JPH0619967B2 - Sample position setting method for X-ray microanalyzer, etc. - Google Patents

Sample position setting method for X-ray microanalyzer, etc.

Info

Publication number
JPH0619967B2
JPH0619967B2 JP61287318A JP28731886A JPH0619967B2 JP H0619967 B2 JPH0619967 B2 JP H0619967B2 JP 61287318 A JP61287318 A JP 61287318A JP 28731886 A JP28731886 A JP 28731886A JP H0619967 B2 JPH0619967 B2 JP H0619967B2
Authority
JP
Japan
Prior art keywords
sample
coordinate values
analysis
area
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61287318A
Other languages
Japanese (ja)
Other versions
JPS63141249A (en
Inventor
義隆 長塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP61287318A priority Critical patent/JPH0619967B2/en
Publication of JPS63141249A publication Critical patent/JPS63141249A/en
Publication of JPH0619967B2 publication Critical patent/JPH0619967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線マイクロアナライザ等における試料位置設
定方法に関する。
The present invention relates to a sample position setting method in an X-ray microanalyzer or the like.

(従来の技術) X線マイクロアナライザ(XMA)では、試料面上の元
素分布を測定する方法の1つとして面分析法が採用され
ている。この面分析法はコンピュータ等を用いてXMA
を制御し、電子ビームが照射される試料を2次元的に移
動させて、該試料面から電子ビーム照射によって放射さ
れるX線(乃至は電子線)を波長分散型X線分光器等の
検出器によって検出し、例えばCRT画面に輝度変調像
として表示するものである。
(Prior Art) In the X-ray microanalyzer (XMA), the surface analysis method is adopted as one of the methods for measuring the element distribution on the sample surface. This surface analysis method uses XMA
Control, the sample irradiated with the electron beam is two-dimensionally moved, and the X-ray (or the electron beam) emitted by the electron beam irradiation from the sample surface is detected by a wavelength dispersive X-ray spectroscope or the like. It is detected by a device and displayed as a brightness modulation image on a CRT screen, for example.

この波長分散型X線分光器による分析においては、試料
面の電子ビーム照射点(即ちX線発生点)と分光器の位
置関係を一定に保つことが必要なため、電子線照射方向
(z軸方向)に対して、平面状に研磨された試料表面が
垂直になるように試料ステージにセットし、試料表面を
z軸と垂直な平面内で移動させている。従って試料ステ
ージは、z軸に対して垂直なx軸方向と、z軸とx軸に
対して垂直なy軸方向に試料を移動させるx軸駆動機構
とy軸駆動機構を備えているが、更に試料をz軸方向へ
移動させるz軸駆動機構が備えられており、このz軸駆
動機構は試料を試料ステージにセットしたときに最適位
置が設定されるように高さ調整される。
In the analysis by the wavelength dispersive X-ray spectroscope, it is necessary to keep the positional relationship between the electron beam irradiation point (that is, the X-ray generation point) on the sample surface and the spectroscope constant. Direction) is set on the sample stage so that the flat surface of the sample is perpendicular to the surface, and the sample surface is moved within a plane perpendicular to the z-axis. Therefore, the sample stage includes an x-axis drive mechanism and a y-axis drive mechanism that move the sample in the x-axis direction perpendicular to the z-axis and the y-axis direction perpendicular to the z-axis and the x-axis. Further, a z-axis drive mechanism for moving the sample in the z-axis direction is provided, and the height of the z-axis drive mechanism is adjusted so that the optimum position is set when the sample is set on the sample stage.

この高さ調整は、例えば電子線を試料に照射しながらX
線分光器によるX線検出出力をモニターし、z軸駆動機
構によって試料を上下させた時に最大の出力値が得られ
る位置に試料の高さをセットすることによって行われ
る。このような高さ調整を済ませた後に、前述したx軸
駆動機構とy軸駆動機構へ走査信号による制御を行っ
て、電子線による試料面上の2次元走査が行われる。
This height adjustment can be performed, for example, by irradiating the sample with an electron beam while X
This is performed by monitoring the X-ray detection output by the line spectroscope and setting the height of the sample at a position where the maximum output value is obtained when the sample is moved up and down by the z-axis drive mechanism. After such height adjustment is completed, the above-mentioned x-axis drive mechanism and y-axis drive mechanism are controlled by a scanning signal to perform two-dimensional scanning on the sample surface by the electron beam.

