JPH06200030A - Production of silsesquioxane polymer - Google Patents
Production of silsesquioxane polymerInfo
- Publication number
- JPH06200030A JPH06200030A JP36135192A JP36135192A JPH06200030A JP H06200030 A JPH06200030 A JP H06200030A JP 36135192 A JP36135192 A JP 36135192A JP 36135192 A JP36135192 A JP 36135192A JP H06200030 A JPH06200030 A JP H06200030A
- Authority
- JP
- Japan
- Prior art keywords
- group
- silane compound
- silsesquioxane polymer
- polymer
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Silicon Polymers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はシルセスキオキサンポリ
マーの製造法に関する。FIELD OF THE INVENTION The present invention relates to a method for producing silsesquioxane polymers.
【0002】[0002]
【従来の技術】後記一般式(1)で表されるシラン化合
物を加水分解及び脱水縮合させたシルセスキオキサンポ
リマーは、電子回路の保護、層間絶縁膜の材料などに利
用されている。かかるシルセスキオキサンポリマーの製
法としては有機溶媒中、フェニルトリクロロシランを充
分な水で加水分解及び脱水縮合させる方法(ジャーナル
オブ アメリカン ケミカル ソサイテイ、第82巻、
第6194〜6195頁、1960年、特公昭40−1
5989号公報)が知られている。しかし、この方法は
脱水縮合反応の制御が容易でないこと、目的物の収率が
低いこと、シラン化合物としてアルキルトリクロロシラ
ンのような反応性の高いものを用いた場合はゲル化が進
行し目的物が得られないことなどの欠点があった。2. Description of the Related Art A silsesquioxane polymer obtained by hydrolyzing and dehydrating and condensing a silane compound represented by the following general formula (1) is used for protection of electronic circuits, materials for interlayer insulating films and the like. The silsesquioxane polymer may be produced by hydrolyzing and dehydrating and condensing phenyltrichlorosilane with sufficient water in an organic solvent (Journal of American Chemical Society, Vol. 82,
Pp. 6194-6195, 1960, Japanese Patent Publication No. 40-1
No. 5989) is known. However, this method is not easy to control the dehydration condensation reaction, the yield of the target product is low, and when a highly reactive one such as alkyltrichlorosilane is used as the silane compound, gelation progresses and the target product is obtained. There were drawbacks such as not being able to obtain.
【0003】そこで、シラン化合物の種類に関係なく、
目的物を収率良く得る方法として、シラン化合物の加水
分解及び脱水縮合をケトンと水との界面において行わせ
る方法(特開昭50−111198号公報)が開発され
た。しかし、この方法では、界面下に反応を実施させる
ために加熱や攪拌などを界面の形態を壊さないよう制御
する必要があり、操作性に劣るという欠点があった。Therefore, regardless of the type of silane compound,
As a method for obtaining a desired product in a high yield, a method has been developed in which hydrolysis and dehydration condensation of a silane compound are carried out at the interface between a ketone and water (Japanese Patent Laid-Open Publication No. 50-111198). However, in this method, it is necessary to control heating and stirring so as not to destroy the morphology of the interface in order to carry out the reaction under the interface, and there is a drawback that the operability is poor.
【0004】一方、シラン化合物を−50℃以下に冷却
し、塩基性化合物の存在下に加水分解後、100℃程度
の高温で脱水縮合させる方法が知られている。しかし、
この方法では高温下で縮合させるため反応の制御が難し
いという問題点があった。On the other hand, a method is known in which a silane compound is cooled to -50 ° C or lower, hydrolyzed in the presence of a basic compound, and then dehydrated and condensed at a high temperature of about 100 ° C. But,
This method has a problem that it is difficult to control the reaction because the condensation is performed at a high temperature.
【0005】[0005]
【発明が解決しようとする課題】本発明者らはかかる従
来技術の欠点を解決すべく鋭意検討した結果、シラン化
合物の加水分解及び脱水縮合を、カルボン酸金属塩の水
和物と含酸素有機溶媒との存在下に実施すれば、穏和な
条件下、操作性に優れた方法でシラン化合物の種類に関
係なく収率良く目的物を得ることができることを見出
し、この知見に基づいて本発明を完成するに到った。DISCLOSURE OF THE INVENTION As a result of intensive studies made by the present inventors in order to solve the above-mentioned drawbacks of the prior art, the hydrolysis and dehydration condensation of a silane compound were carried out by using a hydrate of a carboxylic acid metal salt and an oxygen-containing organic compound. If carried out in the presence of a solvent, it was found that, under mild conditions, the desired product can be obtained in good yield regardless of the type of silane compound by a method with excellent operability, and the present invention is based on this finding. It came to completion.
