JPH06200864A - Variable speed output device - Google Patents

Variable speed output device

Info

Publication number
JPH06200864A
JPH06200864A JP4349320A JP34932092A JPH06200864A JP H06200864 A JPH06200864 A JP H06200864A JP 4349320 A JP4349320 A JP 4349320A JP 34932092 A JP34932092 A JP 34932092A JP H06200864 A JPH06200864 A JP H06200864A
Authority
JP
Japan
Prior art keywords
output
control
gear
shaft
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4349320A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hirata
和博 平田
Hiroya Tobisawa
宏哉 飛澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Techno Research Corp
Original Assignee
Kawatetsu Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Techno Research Corp filed Critical Kawatetsu Techno Research Corp
Priority to JP4349320A priority Critical patent/JPH06200864A/en
Publication of JPH06200864A publication Critical patent/JPH06200864A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To enable stable output to be delivered even if a prime output device which is violent in energy fluctuation, is applied by controlling tha controlled output of a motor and the like in a continuously variable transmission having a planetary gear type reduction mechanism. CONSTITUTION:A windmill 2 rotating at low speeds where the pitch angle of the windmill can be controlled, is connected to the input shaft (d) of a continuously variable transmission 1. A generator 3 is connected to an output shaft (a'), and a control motor 4 with a brake is connected to a control shaft (e'). A carrier (g) is set at the end of the input shaft (d), a plurality of planetary gears (c) are rotatably provided for the carrier (g), so that the planetary gears are meshed with both a sun gear (a) and an internal gear (b) in such a way that the planetary gears can be rotated, and is also freely revolved around sun gear (a). Moreover, an external gear (f) is formed integrally with the internal gear (b), and a control gear (e) meshed with the external gear (f) is fixed onto the inside tip end section of the control shaft (e'). By this constitution, the gear ratio and the rotational direction of the output shaft (a') can easily be changed by changing the number of revolutions of the control shaft (e').

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば風力発電機の風
車のように出力変動の大きい原出力装置から安定した定
格出力を得るために適切な変速を行う変速出力装置に関
するものであり、特に風力発電機等により得られる出力
特性を安定させるのに適するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable speed output device for performing an appropriate speed change in order to obtain a stable rated output from an original output device having a large output fluctuation, such as a wind turbine of a wind power generator. It is suitable for stabilizing the output characteristics obtained by a wind power generator or the like.

【0002】[0002]

【従来の技術】風力エネルギーを利用する風力発電は清
浄なエネルギーを使用するために、昨今取沙汰される地
球環境問題の改善や,エネルギー源小国である日本での
エネルギー自給率の向上に貢献できる。しかし、この風
力エネルギーはどこにでもあるものの,エネルギー密度
が低く、また経時的変動が大きいという欠点がある。
2. Description of the Related Art Wind power generation, which uses wind energy, uses clean energy and can contribute to the improvement of global environmental problems that have recently been raised and the improvement of the energy self-sufficiency rate in Japan, which is a small energy source country. . However, although this wind energy is ubiquitous, it has the drawbacks of low energy density and large fluctuation over time.

【0003】一般に、風力発電機は,原出力装置として
風力エネルギーにより回転される風車や、この風車の回
転を増速する増速装置や、発電機,及びそれらの制御装
置等により構成されている。このような風力発電機で
は、変動の大きい風力エネルギーを入力としながらも,
一定回転数が要求される発電機が出力に使用されている
ために、エネルギー密度が低く且つ変動の大きい風力エ
ネルギーから如何程のエネルギーを取得するか,またそ
の変動にどれだけ追従できるかが重要な課題となる。
Generally, a wind power generator is composed of a wind turbine rotated by wind energy as a raw output device, a speed increasing device for speeding up the rotation of the wind turbine, a generator, and a control device thereof. . In such a wind power generator, while inputting the wind energy with large fluctuation,
Since a generator that requires a constant rotation speed is used for output, it is important how much energy is acquired from wind energy with low energy density and large fluctuations, and how much it can follow the fluctuations. It becomes a problem.

【0004】このような変動に対して従来は、風車の羽
根のピッチ角制御や電気的な周波数制御が行われてい
る。このうち,ピッチ角制御は各羽根の風に対する取付
角,即ち風向に対する羽根の投影面積の制御角を制御す
ることであり、具体的には風車からの出力(風車の回転
数)が低減したときには風を受ける面積若しくは風の流
動抵抗を増大するようにピッチ角を制御し、風車からの
出力(風車の回転数)が増大した時には風を受ける面積
若しくは風の流動抵抗を減少するようにピッチ角を制御
することで、風車の回転数を一定に保持し、また限界風
速以上のときの羽根の破損を防止することができる。一
方、前記電気的周波数制御では、可変速インバータ等に
よって出力の周波数特性を整えるように制御する。
Conventionally, the pitch angle control of the blades of the wind turbine and the electrical frequency control have been performed against such fluctuations. Among them, the pitch angle control is to control the mounting angle of each blade with respect to the wind, that is, the control angle of the projected area of the blade with respect to the wind direction. Specifically, when the output from the wind turbine (the rotational speed of the wind turbine) is reduced, The pitch angle is controlled to increase the wind receiving area or the wind flow resistance, and when the output from the wind turbine (the rotation speed of the wind turbine) increases, the wind receiving area or the wind angle decreases to reduce the wind resistance. The rotation speed of the wind turbine can be kept constant and the blades can be prevented from being damaged when the wind speed exceeds the limit. On the other hand, in the electric frequency control, the output frequency characteristic is controlled by a variable speed inverter or the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記従来
の風力エネルギー出力変動に対する制御手段のうち,前
記ピッチ角制御では、機械的な制御時間の必要から,制
御信号の出力から発電機回転数安定までの応答性が2.
5〜3.5秒と遅く、実質的に発電機出力変動の約30
%程度までにしか制御できない。
However, among the conventional control means for the wind energy output fluctuation, in the pitch angle control, from the output of the control signal to the stabilization of the generator rotational speed because of the mechanical control time required. Responsiveness is 2.
It is as slow as 5 to 3.5 seconds, and the generator output fluctuation is about 30.
It can be controlled only by about%.