しかしながら、試料ステージの移動方向がz軸と厳密に
は垂直でなかったり、試料が試料ステージに正しくセッ
トされなかったりした場合には、試料ステージの移動に
よって電子線に照射される試料表面位置のz軸方向の座
標が変動して分光器に入射するX線の発生点が一定に保
たれなくなる。このz方向の高さのずれは、X線検出効
率に悪影響を及ぼし、正しい面分析を行うことができな
い。
However, when the moving direction of the sample stage is not exactly perpendicular to the z-axis or the sample is not correctly set on the sample stage, the z-direction of the sample surface position irradiated by the electron beam due to the movement of the sample stage. The coordinate in the axial direction fluctuates, and the generation point of the X-ray incident on the spectroscope cannot be kept constant. This height shift in the z direction adversely affects the X-ray detection efficiency, and correct surface analysis cannot be performed.

そこで、従来は測定の前に試料面領域の内部に制定した
分析領域(長方形)の4隅の高さ(z座標値)を光学顕
微鏡の焦点を合わせることによって測定し、面分析測定
中にz軸駆動機構によってz軸方向の位置補正を行って
いた。
Therefore, conventionally, the heights (z coordinate values) of the four corners of the analysis area (rectangle) established inside the sample surface area before the measurement are measured by focusing the optical microscope, and z is measured during the surface analysis measurement. Position correction in the z-axis direction was performed by the shaft drive mechanism.

(発明が解決しようとする問題点) 実際の試料面領域の内部に前記分析領域が設定される場
合には、従来の位置制御補正でも特に問題はない。しか
しながら、実際に試料を分析する場合においては、分析
領域を実際の試料面領域よりも広くとり、試料の全貌を
観察したい場合もある。
(Problems to be Solved by the Invention) When the analysis area is set inside the actual sample surface area, there is no particular problem even with the conventional position control correction. However, in the case of actually analyzing the sample, there are cases where it is desired to make the analysis region wider than the actual sample surface region and observe the entire image of the sample.

従来の試料位置設定方法では、分析領域の4隅の位置が
必ず試料面領域の内部にあり、分析領域の4隅のz座標
を決定することができた。従って、その形状が長方形で
ない試料の全面観察(全試料面領域の観察)を行う場合
等のように、分析領域の4隅の位置を少なくとも一つ位
置が試料面領域から外れるときは、分析領域4隅の位置
の上記外れた位置のz座標を求めることができず、試料
の高さ方向(z軸方向)の位置補正を十分に行うことが
できず、試料の面分析を正確に行うことができなかっ
た。又、試料面の平坦度を示す客観的な数値もないた
め、得られた面分析結果の信頼性に欠けるという問題が
あった。
In the conventional sample position setting method, the positions of the four corners of the analysis region are always inside the sample surface region, and the z coordinates of the four corners of the analysis region can be determined. Therefore, when at least one of the four corners of the analysis area deviates from the sample surface area, such as when observing the entire surface of a sample whose shape is not rectangular (observation of the entire sample surface area), etc. It is not possible to obtain the z-coordinates of the above-mentioned positions deviating from the four corner positions, and it is not possible to sufficiently correct the position of the sample in the height direction (z-axis direction), so that accurate surface analysis of the sample can be performed. I couldn't. Further, since there is no objective numerical value indicating the flatness of the sample surface, there is a problem that the obtained surface analysis result lacks reliability.

本発明はこのような点に鑑みてなされたものであって、
その目的は、分析領域が実際の試料面領域より広い場合
であっても、正確に試料の高さ方向(z軸方向)の位置
補正ができ、且つ試料面の平坦度を客観的な数値として
求めることができるX線マイクロアナライザ等における
試料位置設定方法を実現することにある。
The present invention has been made in view of such points,
Even if the analysis area is wider than the actual sample surface area, the position of the sample in the height direction (z-axis direction) can be accurately corrected, and the flatness of the sample surface can be used as an objective numerical value. It is to realize a sample position setting method in an X-ray microanalyzer or the like that can be obtained.