【0006】[0006]
【課題を解決する為の手段】かくして本発明によればカ
ルボン酸金属塩の水和物と含酸素有機溶媒との存在下
に、シラン化合物を加水分解及び脱水縮合させることを
特徴とするシルセスキオキサンポリマーの製造法が提供
される。Thus, according to the present invention, a silsesqui characterized in that a silane compound is hydrolyzed and dehydrated and condensed in the presence of a hydrate of a carboxylic acid metal salt and an oxygen-containing organic solvent. A method of making an oxane polymer is provided.
【0007】本発明において原料となるシラン化合物は
下記一般式(1)で表される。The silane compound as a raw material in the present invention is represented by the following general formula (1).
【化1】 (式中、Rは水素原子または置換基を有していてもよい
炭化水素残基、Aは加水分解性基を示す。また、xは1
または2を示す。)[Chemical 1] (In the formula, R represents a hydrogen atom or a hydrocarbon residue which may have a substituent, A represents a hydrolyzable group, and x represents 1
Or 2 is shown. )
【0008】Rの具体例としては、水素原子;メチル
基、エチル基、プロピル基、イソプロピル基、ブチル
基、イソブチル基、ペンチル基、ヘプチル基、ノニル基
などのアルキル基;ビニル基、プロペニル基、アリル
基、ブテニル基、メタリル基などのアルケニル基;エチ
ニル基、プロピニル基、ブチニル基などのアルキニル
基;シクロペンチル基、シクロヘキシル基などのシクロ
アルキル基;シクロペンテニル基、シクロヘキセニル基
などのシクロアルケニル基;フェニル基、ナフチル基な
どのアリール基などの炭化水素残基、またはこれらの炭
化水素残基の水素原子がハロゲン原子で置換されたもの
などが挙げられる。なかでも、アルキル基、アリール基
が賞用される。Specific examples of R include hydrogen atom; alkyl group such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, heptyl group and nonyl group; vinyl group, propenyl group, Alkenyl groups such as allyl group, butenyl group, methallyl group; alkynyl groups such as ethynyl group, propynyl group, butynyl group; cycloalkyl groups such as cyclopentyl group, cyclohexyl group; cycloalkenyl groups such as cyclopentenyl group, cyclohexenyl group; Examples thereof include a hydrocarbon residue such as an aryl group such as a phenyl group and a naphthyl group, or one in which a hydrogen atom of these hydrocarbon residues is substituted with a halogen atom. Among them, the alkyl group and the aryl group are prized.
【0009】Aは加水分解性基であり、具体的には塩
素、臭素、ヨウ素などのハロゲン原子;メトキシ基、エ
トキシ基、プロポキシ基、ブトキシ基などのアルコキシ
基;アリルオキシ基のようなアルケニルオキシ基;フェ
ノキシ基、ナフトキシ基などのアリールオキシ基;シク
ロペンテニルオキシ基のようなシクロアルケニルオキシ
基;ホルミル基、アセトキシ基、プロピオニルオキシ基
などのアシルオキシ基などが挙げられる。なかでもハロ
ゲン原子が賞用される。A is a hydrolyzable group, specifically, a halogen atom such as chlorine, bromine or iodine; an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group or a butoxy group; an alkenyloxy group such as an allyloxy group. An aryloxy group such as a phenoxy group and a naphthoxy group; a cycloalkenyloxy group such as a cyclopentenyloxy group; an acyloxy group such as a formyl group, an acetoxy group and a propionyloxy group. Among them, halogen atoms are prized.
【0010】本発明においてはシラン化合物の加水分解
及び脱水縮合反応をカルボン酸金属塩の水和物と含酸素
有機溶媒との存在下に実施する。用いられるカルボン酸
金属塩の水和物は蟻酸、酢酸、プロピオン酸、酪酸、吉
草酸、シュウ酸、マロン酸、酒石酸、安息香酸などのカ
ルボン酸のアルカリ金属塩、アルカリ土類金属塩、遷移
金属塩などの水和物が例示される。In the present invention, the hydrolysis and dehydration condensation reaction of the silane compound are carried out in the presence of a hydrate of a carboxylic acid metal salt and an oxygen-containing organic solvent. The carboxylic acid metal salt hydrates used are alkali metal salts, alkaline earth metal salts, and transition metal salts of carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, oxalic acid, malonic acid, tartaric acid, and benzoic acid. A hydrate such as a salt is exemplified.
【0011】カルボン酸金属塩の水和物の使用量はシラ
ン化合物1モルに対し0.1〜20モル、好ましくは1
〜10モルである。The amount of the hydrate of the carboxylic acid metal salt used is 0.1 to 20 mols, preferably 1 mol, relative to 1 mol of the silane compound.
10 to 10 mol.