【0006】一方、前記電気的周波数制御では,発電機
出力の周波数特性は制御できるものの、出力の変動には
対応できない。このため、いずれの制御手段を用いても
風速の経時的変動に十分応答できず、出力の変動を余儀
なくされている。本発明はかかる諸問題を解決すべく開
発されたものであり、風速の変動等,エネルギー変動の
大きい原出力装置を入力とした場合にも、安定した出力
を得ることのできる変速出力装置を提供することを目的
とするものである。
On the other hand, in the electric frequency control, the frequency characteristic of the generator output can be controlled, but the output fluctuation cannot be dealt with. For this reason, any of the control means cannot sufficiently respond to the temporal change of the wind speed, and the output has to be changed. The present invention has been developed to solve these problems, and provides a variable speed output device that can obtain a stable output even when an original output device with large energy fluctuations such as fluctuations in wind speed is input. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明のうち請求項1に
係る変速出力装置は、風車等の出力変動の大きい低速回
転原出力装置から安定した定格出力を得るための変速出
力装置であって、前記回転する原出力装置の出力を定格
出力に変速するための遊星歯車変速機構を用いた無段変
速機と、前記無段変速機の変速比を制御する制御手段と
を有し、前記無段変速機は、太陽歯車に連結された出力
軸と、前記出力軸の周囲に回転自在に取付けられた内歯
車が一体的に形成された外歯車と、前記外歯車に噛合う
制御歯車に連結された制御軸と、前記太陽歯車に噛合っ
て公転可能で且つ太陽歯車と内歯車との両者に噛合って
自転可能な遊星歯車と、前記遊星歯車の公転軸を回転自
在に保持して当該遊星歯車に連結された入力軸とを備
え、前記原出力装置を前記無段変速機の入力軸に直接又
は間接に連結し、前記制御手段を前記無段変速機の制御
軸に直接又は間接に連結したことを特徴とするものであ
る。
A shift output device according to a first aspect of the present invention is a shift output device for obtaining a stable rated output from a low-speed rotation original output device having a large output fluctuation of a wind turbine or the like. A continuously variable transmission that uses a planetary gear transmission mechanism for shifting the output of the rotating raw output device to a rated output, and a control unit that controls a gear ratio of the continuously variable transmission. The transmission is connected to an output shaft connected to a sun gear, an external gear integrally formed with an internal gear rotatably mounted around the output shaft, and a control gear meshing with the external gear. The control shaft, the planetary gear which is revolvable by meshing with the sun gear and is rotatable by meshing with both the sun gear and the internal gear, and the revolution shaft of the planetary gear is rotatably held. An input shaft connected to a planetary gear, and the original output device The linked directly or indirectly to the input shaft of the continuously variable transmission, is characterized in that said control means is connected directly or indirectly to the control shaft of the continuously variable transmission.

【0008】本発明のうち請求項2に係る変速出力装置
は、前記制御手段は、前記無段変速機の入力軸及び/又
は出力軸の回転数を検出する検出装置と、前記制御軸に
制御出力を付与する制御出力発生装置と、前記検出装置
により検出された回転数に応じて,前記無段変速機の出
力軸からの出力が定格出力に維持されるように,前記制
御出力発生装置の制御出力を制御する演算制御装置を備
えたことを特徴とするものである。
According to a second aspect of the present invention, in the shift output device, the control means controls the input shaft and / or the output shaft of the continuously variable transmission with a detecting device and the control shaft. A control output generator for giving an output, and a control output generator for the control output generator so that the output from the output shaft of the continuously variable transmission is maintained at a rated output in accordance with the number of revolutions detected by the detector. It is characterized by comprising an arithmetic control device for controlling the control output.

【0009】[0009]

【作用】本発明の変速出力装置では、遊星歯車減速機構
を有する無段変速機において,例えば前記制御歯車に連
結された制御軸の回転数を制御することにより、当該制
御歯車に噛合う外歯車,当該外歯車と一体に形成された
内歯車の回転数を、入力軸により公転される遊星歯車の
公転数とは個別に制御することができる。これにより遊
星歯車の公転数及びその自転数によって決定される太陽
歯車及びそれに連結されている出力軸の回転数を無段階
に変更することができる。そこで、前記制御手段によっ
て入力軸の回転数に応じて制御軸の回転数を制御するこ
とにより,変動する入力軸の回転数に応じて無段変速機
の変速比を変更制御して、当該無段変速機の出力軸の回
転数,即ち定格出力を維持することができる。この無段
変速機の変速比制御にあたり、前記検出装置によって例
えば無段変速機の入力軸及び/又は出力軸の回転数を検
出し、これらの検出された回転数から,前記演算制御装
置により出力軸からの定格出力が維持されるように,具
体的には例えば出力軸の回転数が一定に維持されるよう
な前記内歯車の回転数を算出し、この内歯車の回転数を
実行するための制御歯車及び制御軸の回転数を算出し、
この制御歯車及び制御軸の回転数を満足するように制御
された前記制御出力発生装置の制御出力を当該制御歯車
及び制御軸に付与することにより、無段階に変速比を制
御して安定した出力特性を得ることができる。この場
合、演算制御を電気的に行うことにより,制御の応答性
を向上することができるので、それらの制御にフィード
バック制御を用いたとしても十分な応答性を発揮するこ
とができ、出力特性の変動を抑制することができる。一
方、前記変速比制御において,演算制御装置では、前記
原出力装置からの入力の変動に伴う変速機効率が最大に
なるように,前記制御出力発生装置の制御出力を制御す
れば、エネルギー密度の低い風力エネルギーからも十分
な出力特性を安定して得ることができる。
In the continuously variable transmission having the planetary gear speed reduction mechanism, the variable speed output device of the present invention controls, for example, the rotation speed of the control shaft connected to the control gear, thereby the external gear meshing with the control gear. The rotational speed of the internal gear integrally formed with the external gear can be controlled separately from the rotational speed of the planetary gear that is revolved by the input shaft. As a result, the number of revolutions of the planetary gear and the number of revolutions of the sun gear and the number of revolutions of the output shaft connected thereto can be changed steplessly. Therefore, the control means controls the rotational speed of the control shaft in accordance with the rotational speed of the input shaft to change and control the gear ratio of the continuously variable transmission in accordance with the fluctuating rotational speed of the input shaft. It is possible to maintain the rotational speed of the output shaft of the transmission, that is, the rated output. In controlling the gear ratio of the continuously variable transmission, the detection device detects, for example, the number of revolutions of the input shaft and / or the output shaft of the continuously variable transmission, and outputs from the detected number of revolutions by the arithmetic and control unit. In order to maintain the rated output from the shaft, specifically, to calculate the rotational speed of the internal gear that maintains the rotational speed of the output shaft constant, and to execute the rotational speed of the internal gear. Calculate the number of rotations of the control gear and control shaft of
By giving the control output of the control output generator controlled so as to satisfy the rotational speeds of the control gear and the control shaft to the control gear and the control shaft, the speed ratio is controlled steplessly to provide a stable output. The characteristics can be obtained. In this case, the responsiveness of the control can be improved by electrically performing the arithmetic control. Therefore, even if the feedback control is used for those controls, the sufficient responsiveness can be exhibited and the output characteristic Fluctuations can be suppressed. On the other hand, in the gear ratio control, if the arithmetic and control unit controls the control output of the control output generation device so that the transmission efficiency accompanying the fluctuation of the input from the raw output device is maximized, the energy density Sufficient output characteristics can be stably obtained even from low wind energy.