(問題点を解決するための手段) 前記した問題点を解決する本発明は、 分析領域の2次元的な元素分布の情報を得るため試料を
x軸方向及びy軸方向に移動する際に、分析領域の4隅
の(x,y,z)座標値に基づいて、試料のz軸方向の
高さ調整を行うX線マイクロアナライザ等における試料
位置設定方法において、 実際の試料面領域を囲む該試料面領域よりも広い長方形
領域でもって前記分析領域を形成し、該分析領域の4隅
のx座標値及びy座標値を求め(ステップ)、 該分析領域内の前記試料面領域上には、x座標値及びy
座標値で特定される4点(該4点を直線で結ぶと4角形
となる)を定め、該4点において試料表面の高さを測定
して該4点のz座標値を求めることにより、該4点の
(x,y,z)座標値を求め(ステップ)、 実際の試料面が該試料面領域外にも広がっていると仮定
して、前記試料面領域上の4点の(x,y,z)座標値
に基づいて、前記分析領域の4隅におけるz座標値を演
算により求めることにより、前記分析領域の4隅の
(x,y,z)座標値を決定し(ステップ)、 この決定した前記分析領域の4隅の(x,y,z)座標
値に基づいて、試料をx軸方向及びy軸方向に移動する
際にz軸方向の高さ調整を行う(ステップ)、 ようにしたことを特徴とするものである。
(Means for Solving Problems) The present invention which solves the problems described above is, when the sample is moved in the x-axis direction and the y-axis direction in order to obtain information on the two-dimensional element distribution of the analysis region, In a sample position setting method in an X-ray microanalyzer or the like that adjusts the height of the sample in the z-axis direction based on the (x, y, z) coordinate values of the four corners of the analysis region, the actual sample surface region is surrounded. The analysis area is formed by a rectangular area wider than the sample surface area, and x-coordinate values and y-coordinate values of the four corners of the analysis area are obtained (step), and on the sample surface area in the analysis area, x coordinate value and y
By defining four points specified by the coordinate values (a square is formed by connecting the four points with a straight line), the height of the sample surface is measured at the four points, and the z coordinate value of the four points is obtained. The (x, y, z) coordinate values of the four points are obtained (step), and assuming that the actual sample surface extends outside the sample surface area, the (x, y, z) of the four points on the sample surface area are assumed. , Y, z) coordinate values to determine (x, y, z) coordinate values at the four corners of the analysis area by calculating z coordinate values at the four corners of the analysis area (step). Based on the determined (x, y, z) coordinate values of the four corners of the analysis region, height adjustment in the z-axis direction is performed when the sample is moved in the x-axis direction and the y-axis direction (step). It is characterized by doing so.

(作用) 本発明方法では、実際の試料面領域を囲む該試料面領域
よりも広い長方形領域でもって分析領域を形成する。そ
して、この分析領域内を試料面領域上に、x座標値及び
y座標値で特定される4点を定め、該4点において試料
表面の高さを測定して該4点のz座標値を求める。次
に、この試料面領域上の4点の(x,y,z)座標値に
基づいて、分析領域の4隅におけるz座標値を演算によ
り求め、分析領域の4隅の(x,y,z)座標値を決定
する。この決定した分析領域の4隅の(x,y,z)座
標値に基づいて、試料をx軸方向及びy軸方向に移動す
る際にz軸方向の高さ調整を行う。
(Operation) In the method of the present invention, the analysis region is formed by a rectangular region surrounding the actual sample surface region and wider than the sample surface region. Then, four points specified by the x-coordinate value and the y-coordinate value are defined in the analysis area on the sample surface area, the height of the sample surface is measured at the four points, and the z-coordinate value of the four points is determined. Ask. Next, based on the (x, y, z) coordinate values of the four points on the sample surface area, z coordinate values at the four corners of the analysis area are calculated, and the (x, y, z z) Determine the coordinate values. Based on the determined (x, y, z) coordinate values of the four corners of the analysis region, the height adjustment in the z-axis direction is performed when the sample is moved in the x-axis direction and the y-axis direction.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

本発明における分析領域は、実際の試料面領域を囲む該
試料面領域よりも広い長方形領域である。ここでは、第
2図に示すように長方形の分析領域S2の4隅をA,
B,C,Dとし、実際の試料面領域S1の形状は長方形
ではないものとする(実際の試料面領域S1は分析領域
S2内に含まれている)。
The analysis area in the present invention is a rectangular area that surrounds the actual sample surface area and is wider than the sample surface area. Here, as shown in FIG. 2, the four corners of the rectangular analysis region S2 are set to A,
B, C, and D, and the shape of the actual sample surface area S1 is not rectangular (the actual sample surface area S1 is included in the analysis area S2).

ステップ 実際の試料面領域を囲む該試料面領域よりも広い長方形
領域でもって分析領域を形成し、該分析領域の4隅のx
軸座標値及びy座標値を求める。このステップ内での
具体的手順は次の通りである。
Step The analysis area is formed by a rectangular area that surrounds the actual sample surface area and is wider than the sample surface area, and x at the four corners of the analysis area is formed.
Obtain the axis coordinate value and the y coordinate value. The specific procedure within this step is as follows.

分析試料面のx,y各方向の画素数,画素長から分析領
域各辺の長さを求める。
The length of each side of the analysis area is determined from the number of pixels in the x and y directions of the analysis sample surface and the pixel length.

電子ビームは第3図に示すように、分析領域を2次元的
に照射する。即ちx方向を主走査,y方向を副走査とす
る2次元走査を行う。分析領域のx方向の長さ(辺A
B)をLx、y方向の長さ(辺BC)をLyとする。x
y各方向の画素数及び画素長がわかれば画素数×画素長
で各辺の長さを求めることができる。
As shown in FIG. 3, the electron beam irradiates the analysis region two-dimensionally. That is, two-dimensional scanning is performed with the main scanning in the x direction and the sub scanning in the y direction. Length of analysis area in x direction (side A
B) is Lx, and the length in the y direction (side BC) is Ly. x
y If the number of pixels and the pixel length in each direction are known, the length of each side can be obtained by the number of pixels × pixel length.