【0012】含酸素有機溶媒としてはケトン類、エーテ
ル類、エステル類などが用いられる。具体的には、メチ
ルエチルケトン、ジエチルケトン、メチルイソブチルケ
トン、ジイソプロピルケトン、アセチルアセトン、シク
ロヘキサノン、メチルシクロヘキサノン、イソホロンな
どのケトン類;ジメチルエーテル、メチルエチルエーテ
ル、ジエチルエーテル、エチルプロピルエーテル、ジプ
ロピルエーテル、ジイソプロピルエーテル、ジブチルエ
ーテル、ジイソブチルエーテル、エチレングリコールジ
メチルエーテル、ジエチレングリコールジメチルエーテ
ル、テトラヒドロフランなどのエーテル類;蟻酸エチ
ル、酢酸エチル、酢酸プロピル、酢酸ブチル、安息香酸
エチルなどのエステル類などが挙げられる。なかでも、
ケトン類が賞用される。これらは、単独で用いても、2
種以上を混合して用いてもよい。As the oxygen-containing organic solvent, ketones, ethers, esters and the like are used. Specifically, ketones such as methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, diisopropyl ketone, acetylacetone, cyclohexanone, methylcyclohexanone, and isophorone; dimethyl ether, methyl ethyl ether, diethyl ether, ethyl propyl ether, dipropyl ether, diisopropyl ether, Examples thereof include ethers such as dibutyl ether, diisobutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran; esters such as ethyl formate, ethyl acetate, propyl acetate, butyl acetate, and ethyl benzoate. Above all,
Ketones are prized. These can be used alone or 2
You may mix and use 1 or more types.
【0013】含酸素有機溶媒の使用量はシラン化合物に
対し、1〜100重量倍、好ましくは1〜50重量倍で
ある。The amount of the oxygen-containing organic solvent used is 1 to 100 times, preferably 1 to 50 times the weight of the silane compound.
【0014】反応温度は通常、0〜60℃、好ましくは
5〜40℃である。反応時間も通常、0.5〜5時間で
ある。The reaction temperature is usually 0 to 60 ° C, preferably 5 to 40 ° C. The reaction time is usually 0.5 to 5 hours.
【0015】反応終了後は、常法に従い目的物を反応系
から単離することができる。After completion of the reaction, the desired product can be isolated from the reaction system by a conventional method.
【0016】かくして、本発明によれば従来技術に比べ
て穏和な条件下、操作性に優れた方法で、シラン化合物
の種類に関係なく収率良く目的物を得ることができる。Thus, according to the present invention, the desired product can be obtained in a good yield regardless of the kind of the silane compound by a method having excellent operability under milder conditions than the prior art.
【0017】[0017]
【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明する。なお、実施例及び比較例中の部及び%は特
に断りのないかぎり重量基準である。EXAMPLES The present invention will be described in more detail with reference to the following examples. Parts and% in the examples and comparative examples are based on weight unless otherwise specified.
【0018】実施例1 酢酸亜鉛二水和物0.15モルとメチルイソブチルケト
ン50ミリリットルを攪拌し、室温下、これにメチルイ
ソブチルケトン50ミリリットルに希釈したメチルトリ
クロロシラン0.1モルを50分かけて滴下した。滴下
後、50分攪拌し反応させた。反応後は反応液を濾過し
て析出した塩化亜鉛を除去し、濾液を水洗し、有機層を
硫酸マグネシウムにより乾燥した。その結果、重量平均
分子量21000のメチルシルセスキオキサンポリマー
が収率86%で得られた。メチルシルセスキオキサンポ
リマーであることの確認は赤外吸収スペクトル分析によ
り行った。Example 1 0.15 mol of zinc acetate dihydrate and 50 ml of methyl isobutyl ketone were stirred, and at room temperature, 0.1 mol of methyltrichlorosilane diluted to 50 ml of methyl isobutyl ketone was added over 50 minutes. Was dropped. After the dropping, the mixture was stirred for 50 minutes and reacted. After the reaction, the reaction solution was filtered to remove the deposited zinc chloride, the filtrate was washed with water, and the organic layer was dried with magnesium sulfate. As a result, a methylsilsesquioxane polymer having a weight average molecular weight of 21,000 was obtained with a yield of 86%. It was confirmed by infrared absorption spectrum analysis that the polymer was a methylsilsesquioxane polymer.