【0010】[0010]

【実施例】図1は本発明の変速出力装置の一実施例を示
すものであり、本実施例は風力発電機に使用した一例で
ある。同図に示す無段変速機1の入力軸dには,低速回
転する原出力装置である,ピッチ角制御可能な風車2が
連結されている。また、無段変速機1の出力軸a’には
発電機3が連結され、制御軸e’にはブレーキ付制御モ
ータ4が連結されている。なお前記制御モータ4にはパ
ルスモータ等が使用されており、入力される単位時間毎
のパルス数を制御することにより制御モータの回転角及
び回転数を制御することができる。また、前記制御モー
タは図示されないバッテリにより駆動されるが、このバ
ッテリは前記発電機3により充電されるようにしてあ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the variable speed output device of the present invention, and this embodiment is an example used in a wind power generator. The input shaft d of the continuously variable transmission 1 shown in the figure is connected to a wind turbine 2 capable of controlling a pitch angle, which is an original output device rotating at a low speed. Further, the generator 3 is connected to the output shaft a ′ of the continuously variable transmission 1, and the control motor 4 with a brake is connected to the control shaft e ′. A pulse motor or the like is used as the control motor 4, and the rotation angle and the rotation speed of the control motor can be controlled by controlling the number of input pulses per unit time. The control motor is driven by a battery (not shown), which is charged by the generator 3.

【0011】一方、前記入力軸d及び出力軸a’には夫
々回転数検出素子5a,5bが設けられている。これら
の回転数検出素子5a,5bには例えば反射式回転数検
出素子が用いられており、各軸の回転に応じた単位時間
当たりの電気的パルスを出力信号として発生する。そし
て、これらの回転数検出素子5a,5bからの出力信号
は処理部6に入力される。
On the other hand, the input shaft d and the output shaft a'are provided with rotational speed detecting elements 5a and 5b, respectively. For example, a reflection type rotation speed detection element is used for these rotation speed detection elements 5a and 5b, and an electric pulse per unit time corresponding to the rotation of each axis is generated as an output signal. Then, the output signals from these rotation speed detecting elements 5a and 5b are input to the processing unit 6.

【0012】前記処理部6は具体的にマイクロコンピュ
ータのCPUや記憶部等から構成されており、当該処理
部6では前記回転数検出素子5からの出力信号の電気的
パルスを単位時間毎に積算して各軸の回転数を算出する
と共に、それらの回転数の微分値から当該回転数の変動
率を算出する。そして,この処理部6では同時に前記発
電機3の出力特性変動を読込み、後述する制御マップに
従って,前記出力軸a’の回転数変動,即ち発電機3の
出力特性変動が抑制される制御モータ4の回転角及び回
転数を算出し、その回転角及び回転数を達成するための
制御パルスを当該制御モータに向けて送出する。ちなみ
に、前記制御マップの構築ロジックはエネルギー密度の
低い風力エネルギーによって回転する風車の回転力を最
大に増速するように,前記無段変速機の変速効率を増大
することを目的とする。
The processing unit 6 is specifically composed of a CPU and a storage unit of a microcomputer. In the processing unit 6, the electric pulse of the output signal from the rotation speed detecting element 5 is integrated every unit time. Then, the rotation speed of each axis is calculated, and the fluctuation rate of the rotation speed is calculated from the differential value of the rotation speeds. Then, in this processing unit 6, the output characteristic fluctuation of the generator 3 is read at the same time, and according to the control map described later, the control motor 4 in which the fluctuation of the rotation speed of the output shaft a ′, that is, the fluctuation of the output characteristic of the generator 3 is suppressed. And calculates a rotation angle and a rotation speed of the control signal, and sends a control pulse for achieving the rotation angle and the rotation speed toward the control motor. By the way, the construction logic of the control map aims to increase the shifting efficiency of the continuously variable transmission so as to maximize the rotational force of the rotating wind turbine by wind energy having a low energy density.

【0013】ここで、具体的な本実施例の風力発電機に
おける主諸元の一例を以下に列記する。 性能 風車出力 8 kW 定格出力 5 kW カットイン(出力開始)風速 3.0m/s 定格風速 8.0m/s カットアウト(出力停止)風速 25.0m/s 風車 形式 プロペラ式水平軸型 ロータ配置 ダウンウインド ロータ直径 5 m 定格回転数 100rpm 限界回転数 150rpm ブレード(羽根)枚数 2 枚 発電機 形式 誘導発電機 5kW 定格電圧 3相220V 定格回転数 1800rpm 制御モータ 形式 DC 0.75kW 次に前記無段変速機1について図2に基づいて詳述す
る。この無段変速機1には具体的に本出願人が先に提案
した特願平3−238254号に記載されるものが転用
可能である。
Here, an example of the main specifications of the concrete wind power generator of the present embodiment will be listed below. Performance Wind turbine output 8 kW Rated output 5 kW Cut-in (start output) Wind speed 3.0 m / s Rated wind speed 8.0 m / s Cut-out (stop output) Wind speed 25.0 m / s Wind turbine type propeller type horizontal axis type rotor arrangement Down Wind rotor diameter 5 m Rated speed 100 rpm Limit speed 150 rpm Number of blades (2) Generator type Induction generator 5kW Rated voltage 3 phase 220V Rated speed 1800rpm Control motor type DC 0.75kW Next stepless transmission 1 will be described in detail with reference to FIG. As the continuously variable transmission 1, a concrete one described in Japanese Patent Application No. 3-238254 previously proposed by the present applicant can be diverted.

【0014】同図に示すケーシング10は側方に開口部
を有する筐体11と、該開口部を閉塞するように被せら
れた蓋体12とから構成されている。前記ケーシング1
0の筐体11の側面中央部には二個のベアリング13,
14を介して前記出力軸a’が回転自在に取付けられて
いる。前記出力軸a’の内側先方に形成されたセレーシ
ョン部16には太陽歯車aが固定されている。そして出
力軸a’のうち、前記太陽歯車aと筐体11との間には
二個のベアリング17,18を介して内歯ホイール19
が回転自在に取付けられている。
The casing 10 shown in the figure comprises a casing 11 having an opening on its side, and a lid 12 fitted so as to close the opening. The casing 1
At the center of the side surface of the housing 11 of 0, two bearings 13,
The output shaft a ′ is rotatably mounted via 14. The sun gear a is fixed to the serration portion 16 formed on the inner front side of the output shaft a ′. Then, in the output shaft a ′, between the sun gear a and the housing 11, two internal bearings 19 are provided via two bearings 17 and 18.
Is rotatably attached.