分析領域中心点の座標を指定してやることにより分析領
域4隅の座標値を求める。
The coordinate values of the four corners of the analysis area are obtained by designating the coordinates of the center point of the analysis area.

第2図を用いて説明する。長方形ABCDの中心点0の
座標(x,y)を指定してやると点A,B,C,D
の座標は容易に求まる、例えばC点の座標は以下のよう
になる。
This will be described with reference to FIG. If the coordinates (x 0 , y 0 ) of the center point 0 of the rectangle ABCD are specified, points A, B, C, D
The coordinates of can be easily obtained. For example, the coordinates of point C are as follows.

x座標値;x+(Lx/2) y座標値;y+(Ly/2) 他の3点A,B,Dについても全く同様にして求めるこ
とができる。
x coordinate value; x 0 + (Lx / 2) y coordinate value; y 0 + (Ly / 2) The other three points A, B, and D can be obtained in exactly the same manner.

ステップ 試料表面観察装置とジョイスティックやマウス等の位置
指定手段を用いて実際の試料面領域上の4点(4角形)
の(x,y,z)座標値を求める。
Steps 4 points (quadrangle) on the actual sample surface area using the sample surface observing device and position specifying means such as a joystick or mouse
The (x, y, z) coordinate value of is calculated.

第2図に示すように、実際の試料S1上に4点(4角
形)A′,B′,C′,D′を決める。4角形A′,
B′,C′,D′は必ずしも長方形である必要はない。
4点A′,B′,C′,D′を決めるにあたっては、試
料の形状をよく表わすようにしかも可能な限り広くとる
ことが望ましい。4点A′,B′,C′,D′が設定さ
れると、次に光学顕微鏡等の試料表面観察装置とジョイ
スティックを用いて各点が観察面上で焦点を結ぶように
する。
As shown in FIG. 2, four points (quadrilaterals) A ', B', C ', D'are determined on the actual sample S1. Quadrangle A ',
B ′, C ′ and D ′ do not necessarily have to be rectangular.
In determining the four points A ', B', C ', and D', it is desirable that the shape of the sample be well represented and as wide as possible. When the four points A ', B', C ', and D'are set, each point is then focused on the observation surface using a sample surface observation device such as an optical microscope and a joystick.

各点について、各点を観察面位置まで移動させることに
よりx,y各方向の座標値が求まる。次に観察面上で焦
点を結ばせることにより当該点のz方向の座標値が求ま
る。このようにジョイスティックを用いてx,y,z各
方向に移動させるには、それぞれ前述したようなx軸駆
動機構,y軸駆動機構及びz軸駆動機構が用いられる。
For each point, the coordinate value in each of the x and y directions can be obtained by moving each point to the observation surface position. Next, by focusing on the observation plane, the coordinate value of the point in the z direction can be obtained. As described above, the x-axis drive mechanism, the y-axis drive mechanism, and the z-axis drive mechanism described above are used to move in the x, y, and z directions using the joystick.

ステップ 実際の試料面領域上の4点の(x,y,z)座標値を基
にして分析領域4隅のz座標値を求める。
Step Based on the (x, y, z) coordinate values of the four points on the actual sample surface area, the z coordinate values of the four corners of the analysis area are obtained.

前ステップにより試料S1上の4点A′,B′,
C′,D′の(x,y,z)座標値が求まった。A′,
B′,C′,D′の(x,y,z)座標値が求まると、
分析領域S2の4隅A,B,C,Dの座標値を求めるこ
とができる。第2図を用いて説明する。A′,D′を結
ぶ直線がAB,DCと交わる点をそれぞれA″,D″と
し、B′,C′を結ぶ直線が同じくAB,DCと交わる
点をB″,C″とする。A′,B′,C′,D′各点の
(x,y,z)座標値は求まっているので、A″,
B″,C″,D″各点の(x,y,z)座標値は次のよ
うにして求まる。A″点の(x,y,z)座標値を求め
る場合について説明する。
According to the previous step, four points A ', B', on the sample S1
The (x, y, z) coordinate values of C'and D'are obtained. A ',
When the (x, y, z) coordinate values of B ', C', D'are obtained,
The coordinate values of the four corners A, B, C, D of the analysis area S2 can be obtained. This will be described with reference to FIG. The points where the straight line connecting A ′ and D ′ intersects AB and DC are designated A ″ and D ″, and the points where the straight line connecting B ′ and C ′ also intersect AB and DC are designated B ″ and C ″. Since the (x, y, z) coordinate value of each point of A ', B', C ', D'is obtained, A ",
The (x, y, z) coordinate value of each point of B ″, C ″, D ″ is obtained as follows. The case of obtaining the (x, y, z) coordinate value of point A ″ will be described.