【0019】実施例2 酢酸亜鉛二水和物0.15モルとメチルイソブチルケト
ン50ミリリットルを攪拌し、室温下、これにメチルイ
ソブチルケトン50ミリリットルに希釈したフェニルト
リクロロシラン0.1モルを50分かけて滴下した。滴
下後、50分攪拌し反応させた。反応後は反応液を濾過
して析出した塩化亜鉛を除去し、濾液を水洗し、有機層
を硫酸マグネシウムにより乾燥した。その結果、重量平
均分子量1000のフェニルシルセスキオキサンポリマ
ーが収率84%で得られた。フェニルシルセスキオキサ
ンポリマーであることの確認は赤外吸収スペクトル分析
により行った。Example 2 0.15 mol of zinc acetate dihydrate and 50 ml of methyl isobutyl ketone were stirred, and at room temperature, 0.1 mol of phenyltrichlorosilane diluted with 50 ml of methyl isobutyl ketone was added over 50 minutes. Was dropped. After the dropping, the mixture was stirred for 50 minutes and reacted. After the reaction, the reaction solution was filtered to remove the deposited zinc chloride, the filtrate was washed with water, and the organic layer was dried with magnesium sulfate. As a result, a phenylsilsesquioxane polymer having a weight average molecular weight of 1000 was obtained with a yield of 84%. It was confirmed by infrared absorption spectrum analysis that the polymer was a phenylsilsesquioxane polymer.
Claims (1)
媒との存在下に、シラン化合物を加水分解及び脱水縮合
させることを特徴とするシルセスキオキサンポリマーの
製造法。1. A process for producing a silsesquioxane polymer, which comprises subjecting a silane compound to hydrolysis and dehydration condensation in the presence of a hydrate of a carboxylic acid metal salt and an oxygen-containing organic solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36135192A JPH06200030A (en) | 1992-12-29 | 1992-12-29 | Production of silsesquioxane polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36135192A JPH06200030A (en) | 1992-12-29 | 1992-12-29 | Production of silsesquioxane polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06200030A true JPH06200030A (en) | 1994-07-19 |
Family
ID=18473231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36135192A Pending JPH06200030A (en) | 1992-12-29 | 1992-12-29 | Production of silsesquioxane polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06200030A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902067A1 (en) * | 1997-09-09 | 1999-03-17 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
US8859709B2 (en) | 2010-12-22 | 2014-10-14 | Dow Corning Corporation | Method of forming polyhedral oligomeric silsesquioxane compounds |
-
1992
- 1992-12-29 JP JP36135192A patent/JPH06200030A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902067A1 (en) * | 1997-09-09 | 1999-03-17 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
US5962067A (en) * | 1997-09-09 | 1999-10-05 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
US6251486B1 (en) | 1997-09-09 | 2001-06-26 | Agere Systems Guardian Corp. | Method for coating an article with a ladder siloxane polymer and coated article |
EP1111019A2 (en) * | 1997-09-09 | 2001-06-27 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
EP1111019A3 (en) * | 1997-09-09 | 2001-09-19 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
US8859709B2 (en) | 2010-12-22 | 2014-10-14 | Dow Corning Corporation | Method of forming polyhedral oligomeric silsesquioxane compounds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1869058B1 (en) | Process for making silylisocyanurate | |
JP2002535461A (en) | Purification of recycled 1,3-propanediol during polyester preparation | |
CN1232018A (en) | Process for synthesizing benzoic acids | |
EP0526887B1 (en) | Method for the preparation of phenylpolysilsesquioxanes | |
JPH06200030A (en) | Production of silsesquioxane polymer | |
US4647689A (en) | Preparation of alkyl trifluoroacetoacetate | |
JP2501154B2 (en) | Method for producing tetrakis xylenol ethane | |
US6762315B1 (en) | Method for producing (1,1′,4, 11″)-terphenyl compounds | |
JPH08143578A (en) | Production of phenylpolysilsesquioxane | |
EP0079392B1 (en) | Composite oxyalkoxides and derivatives thereof | |
JPH0257075B2 (en) | ||
JP3069297B2 (en) | Polyester production method | |
JP4025385B2 (en) | Method for producing organopentasiloxane | |
JP2612996B2 (en) | Method for producing isocyanurate containing organosilicon group | |
JP3999827B2 (en) | Method for producing organopentasiloxane | |
JP3279148B2 (en) | Method for producing 2-allyloxymethyl-1,4-dioxane | |
JP2542520B2 (en) | 1,2,2-Trimethyl-1-alkyl- or 1,2,2-trimethyl-1-alkenyl-polydisilane and process for producing the same | |
JPH0827162A (en) | Production of cyclic organosilicon compound | |
EP0090976B1 (en) | 2,2-dihalo-6-halo-6(1-haloisobutyl)cyclohexanone | |
JPH1095745A (en) | Production of sorbic acid | |
JP3991715B2 (en) | Method for producing alkylidene bisphenols | |
JP2720054B2 (en) | Method for producing trimellitic anhydride | |
JPH0460457B2 (en) | ||
JPH08311083A (en) | Production of silicon compound having steric hindrance | |
JP4435447B2 (en) | Method for producing methoxymethyltriarylphosphonium chloride |