【0015】この内歯ホイール19の筐体側外周部には
外歯車fが形成されている。また内歯ホイール19の蓋
体側外周部からはコの字状の内歯車bが、前記太陽歯車
aの外側に所定間隔だけ離れて対向するように延設され
ている。一方、前記ケーシング10の蓋体12の中央部
には、前記出力軸a’の軸線上に前記入力軸dが二個の
ベアリング20,21を介して回転自在に取付けられて
いる。
An external gear f is formed on the outer peripheral portion of the inner tooth wheel 19 on the housing side. Further, a U-shaped internal gear b is extended from the outer peripheral portion of the internal gear wheel 19 on the side of the lid so as to face the outside of the sun gear a at a predetermined distance. On the other hand, the input shaft d is rotatably attached to the central portion of the lid 12 of the casing 10 on the axis of the output shaft a ′ via two bearings 20 and 21.

【0016】また、この入力軸dの内側先端には断面円
形の凹陥部が形成され、該凹陥部と出力軸a’の内側先
端部24とにはベアリング25が介在され、両軸a’,
dが互いに回転自在なるよう連結されている。前記入力
軸dの内側先端部外周には等角度間隔で複数のキャリア
g,具体的には90°間隔で4本のキャリアgが延設さ
れており、夫々のキャリアgの外側先端部からケーシン
グ10の内側に向けて回転軸26が突設されている。こ
の回転軸26の内側先端部には二個のベアリング27,
28を介して遊星歯車cが回転自在に取付けられてお
り、該遊星歯車cは前記太陽歯車aと内歯車bとの両者
に噛み合って自転可能で,且つ前記入力軸dを中心とし
て太陽歯車aの周囲を公転自在なるようにしてある。
Further, a concave portion having a circular cross section is formed at the inner tip of the input shaft d, and a bearing 25 is interposed between the concave portion and the inner tip portion 24 of the output shaft a '.
d are rotatably connected to each other. A plurality of carriers g, specifically, four carriers g at 90 ° intervals are provided on the outer periphery of the inner end of the input shaft d at equal angular intervals, and the casings are extended from the outer end of each carrier g. A rotary shaft 26 is provided so as to project toward the inside of 10. At the inner tip of the rotary shaft 26, two bearings 27,
A planetary gear c is rotatably mounted via 28, and the planetary gear c can rotate by meshing with both the sun gear a and the internal gear b, and the sun gear a around the input shaft d. It is designed so that it can freely revolve around.

【0017】そして前記ケーシング10の筐体11の側
面上部に二個のベアリング29,30を介して制御軸
e’が回転自在なるよう取付けられており、この制御軸
e’の内側先端部に形成されているセレーション部31
には前記外歯車fに噛み合う制御歯車eが固定されてい
る。次にこの実施例の無段減速機の作用について図1に
基づいて説明する。
A control shaft e'is rotatably mounted on the upper side surface of the casing 11 of the casing 10 via two bearings 29 and 30, and is formed at the inner tip of the control shaft e '. Serration unit 31
A control gear e that is meshed with the external gear f is fixed to the. Next, the operation of the continuously variable speed reducer of this embodiment will be described with reference to FIG.

【0018】まず、遊星歯車機構の変速比を算出するた
めに、重ね合わせ法により各歯車の回転数を求める。簡
単のために出力軸をa’、太陽歯車をa(回転数Na,
ピッチ円直径Da)、内歯車をb(回転数Nb,ピッチ
円直径Db)、遊星歯車をc(回転数Nc,ピッチ円直
径Dc)、入力軸d(回転数Nd)とすると、各歯車の
回転数は下記表1のように求められる。
First, in order to calculate the gear ratio of the planetary gear mechanism, the rotational speed of each gear is determined by the superposition method. For simplicity, the output shaft is a'and the sun gear is a (rotational speed Na,
Pitch circle diameter Da), internal gear b (rotation speed Nb, pitch circle diameter Db), planetary gear c (rotation speed Nc, pitch circle diameter Dc), input shaft d (rotation speed Nd) The rotation speed is obtained as shown in Table 1 below.

【0019】[0019]

【表1】 [Table 1]

【0020】この表1から遊星歯車機構における内歯車
bの回転数Nbは下記1式で与えられる。 Nb=Nd−(Na−Nd)Da/Db ……… (1) 前記1式より遊星歯車機構における入力軸dの回転数N
dは下記2式で与えられる。
From Table 1, the rotation speed Nb of the internal gear b in the planetary gear mechanism is given by the following equation. Nb = Nd- (Na-Nd) Da / Db (1) From the above equation 1, the rotational speed N of the input shaft d in the planetary gear mechanism is N.
d is given by the following two equations.

【0021】 Nd=(Nb+Na・Da/Db)/(1+Da/Db) ……… (2) 一方、本実施例の無段減速機を原理図化した図1におい
て、制御軸をe’、制御歯車をe(回転数Ne,ピッチ
円直径De)、外歯車をf(回転数Nf,ピッチ円直径
Df)とすると、外歯車fの回転数Nfは下記3式で与
えられる。 Nf=Ne・De/Df ……… (3) ところが外歯車fと内歯車bとは一体に回転するのでN
f=Nbとなり、本実施例の無段減速機における入力軸
dの回転数Ndは下記4式で,出力軸aの回転数Naは
下記5式で与えられる。
Nd = (Nb + Na · Da / Db) / (1 + Da / Db) (2) On the other hand, in FIG. 1, which illustrates the principle of the continuously variable speed reducer of this embodiment, the control axis is e ′, and the control is performed. When the gear is e (rotation speed Ne, pitch circle diameter De) and the external gear is f (rotation speed Nf, pitch circle diameter Df), the rotation speed Nf of the external gear f is given by the following three equations. Nf = Ne · De / Df (3) However, since the external gear f and the internal gear b rotate integrally, N
Since f = Nb, the rotational speed Nd of the input shaft d in the continuously variable speed reducer of the present embodiment is given by the following four equations, and the rotational speed Na of the output shaft a is given by the following five equations.

【0022】 Nd=(Ne・De/Df+Na・Da/Db)/(1+Da/Db) ……… (4) Na=(Db/Da+1)・Nd−(De/Df)(Db/Da)・Ne ……… (5) ここで実際に例えば前記太陽歯車aのピッチ円直径Da
を40mm、内歯車bのピッチ円直径Dbを440m
m、制御歯車eのピッチ円直径Deを40mm、外歯車
fのピッチ円直径Dfを400mmとすると、出力軸
a’の回転数Naは下記6式で与えられる。
Nd = (Ne * De / Df + Na * Da / Db) / (1 + Da / Db) ... (4) Na = (Db / Da + 1) * Nd- (De / Df) (Db / Da) * Ne (5) Here, for example, the pitch circle diameter Da of the sun gear a is actually
40 mm, the pitch circle diameter Db of the internal gear b is 440 m
m, the pitch circle diameter De of the control gear e is 40 mm, and the pitch circle diameter Df of the external gear f is 400 mm, the rotation speed Na of the output shaft a ′ is given by the following six equations.