A″点のx座標はD′,A′のx,y座標から比例関係
によって次のように求めることができる。尚、下式にお
いては添字によってその点の座標であることを表わして
いる。
The x-coordinate of the point A ″ can be obtained from the x- and y-coordinates of D ′ and A ′ by the proportional relationship as follows. In addition, in the following equation, the subscript indicates that the coordinate of the point.

A″=xD′+(y−yD′)(XA′−XD′/ (yA′+yD′ 又、A″点のy座標はA点のy座標に等しい。そして
A′点のx座標,A点のy座標は既知である。従って、
A″点のx,y座標値が求まったことになる。次に、z
座標の算出法について説明する。第4図を用いて説明す
る。D′点のz座標値をz,A′点のz座標値をz
とする(z,zは既知)。D′点とA′点間のy方
向距離をy, D′点とA″点間のy方向距離をyとする(y,y
は既知)。A″点のz座標値zは次式で与えられ
る。
x A "= x D '+ (y A -y D') (X A '-X D' / (y A '+ y D' Moreover, A" y-coordinate of the point is equal to the y coordinate of the point A. Then The x coordinate of point A'and the y coordinate of point A are known.
This means that the x and y coordinate values of the A ″ point have been obtained. Next, z
A method of calculating coordinates will be described. This will be described with reference to FIG. The z coordinate value of the D ′ point is z 1 and the z coordinate value of the A ′ point is z 2
(Z 1 and z 2 are known). The y-direction distance between the D ′ point and the A ′ point is y 1 , and the y-direction distance between the D ′ point and the A ″ point is y 2 (y 1 , y
2 is known). The z coordinate value z 3 of the A ″ point is given by the following equation.

=z+y(z−z)/y 残りのB″,C″,D″についても同様にして(x,
y,z)座標値を求めることができる。
z 3 = z 1 + y 2 (z 2 −z 1 ) / y 1 Similarly for the remaining B ″, C ″, D ″ (x,
The y, z) coordinate value can be obtained.

このようにしてA″,B″,C″,D″の座標値が求ま
ったら同様にしてA,B,C,D各点のz座標値を求め
ることは容易である。A,B,C,D各点のz座標値が
求まると、x,y各方向の座標値はステップで求まっ
ているので、分析領域S2の4隅の(x,y,z)座標
値が決定されたことになる。
When the coordinate values of A ″, B ″, C ″, D ″ are obtained in this way, it is easy to similarly obtain the z coordinate values of the points A, B, C, D. When the z coordinate values of the points A, B, C, D are obtained, the coordinate values in the x and y directions are obtained in steps, so the (x, y, z) coordinate values of the four corners of the analysis area S2 are It has been decided.

ステップ ステップにて決定した分析領域S2の4隅の(x,
y,z)座標値に基づいて、試料をx軸方向及びy軸方
向に移動する際にz軸方向の高さ調整を行う。上記分析
領域S2は試料S1をはみ出し部分については仮空の領
域であるが、試料S1上を2次元走査するためには必要
な領域である。即ち、x軸,y軸,z軸各方向の駆動機
構は、この分析領域S2の(x,y,z)座標値を基に
位置制御を行うからである。
(X, at the four corners of the analysis region S2 determined in the step
Based on the (y, z) coordinate values, the height adjustment in the z-axis direction is performed when the sample is moved in the x-axis direction and the y-axis direction. The analysis area S2 is a temporary empty area in a portion where the sample S1 protrudes, but is an area necessary for two-dimensionally scanning the sample S1. That is, the drive mechanism in each of the x-axis, y-axis, and z-axis directions performs position control based on the (x, y, z) coordinate values of the analysis area S2.

尚、ここで実際の試料S1の4点A,B,C,Dのz軸
座標値をそれぞれAz,Bz,Cz,Dz、中心点Oの
z座標値をOzとして d=Oz−(Az+Bz+Cz+Dz) ×1/4 を定義すると、dの値が正,O,負に従って、分析面が
それぞれ凸,平面,凹面の判別をすることができ、又、
その値によって、分析面の曲率半径を算定することも可
能である。従って、分板面が決定された時に、その分析
面の状態(凸か平面か凹)をプリンタ等を用いてプリン
トアウトすることにより、その分析面の平面状態を客観
的に知ることができ、分析結果の信頼性を高める一助と
なりうる。
Here, the z-axis coordinate values of the four points A, B, C and D of the actual sample S1 are Az, Bz, Cz and Dz, respectively, and the z-coordinate value of the center point O is Oz. D = Oz- (Az + Bz + Cz + Dz) By defining × 1/4, it is possible to discriminate whether the analysis surface is convex, flat, or concave depending on whether the value of d is positive, O, or negative.
It is also possible to calculate the radius of curvature of the analysis surface by the value. Therefore, when the separation plane is determined, the plane state of the analysis surface can be objectively known by printing out the state of the analysis surface (convex, flat or concave) using a printer or the like. It can help improve the reliability of the analysis results.

