shows an embodiment in which a buried region 11 having a high impurity density is formed in the p-channel region of the embodiment of FIG. 1 in order to more efficiently limit the electrons from the source region to the gate region. . Since the buried region 11 has a high potential barrier with respect to the electrons on the source region side, the electrons pass through both sides of the buried region in the channel region. The p-channel region in which the actually operating portion forms the gate region and the source electrode 7 may be, for example, 0.5 μm to 1 μm, which facilitates manufacturing.

第3図は本発明の更に別の実施例を示したものであっ
て、p層のチャンネル領域10のみをゲート領域5に接
触させ、ソース領域4に隣接する部分をn+領域3、ド
レイン領域1に隣接する部分をn-領域2とした構造で
ある。
FIG. 3 shows still another embodiment of the present invention in which only the channel region 10 of the p layer is brought into contact with the gate region 5 and the portion adjacent to the source region 4 is the n + region 3 and the drain region. In this structure, the portion adjacent to 1 is the n region 2.

また、第4図は、ゲート領域5に接触するp層のチャン
ネル領域10を挾んで両側にn-層のチャンネル領域2
に、更に、上側のチャンネル領域2とソース領域4に接
触してn+層のトンネル注入領域3を形成したものであ
って、Cgsを小さくし、ゲート領域を小さく形成でき
る実施例を示している。この実施例においては、ソース
領域4とゲート領域5間の距離即ち上側のチャンネル領
域2とトンネル注入領域3の寸法をキャリアの平均自由
行程以下にすることは勿論である。
In addition, FIG. 4 shows the channel region 2 of the n layer on both sides of the channel region 10 of the p layer which is in contact with the gate region 5.
Further, there is shown an example in which the tunnel injection region 3 of the n + layer is formed in contact with the upper channel region 2 and the source region 4, and Cgs can be made small and the gate region can be made small. . In this embodiment, the distance between the source region 4 and the gate region 5, that is, the dimensions of the upper channel region 2 and the tunnel injection region 3 are, of course, equal to or smaller than the mean free path of carriers.

このように、以上に説明してきた第1図〜第4図の実施
例において、ソース領域より真のゲート領域までの距離
をキャリアの平均自由行程以下にすることによって、高
速のトンネル注入型SITが得られるようになる。
As described above, in the embodiments of FIGS. 1 to 4 described above, by setting the distance from the source region to the true gate region to be equal to or less than the mean free path of carriers, a high-speed tunnel injection type SIT can be obtained. You will get it.

ところで、トンネル注入領域のn+、p+層の不純物密度
は、次式のように決めることができる。即ち、p+、n+
層の不純物密度が一様の場合に、0バイアスの拡散電位
Vbで決まる空乏層の厚みWは次式となる。
By the way, the impurity densities of the n + and p + layers in the tunnel injection region can be determined by the following equation. That is, p + , n +
When the impurity density of the layer is uniform, the thickness W of the depletion layer determined by the diffusion potential Vb of 0 bias is given by the following equation.

ここで、NAはp+ソース領域4のアクセプタ密度、ND
はn+トンネル注入領域3のドナー密度である。
Here, NA is the acceptor density of the p + source region 4, N D
Is the donor density of the n + tunnel injection region 3.

Aを1021cm-3としたときに、NDが1019cm-3ではW
は130Å、Eは2.16×106V/cm、NDが1020
cm-3ではWは41Å、Eは6.8×106V/cm程度と
なり、そのときのfcはそれぞれ40THz、72TH
z位となる。
The N A when the 10 21 cm -3, N D 10 19 In cm -3 W
Is 130Å, E is 2.16 × 10 6 V / cm, N D is 10 20
At cm -3 , W is 41Å and E is about 6.8 × 10 6 V / cm, and fc at that time is 40 THz and 72 TH, respectively.
Be in z position.