【0023】 Na=12Nd−1.1Ne ……… (6) 上記6式からも明らかなように,本実施例の無段減速機
によれば、制御軸及び制御歯車の回転数を変更すること
により容易に出力軸の変速比及びその回転方向を変更す
ることができる。しかも軸力の伝達手段が歯車であるた
め、滑りが発生することもなく、高軸力、高減速比でも
効率よく伝達することができる。
Na = 12Nd-1.1Ne (6) As is clear from the above equation 6, according to the continuously variable speed reducer of the present embodiment, the rotational speeds of the control shaft and the control gear are changed. Thus, the gear ratio of the output shaft and the rotation direction thereof can be easily changed. Moreover, since the axial force transmitting means is a gear, slipping does not occur, and high axial force and high reduction ratio can be efficiently transmitted.

【0024】なお、6式において入力軸dの回転数Nd
が正方向であれば制御軸e’の回転数Neを負の方向
に,即ち遊星歯車cの公転方向と逆方向に回転させるこ
とで出力軸aの回転数Naを増速できることが分かる。
なお、前記6式において入力軸dが定格回転数Nd=1
00rpmで,出力軸a’が定格回転数Na=1800
rpmで回転するように、当該入力軸dが定格回転数以
下Nd≦100rpmでは下記7式に従って制御軸e’
の回転数Neを制御する。
In the formula 6, the rotation speed Nd of the input shaft d
If is positive, it can be seen that the rotational speed Na of the output shaft a can be increased by rotating the rotational speed Ne of the control shaft e ′ in the negative direction, that is, in the direction opposite to the revolution direction of the planetary gear c.
It should be noted that in the above equation 6, the input shaft d is the rated speed Nd = 1.
At 00 rpm, the output shaft a'has a rated speed Na = 1800
When the input shaft d is equal to or lower than the rated speed Nd ≦ 100 rpm so as to rotate at rpm, the control shaft e ′ is calculated according to the following seven equations.
The rotation speed Ne of is controlled.

【0025】 Ne=−5.45Nd ……… (7) 次に前記処理部6で行われる制御モータ4の出力制御ロ
ジックについて説明する。図3は本実施例の風力発電機
によって制御される風速と風車回転数の制御マップであ
る。この制御マップでは,風速が10m/s近辺になる
まで羽根を初期ピッチ角に保持して風車自体を風速に応
じて回転させる。風速が10m/s以上になるとピッチ
角制御を行って風車の回転を風速の増加に伴って150
rpmに漸近させる。風速が15m/s以上になると風
車の回転を150rpmに維持するようにピッチ角制御
を行う。風速がカットアウト風速25m/sに達すると
羽根を風向とほぼ平行にして風車の回転を完全に又はほ
ぼ停止させる。この時点で前記制御モータをフリー状態
にして発電機への出力伝達を停止する。
Ne = −5.45 Nd (7) Next, the output control logic of the control motor 4 performed in the processing section 6 will be described. FIG. 3 is a control map of wind speed and wind turbine speed controlled by the wind power generator of this embodiment. In this control map, the blades are held at the initial pitch angle until the wind speed is around 10 m / s, and the wind turbine itself is rotated according to the wind speed. When the wind speed becomes 10 m / s or more, the pitch angle control is performed to rotate the wind turbine by 150 with the increase of the wind speed.
Asymptotic to rpm. When the wind speed becomes 15 m / s or more, pitch angle control is performed so that the rotation of the wind turbine is maintained at 150 rpm. When the wind speed reaches the cutout wind speed of 25 m / s, the blades are made substantially parallel to the wind direction to completely or almost stop the rotation of the wind turbine. At this point, the control motor is set to the free state to stop the output transmission to the generator.

【0026】図4は風速と発電機回転数の制御マップで
あり、応答性の遅いピッチ角制御だけでは制御しきれな
い発電機への出力を,前記処理部6において前記6式に
基づいて行われる制御モータの出力制御によって制御す
る。同図では発電機の定格風速8m/sまで風速に応じ
て発電機を回転させ、定格風速以上で定格回転数180
0rpmに保持して回転させる。
FIG. 4 is a control map of the wind speed and the generator rotation speed. The output to the generator which cannot be controlled only by the pitch angle control having a slow response is carried out by the processing unit 6 based on the equation (6). Controlled by the output control of the control motor. In the figure, the generator is rotated according to the wind speed up to the rated wind speed of 8 m / s.
Hold at 0 rpm and rotate.

【0027】図5は,前記図4の制御マップに従う発電
機回転数制御下での風速と出力との制御マップである。
同図では,カットイン風速3m/sで出力が開始され、
定格風速8m/s以上で定格出力5kWに保持される。
また、カットアウト風速25m/sで出力が停止され
る。この制御マップによる実際の制御の一例を図6のタ
イムチャートに基づいて説明する。
FIG. 5 is a control map of wind speed and output under control of the generator rotational speed according to the control map of FIG.
In the figure, output starts at a cut-in wind speed of 3 m / s,
The rated output is maintained at 5 kW at a rated wind speed of 8 m / s or higher.
Further, the output is stopped at the cutout wind speed of 25 m / s. An example of actual control by this control map will be described based on the time chart of FIG.

【0028】同図における時刻t1 で風速は0m/sで
あり、そこから増速して時刻t1 〜時刻t6 の間で風速
はほぼ10m/sである。また、時刻t6 〜時刻t7
は風速は15m/sに増速変化した。更に、時刻t7
時刻t10では風速が徐々に減速し、時刻t10で風速は0
m/sになった。一方、前記時刻t1 〜時刻t6 の間に
おける時刻t4 〜時刻t5 間では風速が10m/sに対
して±2m/sの範囲で変動した。
At time t 1 in the figure, the wind speed is 0 m / s, and from there, the wind speed is approximately 10 m / s between time t 1 and time t 6 . In addition, the wind speed at the time t 6 ~ time t 7 was accelerated change to 15m / s. In addition, time t 7 ~
At time t 10 , the wind speed gradually decreases, and at time t 10 , the wind speed becomes 0.
It became m / s. On the other hand, the wind speed varies in the range of ± 2m / s with respect to 10 m / s in between time t 4 ~ time t 5 between the times t 1 ~ time t 6.