第5図は本発明方法を実施するためのシステムの構成例
を示す図である。真空中で加熱したフィラメント1から
発生した熱電子は、高電位に印加されたウェネルト2で
加速される。そして、集束レンズ3によって集光された
電子ビーム4は、対物レンズ5によって試料9の表面上
に照射される。この照射点付近から発生したX線は分光
結晶6により分光・集光され、X線検出器7を介して計
測装置8に送まれ、更に統轄制御装置18によって読み
込まれた値が記憶装置19に蓄えられる。
FIG. 5 is a diagram showing a configuration example of a system for carrying out the method of the present invention. The thermoelectrons generated from the filament 1 heated in vacuum are accelerated by the Wehnelt 2 applied at high potential. Then, the electron beam 4 condensed by the focusing lens 3 is irradiated onto the surface of the sample 9 by the objective lens 5. The X-rays generated from the vicinity of the irradiation point are separated and condensed by the dispersive crystal 6, sent to the measuring device 8 via the X-ray detector 7, and the value read by the integrated control device 18 is stored in the storage device 19. It can be stored.

ここで、試料9は移動ステージ10上に載置されてお
り、このステージにはx−y水平平面内の駆動機構1
1,12と共にz軸方向(鉛直方向)の駆動機構13が
設けられている。各x,y及びz軸の駆動機構にはそれ
ぞれ独立な制御装置14,15及び16が設けられてお
り、統轄制御装置18から駆動命令が出されると各々独
立に駆動されるようになっている。更に統轄制御装置1
8にはジョイスティック17が繋がれており、x,y及
びz軸が駆動中でないときは該ジョイスティック17を
使って統轄制御装置18を介して、試料ステージのx,
y及びz軸を自在に操ることが可能であるようにできて
いる。20は統轄制御装置18と接続されたプリンタ
で、各種情報をプリントアウトする。
Here, the sample 9 is placed on the moving stage 10, and the driving mechanism 1 in the xy horizontal plane is mounted on this stage.
A drive mechanism 13 in the z-axis direction (vertical direction) is provided together with the first and the second drive units 12. Each x, y, and z axis drive mechanism is provided with an independent control device 14, 15 and 16, respectively, and is driven independently when a drive command is issued from the centralized control device 18. . Further control device 1
8 is connected to a joystick 17, and when the x, y and z axes are not driven, the joystick 17 is used to control the x, y
It is designed so that the y and z axes can be freely manipulated. A printer 20 is connected to the centralized control device 18 and prints out various information.

第6図は光学顕微鏡を用いて試料を観察する時の状態を
示す図である。第5図と同一のものは、同一の符号を付
して示す。図において、21は試料9の表面全体を観察
するための手段としての焦点深度の浅い光学顕微鏡であ
り、該光学顕微鏡は照明ランプ22、ハーフミラー2
3、ミラー24、凹面鏡25、凸面鏡26、接眼レンズ
鏡筒27から構成されており電子線経路を遮ることなく
対物レンズ5の近傍に配置されている。光学顕微鏡21
によるz軸方向の座標値の算出は以下のようにして行
う。前述した高さ調整によって試料上の1点、例えば
A′点についてz軸駆動機構13をジョイスティック1
7によって最適状態に設定し、そのときのz軸座標(z
a)を記憶装置19に記憶する。そして、この状態で光
学顕微鏡21による試料表面の観察を行い、光学顕微鏡
21の焦点合わせを行う。次にx,y軸駆動機構11,
12によって試料上のB′点を電子線照射位置へ移動さ
せ、光学顕微鏡21の焦点合わせ手段は固定したまま、
z軸駆動機構を変化させて光学顕微鏡像の焦点合わせを
行い、このときのz軸座標(zb)を記憶する。これは
光学顕微鏡21の焦点深度が極めて短いことを利用した
ものであるが、同様な操作を繰り返し、C′点、D′線
に関するz座標値(zc,zd)を求めて記憶装置19
に記憶する。以上A′,B′,C′,D′点のz座標値
を求めたが、他の点についても全く同様にして求めるこ
とができる。
FIG. 6 is a diagram showing a state in which a sample is observed using an optical microscope. The same parts as those in FIG. 5 are designated by the same reference numerals. In the figure, 21 is an optical microscope with a shallow depth of focus as means for observing the entire surface of the sample 9, and the optical microscope includes an illumination lamp 22 and a half mirror 2.
3, a mirror 24, a concave mirror 25, a convex mirror 26, and an eyepiece lens barrel 27, which are arranged near the objective lens 5 without blocking the electron beam path. Optical microscope 21
The calculation of the coordinate value in the z-axis direction by is performed as follows. By adjusting the height as described above, the z-axis drive mechanism 13 is attached to the joystick 1 at one point on the sample, for example, A'point.
The optimum state is set by 7, and the z-axis coordinate (z
Store a) in the storage device 19. Then, in this state, the sample surface is observed by the optical microscope 21, and the optical microscope 21 is focused. Next, the x and y axis drive mechanism 11,
The point B'on the sample is moved to the electron beam irradiation position by 12 and the focusing means of the optical microscope 21 is fixed,
The z-axis drive mechanism is changed to focus the optical microscope image, and the z-axis coordinate (zb) at this time is stored. This utilizes the fact that the depth of focus of the optical microscope 21 is extremely short, but the same operation is repeated to obtain z coordinate values (zc, zd) for the C ′ point and D ′ line, and the storage device 19 is obtained.
Remember. Although the z-coordinate values of the points A ', B', C'and D'have been obtained as above, the other points can be obtained in exactly the same manner.