また、以上の実施例において、ゲート領域のGa1-x
xAsはGaAsとの間の表面準位をできるだけ減少
させる必要があり、GaAsとの間で格子定数が合うよ
うにGa1-xAlxAs1-yのように小量のP(リン)を
添加した混晶とすると良い。また、そのときの組成はx
=0.3のときにy=0.01程度にすると良い。
In addition, in the above embodiments, the Ga 1 -x A in the gate region is
It is necessary to reduce the surface level between l x As and GaAs as much as possible, and a small amount of P (phosphorus) such as Ga 1-x Al x As 1-y is used so that the lattice constant matches with GaAs. ) Is preferably added to form a mixed crystal. The composition at that time is x
When y = 0.3, y = 0.01 is preferable.

チャンネル領域の不純物密度はi層から1019cm-3、ト
ンネル注入領域は1018〜1021cm-程度とすれば良
い。ソースとドレインの電極材料はn+層へはAu−G
e、Au−Ge−Ni、p+層へはAu−Zn、Ag−
Zn、Cr−Au等の合金を用いることができる。
The impurity density of the channel region may be set to 10 19 cm −3 from the i layer, and the tunnel injection region may be set to about 10 18 to 10 21 cm . The source and drain electrode materials are Au-G for the n + layer.
e, Au-Ge-Ni, Au-Zn, Ag-for the p + layer
An alloy such as Zn or Cr-Au can be used.

ゲート領域のGa1-xAlAsの電極材料としては、
前記ソース、ドレイン用の電極材料の他に、Ti,P
t,W,Cr,Hf,Ni等のGa1-xAlxAsに対し
て抵抗性接触を形成しない高融点金属材料とすることも
できる。
As the electrode material of Ga 1-x Al x As in the gate region,
In addition to the source and drain electrode materials, Ti, P
It is also possible to use a refractory metal material such as t, W, Cr, Hf, or Ni that does not form a resistive contact with Ga 1-x Al x As.

素子の製作に際しては、チャンネル領域、ソース領域
は、本願発明者等の発明によるGaAsの1分子層ずつ
成長できる分子層エピタキシャル成長法、および光分子
層エピタキシャル成長法、気相成長法、MOCVD法、
MBE法、イオン注入法等が使用できる。ソース、ゲー
ト、ドレインの電極の形成は真空蒸着(抵抗加熱、電子
ビーム加熱、スパッタ法)法、プラズマエッチング、フ
ォトエッチング、フォトリソグラフィ等の組合せにより
形成できる。
In the fabrication of the device, the channel region and the source region are formed by a molecular layer epitaxial growth method capable of growing one molecular layer of GaAs according to the invention of the present inventors, an optical molecular layer epitaxial growth method, a vapor phase growth method, a MOCVD method,
The MBE method, the ion implantation method, etc. can be used. The source, gate, and drain electrodes can be formed by a combination of vacuum vapor deposition (resistance heating, electron beam heating, sputtering method), plasma etching, photoetching, photolithography, and the like.

また、半導体材料はGaAsに限らずInP、InA
s、II−VI族半導体その混晶等の半導体でも良いし、ゲ
ート領域はIn1-xGaxP、In1-xGaxAsでも良い
ことは言うまでもない。
Further, the semiconductor material is not limited to GaAs but InP and InA
Needless to say, the semiconductor may be a semiconductor such as a mixed crystal of s, II-VI group semiconductors, or In 1-x Ga x P or In 1-x Ga x As for the gate region.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、従来のトランジスタでは
得られない高い周波数領域で増幅、発振等の三端子動作
する高速、低雑音のトンネル注入型静電誘導トランジス
タが得られる。
As described above, according to the present invention, it is possible to obtain a tunnel injection static induction transistor of high speed and low noise, which operates in three terminals such as amplification and oscillation in a high frequency range which cannot be obtained by a conventional transistor.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図はそれぞれ本発明の各実施例に係るトン
ネル注入型静電誘導トランジスタの断面図である。 1……ドレインとなるべきn+基板、2,10……チャ
ンネル領域、3,4……トンネル注入領域、4……ソー
ス領域、5……GaAsよりも禁制帯幅の広い半導体で
形成されるゲート領域、6……ドレイン電極、7……ソ
ース電極、8……ゲート電極、9……絶縁物。
1 to 4 are cross-sectional views of a tunnel injection type static induction transistor according to each embodiment of the present invention. 1 ... n + substrate to be a drain, 2, 10 ... Channel region, 3, 4 ... Tunnel injection region, 4 ... Source region, 5 ... Made of a semiconductor having a wider band gap than GaAs Gate region, 6 ... Drain electrode, 7 ... Source electrode, 8 ... Gate electrode, 9 ... Insulator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本谷 薫 宮城県仙台市米ヶ袋2丁目1番9号406 (56)参考文献 特開 昭57−186374(JP,A) 昭和50年電気四学会連合大会講演論文集 第537〜540頁 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaoru Motoya 2-9-9 Yonegabukuro, Sendai-shi, Miyagi 406 (56) Reference JP-A-57-186374 (JP, A) Proceedings of the Federation Conference, pp. 537-540