【0029】このタイムチャートで入力軸dの回転数N
dが時刻t1 から増大し、時刻t2で定格回転数Nd=
100rpmに達すると前記7式に従って制御軸e’は
負の方向に回転数Ne=545rpmまで増速され、こ
の時点で出力軸a’は定格回転数Na=1800rpm
で回転して定格運転に入り,同時に定格出力5kWを出
力する。
In this time chart, the rotation speed N of the input shaft d
d increases from time t 1 , and at time t 2 , the rated speed Nd =
When reaching 100 rpm, the control shaft e ′ is accelerated in the negative direction to the rotation speed Ne = 545 rpm according to the above equation 7, and at this time, the output shaft a ′ has the rated rotation speed Na = 1800 rpm.
Rotate at to enter the rated operation, and at the same time output the rated output of 5 kW.

【0030】時刻t2 〜時刻t3 間で更に風速は増速す
るために入力軸dの回転数Ndは時刻t3 で125rp
mまで増大するが、この時間t2 〜t3 でも出力軸aを
定格回転数1800rpmに保持するために前記6式に
従って制御軸e’の回転数Neは徐々に減少され、前記
時刻t3 では負の方向で回転数Ne=273rpmまで
減速される。
Since the wind speed is further increased between time t 2 and time t 3 , the rotation speed Nd of the input shaft d is 125 rp at time t 3 .
Although increased to m, the rotational speed Ne of the time t 2 ~t 3 even control shaft in accordance with the equation (6) the output shaft a in order to hold the rated speed 1800 rpm e 'is gradually reduced, in the time t 3 In the negative direction, the speed is reduced to Ne = 273 rpm.

【0031】そして、時刻t3 〜時刻t4 間で風速が1
0m/sに安定すると入力軸dの回転数Ndは125r
pmに,制御軸e’の回転数Neは同じく負の方向に2
73rpmに保持されるため、出力軸a’は定格回転数
1800rpmで回転し続け,定格出力5kWが保持さ
れる。一方、時刻t4 〜時刻t5 間で風速が10m/s
に対して±2m/sで変動すると入力軸dの回転数Nd
は100〜144rpmの範囲で変動する。この変動に
応じて制御軸e’の回転数Neは負の方向で545〜6
5rpmの範囲で回転数制御されるために、出力軸a’
は定格回転数Na=1800rpmに保持され、定格出
力5kWが出力され続ける。こうした変動率の大きい入
力エネルギー変動があっても,制御軸への出力制御を電
気的に行う本実施例の風力発電機では、十分な応答性を
発揮して安定した定格出力を保持することができる。
The wind speed is 1 between time t 3 and time t 4.
When stabilized at 0 m / s, the rotation speed Nd of the input shaft d is 125 r
pm, the rotation speed Ne of the control axis e ′ is also 2 in the negative direction.
Since the output shaft a ′ is held at 73 rpm, the output shaft a ′ continues to rotate at the rated rotation speed of 1800 rpm, and the rated output of 5 kW is held. On the other hand, the wind speed is 10 m / s between time t 4 and time t 5.
When it fluctuates by ± 2 m / s, the rotation speed Nd of the input shaft d
Fluctuates in the range of 100 to 144 rpm. According to this fluctuation, the rotation speed Ne of the control shaft e ′ is 545-6 in the negative direction.
Since the rotation speed is controlled within the range of 5 rpm, the output shaft a '
Is maintained at the rated rotation speed Na = 1800 rpm, and the rated output of 5 kW continues to be output. Even if there is such a large fluctuation in input energy, the wind power generator of this embodiment that electrically controls the output to the control axis can exhibit sufficient responsiveness and maintain a stable rated output. it can.

【0032】次いで、前記時刻t6 から風速が増速する
とそれに合わせて入力軸dの回転数Ndも増大し、やが
て限界回転数Nd=150rpmまで増速されると,出
力軸a’を定格回転数Na=1800rpmに保持する
ように制御軸e’の回転数Neを負の方向で0rpmま
で減速する。そして、制御軸e’の回転数Ne=0rp
mとなったら前記制御モータのブレーキを作動して制御
軸e’が回転しないようにする。
Next, when the wind speed increases from the time t 6, the rotation speed Nd of the input shaft d also increases accordingly, and when the rotation speed is increased to the limit rotation speed Nd = 150 rpm, the output shaft a ′ is rotated at the rated speed. The rotation speed Ne of the control shaft e ′ is decelerated to 0 rpm in the negative direction so as to keep the number Na = 1800 rpm. Then, the number of revolutions Ne of the control axis e'Ne = 0 rp
When it becomes m, the brake of the control motor is operated to prevent the control shaft e ′ from rotating.

【0033】次いで前記時刻t7 から風速が減速し始
め,時刻t8 で8m/sとなると、入力軸dの回転数N
dは前記限界回転数150rpmから100rpmまで
減少する。この場合,前記時刻t7 からの入力軸回転数
の変動に合わせて制御モータのブレーキを解除し、当該
時刻t7 から前記6式に従って出力軸a’が定格回転数
Na=1800rpmに保持されるように制御軸e’を
負の方向に回転数Ne=545rpmまで増速し、定格
出力5kWを安定供給できるようにする。
Next, when the wind speed starts decelerating from the time t 7 and reaches 8 m / s at the time t 8 , the rotation speed N of the input shaft d
d is decreased from the limit rotation speed of 150 rpm to 100 rpm. In this case, to release the brake of the control motor in accordance with the input shaft rotational speed variation from the time t 7, the output shaft a 'is kept at the rated rotational speed Na = 1800 rpm according to the equation (6) from the time t 7 In this way, the control shaft e ′ is accelerated in the negative direction to the rotation speed Ne = 545 rpm so that the rated output of 5 kW can be stably supplied.

【0034】そして時刻t8 〜時刻t9 間で風速が8m
/sに安定すると入力軸dの回転数Ndは100rpm
に,制御軸e’の回転数Neは同じく負の方向に545
rpmに保持されるため、出力軸a’は定格回転数Na
=1800rpmで回転し続け,定格出力5kWが保持
される。次いで時刻t9 から風速が定格風速8m/s以
下に減少すると入力軸dの回転数Ndは100rpm以
下となるため、制御軸e’の回転数Neは前記7式に従
って負の方向に回転制御されるが、出力軸a’の回転数
Naは,入力軸dの回転数Ndの減少に伴って徐々に減
少し、時刻t10でNa=0rpmまで減速されて出力が
停止される。
The wind speed is 8 m between time t 8 and time t 9.
When stabilized at / s, the rotation speed Nd of the input shaft d is 100 rpm
In addition, the rotation speed Ne of the control shaft e ′ is also 545 in the negative direction.
Since the output shaft a'is held at rpm, the rated rotation speed Na is
= 1800 rpm continues to rotate and the rated output of 5 kW is maintained. Next, when the wind speed decreases to the rated wind speed of 8 m / s or less from the time t 9, the rotation speed Nd of the input shaft d becomes 100 rpm or less, and therefore the rotation speed Ne of the control shaft e ′ is rotationally controlled in the negative direction according to the above expression 7. However, the rotation speed Na of the output shaft a ′ gradually decreases as the rotation speed Nd of the input shaft d decreases, and at time t 10 the output is decelerated to Na = 0 rpm and the output is stopped.