(発明の効果) 以上詳細に説明したように、本発明によれば、分析領域
が実際の試料面領域より広い場合であっても、正確に試
料の高さ方向(z軸方向)の位置補正ができ、且つ、分
析領域の4隅のz座標値の平均値と分析領域の中心のz
座標値との比較から試料面の平坦度を客観的数値として
求めることができるX線マイクロアナライザ等における
試料位置設定方法を実現することができる。
(Effect of the Invention) As described in detail above, according to the present invention, even if the analysis region is wider than the actual sample surface region, the position correction of the sample in the height direction (z-axis direction) is accurately performed. And the average of the z coordinate values at the four corners of the analysis area and the z of the center of the analysis area
It is possible to realize a sample position setting method in an X-ray microanalyzer or the like that can obtain the flatness of the sample surface as an objective numerical value by comparison with the coordinate values.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の一実施例を示すフローチャート、
第2図乃至第4図は本発明方法の説明図、第5図,第6
図は本発明方法を実施するためのシステム構成例を示す
図である。 1……フィラメント、2……フェネルト 3……集束レンズ、4……電子ビーム 5……対物レンズ、6……分光結晶 7……X線検出器、8……計測装置 9……試料、10……移動ステージ 11〜13……駆動機構、14〜16……制御装置 17……ジョイスティック 18……統括制御装置、19……記憶装置 20……プリンタ、21……光学顕微鏡 22……照明ランプ、23……ハーフミラー2 24……ミラー、25……凹面鏡 26……凸面鏡、27……接眼レンズ鏡筒
FIG. 1 is a flow chart showing an embodiment of the method of the present invention,
2 to 4 are explanatory views of the method of the present invention, FIG. 5, and FIG.
The figure is a diagram showing a system configuration example for carrying out the method of the present invention. 1 ... Filament, 2 ... Fennert, 3 ... Focusing lens, 4 ... Electron beam, 5 ... Objective lens, 6 ... Spectroscopic crystal, 7 ... X-ray detector, 8 ... Measuring device, 9 ... Sample, 10 ...... Movement stage 11 to 13 ...... Driving mechanism, 14 to 16 ...... Control device 17 ...... Joystick 18 ...... Overall control device, 19 ...... Storage device 20 ...... Printer, 21 ...... Optical microscope 22 ...... Illumination lamp , 23 ... Half mirror 2 24 ... Mirror, 25 ... Concave mirror 26 ... Convex mirror, 27 ... Eyepiece lens barrel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】分析領域の2次元的な元素分布の情報を得
るため試料をx軸方向及びy軸方向に移動する際に、分
析領域の4隅の(x,y,z)座標値に基づいて、試料
のz軸方向の高さ調整を行うX線マイクロアナライザ等
における試料位置設定方法において、 実際の試料面領域を囲む該試料面領域よりも広い長方形
領域でもって前記分析領域を形成し、該分析領域の4隅
のx座標値及びy座標値を求め(ステップ)、 該分析領域内の前記試料面領域上には、x座標値及びy
座標値で特定される4点(該4点を直線で結ぶと4角形
となる)を定め、該4点において試料表面の高さを測定
して該4点のz座標値を求めることにより、該4点の
(x,y,z)座標値を求め(ステップ)、 実際の試料面が該試料面領域外にも広がっていると仮定
して、前記試料面領域上の4点の(x,y,z)座標値
に基づいて、前記分析領域の4隅におけるz座標値を演
算により求めることにより、前記分析領域の4隅の
(x,y,z)座標値を決定し(ステップ)、 この決定した前記分析領域の4隅の(x,y,z)座標
値に基づいて、試料をx軸方向及びy軸方向に移動する
際にz軸方向の高さ調整を行う(ステップ)、 ようにしたことを特徴とするX線マイクロアナライザ等
における試料位置設定方法。
1. When the sample is moved in the x-axis direction and the y-axis direction in order to obtain information on the two-dimensional element distribution in the analysis region, the (x, y, z) coordinate values at the four corners of the analysis region are obtained. Based on this, in the sample position setting method in an X-ray microanalyzer or the like for adjusting the height of the sample in the z-axis direction, the analysis area is formed by a rectangular area that surrounds the actual sample surface area and is wider than the sample surface area. , X-coordinate values and y-coordinate values at four corners of the analysis area are calculated (step), and the x-coordinate value and the y-coordinate value are provided on the sample surface area in the analysis area.
By defining four points specified by the coordinate values (a square is formed by connecting the four points with a straight line), the height of the sample surface is measured at the four points, and the z coordinate value of the four points is obtained. The (x, y, z) coordinate values of the four points are obtained (step), and assuming that the actual sample surface extends outside the sample surface area, the (x, y, z) of the four points on the sample surface area are assumed. , Y, z) coordinate values to determine (x, y, z) coordinate values at the four corners of the analysis area by calculating z coordinate values at the four corners of the analysis area (step). Based on the determined (x, y, z) coordinate values of the four corners of the analysis region, height adjustment in the z-axis direction is performed when the sample is moved in the x-axis direction and the y-axis direction (step). A sample position setting method in an X-ray microanalyzer or the like characterized by the above.
JP61287318A 1986-12-01 1986-12-01 Sample position setting method for X-ray microanalyzer, etc. Expired - Lifetime JPH0619967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61287318A JPH0619967B2 (en) 1986-12-01 1986-12-01 Sample position setting method for X-ray microanalyzer, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61287318A JPH0619967B2 (en) 1986-12-01 1986-12-01 Sample position setting method for X-ray microanalyzer, etc.