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の高不純物密度のドレイン領域
と、このドレイン領域上に形成された前記第1導電型と
反対の第2導電型の半導体領域を少なくとも一部分に有
するチャンネル領域と、このチャンネル領域上に形成さ
れた前記第1導電型のトンネル注入領域と、このトンネ
ル注入領域上に形成された前記第2導電型の高不純密度
のソース領域と、前記チャンネル領域の第2導電型半導
体領域に接触し、かつ、前記チャンネル領域内の真のゲ
ート領域とソース領域間の距離をキャリアの平均自由行
程以下とする位置に形成された前記チャンネル領域より
も禁制帯幅の大きい半導体よりなるゲート領域を備える
と共に、そのゲート領域の間隔がチャンネル領域の不純
物密度より決まるデバイ長λDに対して、2λD以内に形
成されていることを特徴とするトンネル注入型静電誘導
トランジスタ。
1. A drain region of the first conductivity type having a high impurity density, and a channel region having at least a portion of a second conductivity type semiconductor region formed on the drain region and opposite to the first conductivity type. The first conductivity type tunnel injection region formed on the channel region, the second conductivity type high impurity density source region formed on the tunnel injection region, and the second conductivity type of the channel region. It is made of a semiconductor that is in contact with the semiconductor region and has a larger forbidden band width than the channel region formed at a position where the distance between the true gate region and the source region in the channel region is equal to or less than the mean free path of carriers. provided with a gate region, that the distance between the gate region with respect to the Debye length lambda D determined from the impurity concentration of the channel region, is formed within 2 [lambda] D Tunnel injection type static induction transistor, characterized.
【請求項2】特許請求の範囲第1項記載において、チャ
ンネル領域がGaAs、ゲート領域がGa1-xAlxAs
で形成されたトンネル注入型静電誘導トランジスタ。
2. The device according to claim 1, wherein the channel region is GaAs and the gate region is Ga 1-x Al x As.
Tunnel injection type static induction transistor formed by.
【請求項3】特許請求の範囲第1項記載において、ゲー
ト領域がチャンネル領域の半導体と格子定数補正されて
なるトンネル注入型静電誘導トランジスタ。
3. A tunnel injection static induction transistor according to claim 1, wherein the gate region is corrected in lattice constant with the semiconductor of the channel region.
【請求項4】特許請求の範囲第1項または第3項記載に
おいて、ゲート領域がGa1-xAlxAs1-yyであるト
ンネル注入型静電誘導トランジスタ。
4. A tunnel injection static induction transistor according to claim 1 or 3, wherein the gate region is Ga 1-x Al x As 1-y P y .
【請求項5】特許請求の範囲第1項から第4項までのい
ずれかの記載において、ゲート領域に接して設けられる
ゲート電極がゲート領域に対して抵抗性接触とならない
金属材料で形成されてなるトンネル注入型静電誘導トラ
ンジスタ。
5. The gate electrode provided in contact with the gate region according to any one of claims 1 to 4, wherein the gate electrode is formed of a metal material that does not make a resistive contact with the gate region. Tunnel injection type static induction transistor.
JP59164824A 1984-08-08 1984-08-08 Tunnel injection static induction transistor Expired - Fee Related JPH0620143B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59164824A JPH0620143B2 (en) 1984-08-08 1984-08-08 Tunnel injection static induction transistor
GB08519851A GB2163002B (en) 1984-08-08 1985-08-07 Tunnel injection static induction transistor and its integrated circuit
FR858512117A FR2569056B1 (en) 1984-08-08 1985-08-07 TUNNEL INJECTION TYPE STATIC INDUCTION TRANSISTOR AND INTEGRATED CIRCUIT COMPRISING SUCH A TRANSISTOR
DE19853528562 DE3528562A1 (en) 1984-08-08 1985-08-08 TUNNEL INJECTION TYPE STATIC INDUCTION TRANSISTOR AND COMPREHENSIVE INTEGRATED CIRCUIT
GB08723051A GB2194677B (en) 1984-08-08 1987-10-01 Tunnel injection static induction transistor integrated circuit
US07/147,656 US4870469A (en) 1984-08-08 1988-01-25 Tunnel injection type static transistor and its integrated circuit
JP2317984A JP2587722B2 (en) 1984-08-08 1990-11-26 Tunnel injection type static induction transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164824A JPH0620143B2 (en) 1984-08-08 1984-08-08 Tunnel injection static induction transistor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2317984A Division JP2587722B2 (en) 1984-08-08 1990-11-26 Tunnel injection type static induction transistor