【0035】こうした制御によって風速が定格風速8m
/s以上となる時刻t2 〜時刻t9間では常時安定した
定格出力5kWを得ることができる。なお、本実施例の
処理部が本発明の演算制御装置に相当するが、この演算
制御装置は必ずしも本実施例のようにマイクロコンピュ
ータである必要はなく、同等の機能を有する理論回路に
よって構成してもよい。しかしながら、制御の多様性や
応答性を考慮するとコンピュータで処理する方が望まし
い。
With such control, the wind speed is the rated wind speed of 8 m.
In between / s or more to become the time t 2 ~ time t 9 can be obtained stably at all times the rated output 5 kW. Although the processing unit of the present embodiment corresponds to the arithmetic and control unit of the present invention, this arithmetic and control unit does not necessarily have to be a microcomputer as in the present embodiment, and is constituted by a theoretical circuit having an equivalent function. May be. However, it is more preferable to process by computer in consideration of control diversity and responsiveness.

【0036】また、本実施例では制御軸及び出力軸の制
御を図6のようにアナログ的に行うこととしたが、これ
をディジタル的に制御することも勿論可能であり、実際
にはその方がロジックを構築し易いこともある。
Further, in the present embodiment, the control of the control axis and the output axis is performed in an analog manner as shown in FIG. 6, but it is of course possible to control this digitally. Can be easy to build logic.

【0037】[0037]

【発明の効果】以上説明したように本発明の変速出力装
置によれば、遊星歯車減速機構を有する無段変速機にお
いて,制御モータ等の制御出力を制御することにより制
御軸及び制御歯車の回転数を制御して変速比を変更制御
し、これにより入力軸の回転数が変動しても出力軸の回
転数は所望の状態に制御することが可能であり、無段変
速機の入力軸及び/又は出力軸の回転数から,出力軸か
らの定格出力が維持されるように前記制御出力を制御す
ることで安定した出力特性を得ることができるため、こ
うした制御を電気的に行うことにより十分な応答性を発
揮して出力特性の変動を抑制することができ、前記変速
比を制御する際には変速機効率が最大になるように,前
記制御出力発生装置の制御出力を制御することで風力エ
ネルギー等のエネルギー密度の低いエネルギー源からも
十分な出力特性を安定して得ることができる。
As described above, according to the shift output device of the present invention, in the continuously variable transmission having the planetary gear reduction mechanism, the control output of the control motor or the like is controlled to rotate the control shaft and the control gear. The speed of the output shaft can be controlled to a desired state even if the rotation speed of the input shaft fluctuates. By controlling the control output so that the rated output from the output shaft is maintained from the number of rotations of the output shaft, stable output characteristics can be obtained. Therefore, it is sufficient to perform such control electrically. By controlling the control output of the control output generator so that the transmission efficiency can be suppressed and the transmission efficiency can be maximized when the gear ratio is controlled. Energy such as wind energy It can be stably obtained sufficient output characteristics from the low energy source of ghee density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の変速出力装置を用いた風力発電機の一
実施例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a wind power generator using a variable speed output device of the present invention.

【図2】図1の実施例の風力発電機に使用された無段減
速機の一例を示す一部断面正面図である。
FIG. 2 is a partial sectional front view showing an example of a continuously variable reduction gear used in the wind power generator of the embodiment of FIG.

【図3】図1の風力発電機で行われる出力制御における
風速−風車回転数の制御マップの一例を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an example of a wind velocity-wind turbine rotation speed control map in output control performed by the wind power generator of FIG. 1.

【図4】図1の風力発電機で行われる出力制御における
風速−発電機回転数の制御マップの一例を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing an example of a control map of wind speed-generator rotation speed in output control performed by the wind power generator of FIG. 1.

【図5】図1の風力発電機で行われる出力制御における
風速−出力の制御マップである。
5 is a wind speed-output control map in output control performed by the wind power generator of FIG. 1. FIG.

【図6】図1の風力発電機で行われる出力制御において
入力軸と制御軸及び出力軸の回転数制御の一例を示すタ
イムチャート図である。
FIG. 6 is a time chart showing an example of rotation speed control of the input shaft, the control shaft, and the output shaft in the output control performed by the wind power generator of FIG. 1.

【符号の説明】[Explanation of symbols]

1は無段変速機 2は風車 3は発電機 4は制御モータ 5a,5bは回転数検出素子 6は処理部 a’は出力軸 aは太陽歯車 bは内歯車 cは遊星歯車 dは入力軸 e’は制御軸 eは制御歯車 fは外歯車 gはキャリア 1 is a continuously variable transmission 2 is a wind turbine 3 is a generator 4 is a control motor 5a, 5b is a rotation speed detection element 6 is a processing unit a'is an output shaft a is a sun gear b is an internal gear c is a planetary gear d is an input shaft e'is a control shaft e is a control gear f is an external gear g is a carrier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 風車等の出力変動の大きい低速回転原出
力装置から安定した定格出力を得るための変速出力装置
であって、前記回転する原出力装置の出力を定格出力に
変速するための遊星歯車変速機構を用いた無段変速機
と、前記無段変速機の変速比を制御する制御手段とを有
し、前記無段変速機は、太陽歯車に連結された出力軸
と、前記出力軸の周囲に回転自在に取付けられた内歯車
が一体的に形成された外歯車と、前記外歯車に噛合う制
御歯車に連結された制御軸と、前記太陽歯車に噛合って
公転可能で且つ太陽歯車と内歯車との両者に噛合って自
転可能な遊星歯車と、前記遊星歯車の公転軸を回転自在
に保持して当該遊星歯車に連結された入力軸とを備え、
前記原出力装置を前記無段変速機の入力軸に直接又は間
接に連結し、前記制御手段を前記無段変速機の制御軸に
直接又は間接に連結したことを特徴とする変速出力装
置。
1. A variable speed output device for obtaining a stable rated output from a low-speed rotating raw output device such as a wind turbine with large output fluctuation, and a planet for shifting the output of the rotating raw output device to the rated output. A continuously variable transmission using a gear transmission mechanism, and a control means for controlling a gear ratio of the continuously variable transmission, wherein the continuously variable transmission has an output shaft connected to a sun gear and the output shaft. An external gear integrally formed with an internal gear rotatably attached to the periphery of the rotor, a control shaft connected to a control gear that meshes with the external gear, and a sun that meshes with the sun gear and can revolve. A planetary gear that meshes with both the gear and the internal gear and can rotate, and an input shaft that is rotatably holding the revolution shaft of the planetary gear and that is connected to the planetary gear,
A shift output device, wherein the original output device is directly or indirectly connected to an input shaft of the continuously variable transmission, and the control means is directly or indirectly connected to a control shaft of the continuously variable transmission.
【請求項2】 前記制御手段は、前記無段変速機の入力
軸及び/又は出力軸の回転数を検出する検出装置と、前
記制御軸に制御出力を付与する制御出力発生装置と、前
記検出装置により検出された回転数に応じて,前記無段
変速機の出力軸からの出力が定格出力に維持されるよう
に,前記制御出力発生装置の制御出力を制御する演算制
御装置を備えたことを特徴とする請求項1に記載の変速
出力装置。
2. The control means includes a detection device that detects the rotational speed of an input shaft and / or an output shaft of the continuously variable transmission, a control output generation device that applies a control output to the control shaft, and the detection device. An arithmetic and control unit is provided for controlling the control output of the control output generator so that the output from the output shaft of the continuously variable transmission is maintained at a rated output in accordance with the number of revolutions detected by the device. The variable speed output device according to claim 1.
JP4349320A 1992-12-28 1992-12-28 Variable speed output device Pending JPH06200864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4349320A JPH06200864A (en) 1992-12-28 1992-12-28 Variable speed output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4349320A JPH06200864A (en) 1992-12-28 1992-12-28 Variable speed output device

Publications (1)

Publication Number Publication Date
JPH06200864A true JPH06200864A (en) 1994-07-19

Family

ID=18402981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4349320A Pending JPH06200864A (en) 1992-12-28 1992-12-28 Variable speed output device

Country Status (1)

Country Link
JP (1) JPH06200864A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030669A1 (en) * 1995-03-27 1996-10-03 Chan Shin A variable r.p.m. converting planetary gear system
JP2005287215A (en) * 2004-03-30 2005-10-13 Daiwa House Ind Co Ltd Generator with rotating speed-increasing function and motor with rotating speed-reducing function
CN101793238A (en) * 2010-03-15 2010-08-04 岑益南 Differential variable pitch device of wind turbine blades of wind turbine generator
CN101839308A (en) * 2009-03-16 2010-09-22 住友重机械工业株式会社 Reduction gear for natural energy recovery system
JP2011529539A (en) * 2007-07-30 2011-12-08 オルビタル2 リミテッド Improvements in and related to power generation by fluid flow
US8092171B2 (en) 2009-09-30 2012-01-10 General Electric Company Systems and methods for assembling a pitch assembly for use in a wind turbine
CN102904517A (en) * 2011-07-29 2013-01-30 中山大学 Maximum power tracking control method for excitation synchronous generator
KR101643144B1 (en) * 2015-03-27 2016-07-27 남부대학교산학협력단 Performance evaluation system of active control system for wind turbine
KR101643143B1 (en) * 2015-03-27 2016-07-27 남부대학교산학협력단 Active control system for wind turbine
US9444379B2 (en) 2011-07-29 2016-09-13 National Sun Yat-Sen University Wind power excitation synchronous generation system having maximum power determining unit and control method thereof
KR101985149B1 (en) * 2018-04-05 2019-06-03 손순영 Variable speed transmission for wind turbine generation using motor and planetary gear mechanism

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030669A1 (en) * 1995-03-27 1996-10-03 Chan Shin A variable r.p.m. converting planetary gear system
JP2005287215A (en) * 2004-03-30 2005-10-13 Daiwa House Ind Co Ltd Generator with rotating speed-increasing function and motor with rotating speed-reducing function
JP4550459B2 (en) * 2004-03-30 2010-09-22 大和ハウス工業株式会社 Generator with rotation speed increasing function
JP2011529539A (en) * 2007-07-30 2011-12-08 オルビタル2 リミテッド Improvements in and related to power generation by fluid flow
CN101839308A (en) * 2009-03-16 2010-09-22 住友重机械工业株式会社 Reduction gear for natural energy recovery system
US8092171B2 (en) 2009-09-30 2012-01-10 General Electric Company Systems and methods for assembling a pitch assembly for use in a wind turbine
CN101793238A (en) * 2010-03-15 2010-08-04 岑益南 Differential variable pitch device of wind turbine blades of wind turbine generator
CN102904517A (en) * 2011-07-29 2013-01-30 中山大学 Maximum power tracking control method for excitation synchronous generator
JP2013034361A (en) * 2011-07-29 2013-02-14 National Sun Yat-Sen Univ Excitation synchronous power generation system for wind power generation and control method thereof
CN102904517B (en) * 2011-07-29 2015-04-15 中山大学 Maximum power tracking control method for excitation synchronous generator
US9444379B2 (en) 2011-07-29 2016-09-13 National Sun Yat-Sen University Wind power excitation synchronous generation system having maximum power determining unit and control method thereof
KR101643144B1 (en) * 2015-03-27 2016-07-27 남부대학교산학협력단 Performance evaluation system of active control system for wind turbine
KR101643143B1 (en) * 2015-03-27 2016-07-27 남부대학교산학협력단 Active control system for wind turbine
KR101985149B1 (en) * 2018-04-05 2019-06-03 손순영 Variable speed transmission for wind turbine generation using motor and planetary gear mechanism

Similar Documents

Publication Publication Date Title
US5904631A (en) Dual electric motor drive with planetary gearing
US3974396A (en) Electric generator arrangement
KR100754790B1 (en) Wind powered generator
US6379115B1 (en) Windmill and windmill control method
JPH10246173A (en) Planetary accelerator
EP0635639A1 (en) Improved wind turbine transmission
KR960001479A (en) Combined input wind turbine
JPH06200864A (en) Variable speed output device
JPH02157483A (en) Wind power generating device
AU2005246966A1 (en) Wind turbine generator
GB2429342A (en) Turbine powered electricity generation apparatus
JP2004353637A (en) Self-rotating blade/vertical shaft type wind mill
GB2514526A (en) Aerodynamic dead zone-less triple-rotor integrated wind power driven system
WO1995031657A1 (en) Driving unit for an industrial robot
KR0163825B1 (en) Gearing device with a change input and normal speed output
CN214036723U (en) Stepless speed change mechanism
JP2001107838A (en) Windmill and its control method
JP2005287215A (en) Generator with rotating speed-increasing function and motor with rotating speed-reducing function
JP2002155850A (en) Wind power generation system with flywheel
CN108708832A (en) Wind-power electricity generation stepless speed-regulating device
KR20180068325A (en) Generators that generate electricity by the weight of the motor
KR101985149B1 (en) Variable speed transmission for wind turbine generation using motor and planetary gear mechanism
KR20000018280A (en) Generating system by mainspring storing device of wind force energy
CN113513452A (en) Floating type fan and damping pool platform structure thereof
JP2003189690A (en) Motor system comprising more than one motor