Publications (2)

Publication Number Publication Date
JPS63141249A JPS63141249A (en) 1988-06-13
JPH0619967B2 true JPH0619967B2 (en) 1994-03-16

Family

ID=17715807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61287318A Expired - Lifetime JPH0619967B2 (en) 1986-12-01 1986-12-01 Sample position setting method for X-ray microanalyzer, etc.

Country Status (1)

Country Link
JP (1) JPH0619967B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3823004A3 (en) * 2019-10-23 2021-07-07 Gatan Inc. System and method for alignment of cathodoluminescence optics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151739A (en) * 1983-02-18 1984-08-30 Jeol Ltd Sample movement in x-ray microanalyzer
JPS6151658U (en) * 1984-09-06 1986-04-07

Also Published As

Publication number Publication date
JPS63141249A (en) 1988-06-13

Similar Documents

Publication Publication Date Title
JP4474337B2 (en) Sample preparation / observation method and charged particle beam apparatus
US6852974B2 (en) Electron beam device and method for stereoscopic measurements
EP0024884B1 (en) Method of detecting the position of a substrate using an electron beam
JP2003148915A (en) Inspection method of pattern connecting precision
JP4750958B2 (en) Electron beam apparatus, data processing apparatus for electron beam apparatus, and stereo image creation method of electron beam apparatus
JPH07297119A (en) Method for position detection
JP2548834B2 (en) Electron beam dimension measuring device
JP2884830B2 (en) Automatic focusing device
JP4750959B2 (en) Data processing apparatus for electron beam apparatus, electron beam apparatus, and stereo measurement method for electron beam apparatus
JPH0619967B2 (en) Sample position setting method for X-ray microanalyzer, etc.
JP2716997B2 (en) Cross-sectional shape measurement method, cross-sectional shape comparison inspection method and their devices
JPH077653B2 (en) Observation device by scanning electron microscope
US20010022829A1 (en) Method of setting a position of an object of measurement in layer thickness measurement by x-ray fluorescence
JP3270687B2 (en) X-ray analysis method using electron probe microanalyzer and electron probe microanalyzer
JPH0961383A (en) X-ray analyzer
JP4677109B2 (en) Reference template manufacturing method and reference template manufactured by the method
JPH09283073A (en) Ion beam radiating device
JP4317765B2 (en) Inspection method and inspection apparatus using charged particle beam
JP3041055B2 (en) Charged beam drawing equipment
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
JPS6352424B2 (en)
JPH0617098Y2 (en) Particle accelerator screen monitor
JPH11304735A (en) Correction device of mapping analysis data by electron probe micro analyzer
JPH0372923B2 (en)
JP3270627B2 (en) Display method of sample height in electron beam microanalyzer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term