Publications (2)

Publication Number Publication Date
JPS6143479A JPS6143479A (en) 1986-03-03
JPH0620143B2 true JPH0620143B2 (en) 1994-03-16

Family

ID=15800611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164824A Expired - Fee Related JPH0620143B2 (en) 1984-08-08 1984-08-08 Tunnel injection static induction transistor

Country Status (1)

Country Link
JP (1) JPH0620143B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186374A (en) * 1981-05-12 1982-11-16 Semiconductor Res Found Tunnel injection type travelling time effect semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和50年電気四学会連合大会講演論文集第537〜540頁

Also Published As

Publication number Publication date
JPS6143479A (en) 1986-03-03

Similar Documents

Publication Publication Date Title
US4484207A (en) Static induction transistor and semiconductor integrated circuit using hetero-junction
US4866490A (en) Field effect device maintaining a high speed operation in a high voltage operation
JPS58178572A (en) Mobility modulation type field effect transistor
US5041882A (en) Heterojunction bipolar transistor
US4712122A (en) Heterojunction gate ballistic JFET with channel thinner than Debye length
US3374407A (en) Field-effect transistor with gate-insulator variations to achieve remote cutoff characteristic
US3374406A (en) Insulated-gate field-effect transistor
JPS589371A (en) Transistor
US4870469A (en) Tunnel injection type static transistor and its integrated circuit
JP2587722B2 (en) Tunnel injection type static induction transistor
JPH0620143B2 (en) Tunnel injection static induction transistor
JP2863793B2 (en) Semiconductor device and manufacturing method thereof
JPH0614551B2 (en) Thermionic emission type static induction transistor
JP2589062B2 (en) Thermionic emission type electrostatic induction thyristor
JPS59181069A (en) Semiconductor device
JP2723901B2 (en) Semiconductor device and its application circuit
US4994882A (en) Semiconductor device and method
KR910006751B1 (en) Semiconductor integrated circuit device and its manufacturing method
JP2541240B2 (en) Semiconductor device
JPH05335593A (en) Floating electron channel field effect transistor and manufacture thereof
JPH0131314B2 (en)
JPS62166564A (en) Semiconductor device
JP2514948B2 (en) Method for manufacturing semiconductor device
JPH08148670A (en) Semiconductor device
JPS63301568A (en) Semiconductor integrated circuit device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees