JPH06198134A - Method for removing nitrogen oxide - Google Patents

Method for removing nitrogen oxide

Info

Publication number
JPH06198134A
JPH06198134A JP4358698A JP35869892A JPH06198134A JP H06198134 A JPH06198134 A JP H06198134A JP 4358698 A JP4358698 A JP 4358698A JP 35869892 A JP35869892 A JP 35869892A JP H06198134 A JPH06198134 A JP H06198134A
Authority
JP
Japan
Prior art keywords
copper
catalyst
zeolite
monovalent
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4358698A
Other languages
Japanese (ja)
Inventor
Soichiro Samejima
宗一郎 鮫島
Senji Kasahara
泉司 笠原
Masao Nakano
雅雄 中野
Kazuhiko Sekizawa
和彦 関沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP4358698A priority Critical patent/JPH06198134A/en
Publication of JPH06198134A publication Critical patent/JPH06198134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To provide a method for removing NOx with a catalyst hardly causing aggregation due to heat and excellent in durability. CONSTITUTION:Zeolite having at least >=15 molar ratio of SiO2 to Al2O3 is vacuum-fired after ion exchange with an aq. soln. contg. monovalent copper ions or monovalent copper complex ions to obtain a catalyst and NOx is removed from waste gas contg. excess oxygen as well as NOx and hydrocarbon with the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラー、自動車エン
ジン等から排出される窒素酸化物を含有する酸素過剰の
排ガスを触媒を用いて処理する方法に関し、更に詳細に
は、活性及び耐久性の非常に優れた触媒を用いて窒素酸
化物を除去する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an oxygen-rich exhaust gas containing nitrogen oxides discharged from a boiler, an automobile engine, etc. by using a catalyst, and more specifically, to a method for treating activity and durability. The present invention relates to a method for removing nitrogen oxides using a very excellent catalyst.

【0002】[0002]

【従来の技術】炭酸ガス排出量低減あるいは低燃費化の
ため、希薄燃焼方式のガソリンエンジンが開発されてい
る。しかしながら、この希薄燃焼ガソリンエンジンある
いはディーゼルエンジンの排ガスは酸素過剰雰囲気であ
るため、従来の三元触媒での脱硝が困難であり、窒素酸
化物を除去する方法は実用化には至っていない。
2. Description of the Related Art A lean-burn gasoline engine has been developed in order to reduce carbon dioxide emissions and reduce fuel consumption. However, since the exhaust gas of this lean burn gasoline engine or diesel engine is in an oxygen excess atmosphere, it is difficult to denitrate with a conventional three-way catalyst, and a method for removing nitrogen oxides has not been put to practical use.

【0003】近年、銅をイオン交換したゼオライト触媒
が酸素過剰の排ガス中の窒素酸化物を還元除去できるこ
とが報告されている。高浄化率を実現するには銅の含有
量が多くかつ高分散である触媒が要求される。特開平1
−96011号公報にはイオン交換時にアンモニアを添
加した触媒、また、特開平3−8621号公報には一価
銅錯イオンによるイオン交換後空気中で焼成した触媒が
報告されている。
In recent years, it has been reported that a zeolite catalyst in which copper is ion-exchanged can reduce and remove nitrogen oxides in exhaust gas having excess oxygen. In order to achieve a high purification rate, a catalyst with a high copper content and high dispersion is required. JP-A-1
No. 960111 discloses a catalyst to which ammonia is added at the time of ion exchange, and Japanese Patent Application Laid-Open No. 3-8621 discloses a catalyst to be subjected to ion exchange with monovalent copper complex ions and then calcined in air.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記で
提案された窒素酸化物除去法における触媒は銅の含有量
は多くなるが、高分散にならないという問題がある。前
者では二価のアンミン錯体で交換するためゼオライト外
表面にも銅が不安定かつ不均一な担持の状態で存在す
る。後者では一価の銅錯イオンでの交換により、交換直
後は銅錯イオンは高分散であるが、その後空気中で焼成
するために空気中で不安定な一価の銅錯イオンは二価へ
容易に酸化される。このとき電荷バランスのため、イオ
ン交換サイトから銅錯イオンがはずれ担持の状態となり
分散度が著しく低下する。このように分散性が低いため
高銅含有量にもかかわらず、NOx浄化率が低く、特に
400℃以下の低温域での浄化率が低いという問題があ
った。さらに、熱により銅の凝集が進行するため耐久性
が低かった。
However, the catalyst in the nitrogen oxide removing method proposed above has a large copper content, but has a problem in that it does not have high dispersion. In the former case, since it is exchanged with a divalent ammine complex, copper is also present on the outer surface of the zeolite in an unstable and non-uniformly loaded state. In the latter case, the copper complex ions are highly dispersed immediately after the exchange due to the exchange with the monovalent copper complex ions, but the monovalent copper complex ions that are unstable in the air become divalent since they are fired in the air thereafter. Easily oxidized. At this time, due to the charge balance, the copper complex ions are detached from the ion exchange site to be in a supported state, and the degree of dispersion is remarkably reduced. Since the dispersibility is low as described above, there is a problem that the NOx purification rate is low in spite of the high copper content, particularly the purification rate is low in a low temperature region of 400 ° C. or lower. Furthermore, the copper agglomerates due to heat, so the durability was low.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記問題点
について鋭意検討した結果、ゼオライト中の一価の銅イ
オンがイオン交換サイトに高分散な状態で存在し、低温
域での浄化率が高く、耐久性の優れた触媒を用いて排ガ
スを浄化する方法を見い出し、本発明を完成するに至っ
た。
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have found that monovalent copper ions in zeolite are present in the ion-exchange site in a highly dispersed state, and the purification rate in the low temperature region is high. The inventors have found a method of purifying exhaust gas by using a catalyst having high durability and excellent durability, and completed the present invention.

【0006】すなわち、本発明はSiO/Al
モル比が少なくとも15以上であるゼオライトを一価の
銅イオンあるいは一価の銅錯イオンを含む水溶液でイオ
ン交換後、真空焼成処理した触媒を用いて、窒素酸化物
及び炭化水素を含有する酸素過剰の排ガスから窒素酸化
物を除去する方法である。
That is, the present invention uses SiO 2 / Al 2 O 3
Excess oxygen containing nitrogen oxides and hydrocarbons using a catalyst that has been subjected to vacuum calcination after ion exchange of zeolite having a molar ratio of at least 15 or more with an aqueous solution containing monovalent copper ions or monovalent copper complex ions. This is a method of removing nitrogen oxides from the exhaust gas.

【0007】一価の銅イオンあるいは一価の銅錯イオン
によるイオン交換およびその後の真空焼成により、銅含
有量が多く、銅が一価イオンとしてイオン交換サイトに
存在し高分散である触媒が調製できる。このため、窒素
酸化物の還元除去に必要な炭化水素の部分酸化中間体が
低温で生成し、低温でのNOx浄化率が従来のものに比
べ高く、銅一価イオンが交換サイトに保持されるため、
熱による凝集が起こりにくく、耐久性に優れた触媒を得
ることができる。
By ion exchange with monovalent copper ions or monovalent copper complex ions and subsequent vacuum calcination, a catalyst having a high copper content and having copper present as monovalent ions at ion exchange sites and having high dispersion is prepared. it can. Therefore, the partially oxidized intermediate of hydrocarbon necessary for reducing and removing nitrogen oxides is generated at a low temperature, the NOx purification rate at a low temperature is higher than that of the conventional one, and the copper monovalent ion is retained at the exchange site. For,
Aggregation due to heat hardly occurs, and a catalyst having excellent durability can be obtained.

【0008】以下、本発明をより詳細に説明する。The present invention will be described in more detail below.

【0009】ゼオライトは数多くの天然および合成ゼオ
ライトが知られているが、本発明に用いられる原料ゼオ
ライトのSiO/Alモル比は、15以上であ
ることが必須である。また、SiO/Alモル
比はその上限が限定されるものではない。SiO/A
モル比が15未満であると、十分な耐久性が得
られない。また、ゼオライトの種類は特に限定されない
が、例えば、モルデナイト、フェリエライト、ZSM−
5、ZSM−8、ZSM−11、ZSM−12、ZSM
−20、ZSM−35等のゼオライトが使用できるが、
その中でもZSM−5が好適に用いられる。またこれら
のゼオライトの製造方法は限定されるものではない。ま
たゼオライトY、ゼオライトL等のゼオライトを脱アル
ミニウムしたものであっても良い。
Although many natural and synthetic zeolites are known, it is essential that the raw material zeolite used in the present invention has a SiO 2 / Al 2 O 3 molar ratio of 15 or more. Also, SiO 2 / Al 2 O 3 molar ratio is not the upper limit thereof is limited. SiO 2 / A
If the l 2 O 3 molar ratio is less than 15, sufficient durability cannot be obtained. Further, the type of zeolite is not particularly limited, but for example, mordenite, ferrierite, ZSM-
5, ZSM-8, ZSM-11, ZSM-12, ZSM
Zeolites such as -20 and ZSM-35 can be used,
Among them, ZSM-5 is preferably used. Further, the method for producing these zeolites is not limited. Alternatively, the zeolite such as zeolite Y or zeolite L may be dealuminated.

【0010】原料ゼオライトは、合成品あるいはそのか
焼品等が用いられるが、原料ゼオライト中のNa等のイ
オンをアンモニウム塩あるいは鉱酸等で処理し、H型あ
るいはアンモニウム型として用いることもできる。更に
は、K、Cs、Ba等でイオン交換して用いることもで
きる。
As the raw material zeolite, a synthetic product or a calcined product thereof is used, but it is also possible to treat the ions such as Na in the raw material zeolite with an ammonium salt or a mineral acid and use it as an H type or an ammonium type. Further, K, Cs, Ba or the like can be used after ion exchange.

【0011】本発明において、イオン交換に用いる一価
の銅あるいは一価の銅錯イオンは水溶液中に一価で存在
し得るイオンであれば特に限定されないが、高いイオン
濃度が得られることから、ハロゲン化第二銅、酸化第二
銅をアンモニア水溶液に溶解して得られる二価銅アンミ
ン錯イオンをヒドラジンまたはヒドラジンヒドラートを
用いて還元して得られる一価銅アンミン錯イオンが好ま
しい。
In the present invention, the monovalent copper or monovalent copper complex ion used for ion exchange is not particularly limited as long as it is an ion that can exist monovalently in the aqueous solution, but since a high ion concentration can be obtained, A monovalent copper ammine complex ion obtained by reducing a divalent copper ammine complex ion obtained by dissolving cupric halide or cupric oxide in an aqueous ammonia solution with hydrazine or hydrazine hydrate is preferable.

【0012】イオン交換の際の一価の銅あるいは一価の
銅錯イオン濃度、交換温度、時間等は特に限定されず、
一般的に行われている方法で良い。一価の銅あるいは一
価の銅錯イオン濃度は、高い銅含有量を得るために0.
01〜1mol/リットルが好ましい。イオン交換温度
は一価の銅あるいは一価の銅錯イオンが安定に存在しう
る20〜80℃が好ましい。イオン交換時間は交換が十
分に行われる5分〜3日が好ましい。イオン交換のゼオ
ライトスラリー濃度はゼオライト粉末と水溶液が均一に
接触するように1〜50%が好ましい。
The concentration of monovalent copper or monovalent copper complex ions, the exchange temperature, the time, etc., during the ion exchange are not particularly limited,
A commonly used method may be used. The monovalent copper or the monovalent copper complex ion concentration is 0. 0 to obtain a high copper content.
01 to 1 mol / liter is preferable. The ion exchange temperature is preferably 20 to 80 ° C. at which monovalent copper or monovalent copper complex ions can stably exist. The ion exchange time is preferably 5 minutes to 3 days, when the exchange is sufficiently performed. The concentration of ion-exchanged zeolite slurry is preferably 1 to 50% so that the zeolite powder and the aqueous solution are in uniform contact with each other.

【0013】イオン交換およびイオン交換後のロ過は上
述の一価の銅イオンあるいは一価の銅アンミン錯イオン
が酸化されないよう窒素等で十分に酸素を置換した雰囲
気で行う。このとき、蒸留水あるいは希アンモニア水で
洗浄をしても良い。
Ion exchange and filtration after ion exchange are carried out in an atmosphere in which oxygen is sufficiently replaced with nitrogen or the like so that the above-mentioned monovalent copper ion or monovalent copper ammine complex ion is not oxidized. At this time, you may wash with distilled water or diluted ammonia water.

【0014】本発明における真空焼成の真空とは、一価
の銅イオンあるいは一価の銅アンミン錯イオンが酸化さ
れる恐れのない真空度10mmHg以下であれば良い
が、好ましくは0.1mmHg以下が良い。真空焼成の
温度はアンミン錯イオンの配位子のアンモニアが飛散か
つ一価の銅イオンがイオン交換サイトに安定化される3
00℃以上で、ゼオライトの構造が破壊されない800
℃以下が良い。好ましくは400〜700℃である。真
空焼成の時間は一価の銅イオンが交換サイトに安定化す
るために5分〜1日で良い。また、真空焼成前に水分を
除去するために真空乾燥を行っても良い。
The vacuum of the vacuum firing in the present invention may be a vacuum degree of 10 mmHg or less at which monovalent copper ions or monovalent copper ammine complex ions are not oxidized, but preferably 0.1 mmHg or less. good. The temperature of the vacuum calcination is such that ammonia as the ligand of the ammine complex ion is scattered and the monovalent copper ion is stabilized at the ion exchange site. 3
The structure of zeolite is not destroyed at temperatures above 00 ° C 800
℃ or less is good. It is preferably 400 to 700 ° C. The time for vacuum firing may be 5 minutes to 1 day because monovalent copper ions are stabilized at the exchange site. In addition, vacuum drying may be performed to remove water before vacuum baking.

【0015】銅の含有量を増加させるために上記のイオ
ン交換および真空焼成を繰り返し行うこともできる。
The above ion exchange and vacuum firing can be repeated to increase the copper content.

【0016】銅の含有量は高浄化率を得るため高い方が
良いが、過剰であると凝集しやすいため、CuO/Al
モル比は1.0〜3.0で良いが、1.2〜2.
5が好ましく、さらに好ましくは1.7〜2.2であ
る。
The copper content is preferably high in order to obtain a high purification rate, but if it is excessive, it tends to aggregate, so CuO / Al
The 2 O 3 molar ratio may be 1.0 to 3.0, but 1.2 to 2.
5 is preferable, and 1.7 to 2.2 is more preferable.

【0017】以上の様にして、本発明で用いられる排ガ
ス浄化触媒を調製することができる。 本発明で用いら
れる排ガス浄化用触媒は、粘土鉱物等のバインダーと混
合し成形して使用することもできる。ゼオライトを成形
する際に用いられるバインダーとしては、カオリン,ア
タパルガイト,モンモリロナイト,ベントナイト,アロ
フェン,セピオライト等の粘土鉱物やシリカ,チタニ
ア,ジルコニア等の無機酸化物を使用することができ
る。あるいは、バインダーを用いずに成形体を直接合成
したバインダレスゼオライト成形体であっても良い。ま
た、コージェライト製あるいは金属製のハニカム状基材
に本発明で用いられる排ガス浄化用触媒をウォッシュコ
ートして用いることもできる。この様にして調製された
排ガス浄化触媒は、窒素酸化物及び炭化水素を含む酸素
過剰の排ガスと接触させ、窒素酸化物除去を行う。
The exhaust gas purifying catalyst used in the present invention can be prepared as described above. The exhaust gas-purifying catalyst used in the present invention can be mixed with a binder such as a clay mineral and molded before use. As the binder used when forming the zeolite, clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane and sepiolite, and inorganic oxides such as silica, titania and zirconia can be used. Alternatively, it may be a binderless zeolite molded product obtained by directly synthesizing a molded product without using a binder. Further, the exhaust gas-purifying catalyst used in the present invention can be wash-coated on a honeycomb-shaped substrate made of cordierite or metal. The exhaust gas purifying catalyst thus prepared is contacted with oxygen-rich exhaust gas containing nitrogen oxides and hydrocarbons to remove nitrogen oxides.

【0018】本発明で用いられる排ガスは、窒素酸化物
及び炭化水素を含み酸素過剰であることが必須である
が、一酸化炭素、水素、アンモニア等が含まれている場
合にも有効である。酸素過剰の排ガスとは、排ガス中に
含まれる一酸化炭素、炭化水素、水素を完全に酸化する
のに必要な酸素量よりも過剰な酸素が含まれていること
を示す。例えば、自動車等の内燃機関から排出される排
ガスの場合には、空燃費が大きい状態(リーン領域)で
ある。
It is essential that the exhaust gas used in the present invention contains nitrogen oxides and hydrocarbons and is in excess of oxygen, but it is also effective when it contains carbon monoxide, hydrogen, ammonia and the like. Exhaust gas in excess of oxygen means that excess oxygen is contained in excess of the amount of oxygen required to completely oxidize carbon monoxide, hydrocarbons and hydrogen contained in the exhaust gas. For example, in the case of exhaust gas emitted from an internal combustion engine of an automobile or the like, the air fuel consumption is high (lean region).

【0019】窒素酸化物を除去する際の空間速度、温度
等は特に限定されないが、空間速度100〜50000
0hr−1、温度200〜800℃であることが好まし
い。
The space velocity, temperature, etc. for removing nitrogen oxides are not particularly limited, but the space velocity is 100 to 50,000.
It is preferable that the temperature is 0 hr −1 and the temperature is 200 to 800 ° C.

【0020】[0020]

【実施例】以下、実施例において本発明をさらに詳細に
説明する。しかし、本発明はこれら実施例に限定される
ものではない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

【0021】実施例1<触媒1の調製> 撹拌状態にある実容積2リットルのオーバーフロータイ
プの反応槽に、珪酸ソーダ水溶液(SiO;250g
/リットル、NaO;82g/リットル、Al
;2.8g/リットル)と、硫酸アルミニウム水
溶液(Al;8.8g/リットル、HSO
370g/リットル)とをそれぞれ3リットル/hr、
1リットル/hrの速度で連続的に供給した。反応温度
は30〜32℃、排出されるスラリーのpHは6.7〜
7.0であった。排出スラリーを固液分離し充分洗浄し
た後、NaO;0.75wt%、Al;0.7
7wt%、SiO;36.1wt%、HO;62.
5wt%の粒状無定形アルミノ珪酸塩均一化合物を得
た。該均一化合物2860gと3.2wt%のNaOH
水溶液6150gとをオートクレーブに仕込み、160
℃で72時間撹拌下で結晶化した。生成物を固液分離、
水洗、乾燥してNa型ZSM−5を得た。化学分析の結
果、その組成は無水ベースにおける酸化物のモル比で表
して次の組成を有していた。 1.0NaO・Al・40SiO これを塩化アンモニウム水溶液中でイオン交換して調製
したアンモニウム型ZSM−5を調製した。このアンモ
ニウム型ZSM−5;20g中に含まれているアルミナ
モル数に対して2倍の銅モル数となるように72mmo
l/リットルの塩化第二銅水溶液200mリットルを調
製し、銅に対してモル数で20倍のアンモニアを添加
し、二価の銅アンミン錯体水溶液を調製した。水溶液を
十分に置換した窒素ボックス内に移動後、この水溶液に
還元剤として銅に対してモル数0.25倍のヒドラジン
を添加し、無色透明の一価の銅アンミン錯体水溶液を調
製した。この水溶液に上述のアンモニウム型ZSM−
5;20gを加え、20℃で20時間撹拌し銅イオン交
換を行った。交換後、窒素ボックス内で固液分離、水洗
した後に110℃で20時間真空中で乾燥し真空乾燥を
行った。その後、この銅含有ゼオライト20gを石英ボ
ートに充填し、真空度0.1mmHg以下、昇温速度1
00℃/hrで500℃まで昇温し、その温度で1時間
保持し真空焼成を行った。その後、室温まで真空下で冷
却し触媒1を得た。この銅一価交換ゼオライトの銅含有
量を化学分析により調べた結果、無水ベースおける酸化
物モル比で次の組成を有していた。
Example 1 <Preparation of catalyst 1> A sodium silicate aqueous solution (SiO 2 ; 250 g) was placed in an overflow type reaction tank having an actual volume of 2 liters in a stirring state.
/ Liter, Na 2 O; 82 g / liter, Al
2 O 3 ; 2.8 g / liter) and an aqueous solution of aluminum sulfate (Al 2 O 3 ; 8.8 g / liter, H 2 SO 4 ;
370 g / liter) and 3 liters / hr,
It was continuously fed at a rate of 1 liter / hr. The reaction temperature is 30 to 32 ° C., and the pH of the discharged slurry is 6.7 to
It was 7.0. After solid-liquid separation of the discharged slurry and sufficient washing, Na 2 O; 0.75 wt%, Al 2 O 3 ; 0.7
7 wt%, SiO 2 ; 36.1 wt%, H 2 O; 62.
A 5 wt% granular amorphous aluminosilicate homogeneous compound was obtained. 2860 g of the homogeneous compound and 3.2 wt% NaOH
Charge the autoclave with 6150 g of the aqueous solution, and add 160
Crystallized at 72 ° C under stirring for 72 hours. Solid-liquid separation of products,
It was washed with water and dried to obtain Na-type ZSM-5. As a result of chemical analysis, the composition had the following composition represented by the molar ratio of oxide on an anhydrous basis. The 1.0Na 2 O · Al 2 O 3 · 40SiO 2 ammonium type ZSM-5 This was prepared by ion exchange in an aqueous solution of ammonium chloride was prepared. This ammonium type ZSM-5; 72 mmo so that the number of moles of copper is twice the number of moles of alumina contained in 20 g.
200 ml of a 1 / liter cupric chloride aqueous solution was prepared, and ammonia was added in a molar ratio of 20 times that of copper to prepare a divalent copper ammine complex aqueous solution. After moving to a nitrogen box in which the aqueous solution was sufficiently replaced, hydrazine in a mole number of 0.25 times that of copper was added as a reducing agent to this aqueous solution to prepare a colorless and transparent monovalent copper ammine complex aqueous solution. The above ammonium type ZSM-
5; 20 g was added, and the mixture was stirred at 20 ° C. for 20 hours to perform copper ion exchange. After the replacement, solid-liquid separation was carried out in a nitrogen box, followed by washing with water, followed by vacuum drying at 110 ° C. for 20 hours. Then, 20 g of this copper-containing zeolite was filled in a quartz boat, the degree of vacuum was 0.1 mmHg or less, and the temperature rising rate was 1
The temperature was raised to 500 ° C. at 00 ° C./hr, and the temperature was maintained for 1 hour for vacuum firing. Then, it cooled to room temperature under vacuum and obtained the catalyst 1. As a result of investigating the copper content of this copper monovalent exchange zeolite by a chemical analysis, it had the following composition in terms of oxide molar ratio in anhydrous base.

【0022】 1.30CuO・Al・40SiO 実施例2<触媒2の調製> 実施例1においてアンモニウム型ZSM−5;20g中
に含まれているアルミナモル数に対して3倍の銅モル数
となるように108mmol/リットルの塩化第二銅水
溶液200mlを調製した以外は実施例1と同様にして
触媒2を得た。この銅一価交換ゼオライトの銅含有量を
化学分析により調べた結果、無水ベースおける酸化物モ
ル比で次の組成を有していた。
1.30 CuO.Al 2 O 3 .40 SiO 2 Example 2 <Preparation of catalyst 2> In Example 1, ammonium type ZSM-5; 3 times as many copper moles as the alumina mole number contained in 20 g. A catalyst 2 was obtained in the same manner as in Example 1 except that 200 ml of a 108 mmol / liter cupric chloride aqueous solution was prepared so that the number became equal to the number. As a result of investigating the copper content of this copper monovalent exchange zeolite by a chemical analysis, it had the following composition in terms of oxide molar ratio in anhydrous base.

【0023】 1.66CuO・Al・40SiO 実施例3<触媒3の調製> 実施例1で得たアンモニウム型ZSM−5;20gを実
施例1と同様に銅イオン交換、真空乾燥、真空焼成を行
った後、銅イオン交換、真空乾燥、真空焼成を繰り返し
行い触媒3を得た。この銅一価交換ゼオライトの銅含有
量を化学分析により調べた結果、無水ベースおける酸化
物モル比で次の組成を有していた。
1.66 CuO.Al 2 O 3 .40SiO 2 Example 3 <Preparation of catalyst 3> 20 g of ammonium type ZSM-5 obtained in Example 1 was subjected to copper ion exchange and vacuum drying in the same manner as in Example 1. After performing the vacuum calcination, copper ion exchange, vacuum drying and vacuum calcination were repeated to obtain a catalyst 3. As a result of investigating the copper content of this copper monovalent exchange zeolite by a chemical analysis, it had the following composition in terms of oxide molar ratio in anhydrous base.

【0024】 1.90CuO・Al・40SiO 実施例4<触媒4の調製> 銅イオン交換、真空乾燥、真空焼成の繰り返しを2回行
った以外は実施例3と同様に行い触媒4を得た。この銅
一価交換ゼオライトの銅含有量を化学分析により調べた
結果、無水ベースおける酸化物モル比で次の組成を有し
ていた。
1.90 CuO.Al 2 O 3 .40SiO 2 Example 4 <Preparation of Catalyst 4> Catalyst 4 was prepared in the same manner as in Example 3 except that copper ion exchange, vacuum drying and vacuum firing were repeated twice. Got As a result of investigating the copper content of this copper monovalent exchange zeolite by a chemical analysis, it had the following composition in terms of oxide molar ratio in anhydrous base.

【0025】 2.40CuO・Al・40SiO 実施例5<触媒5の調製> 実施例1で得たNa型ZSM−5;20gを実施例1と
同様に銅イオン交換、真空乾燥、真空焼成し触媒5を得
た。この銅一価交換ゼオライトの銅含有量を化学分析に
より調べた結果、無水ベースおける酸化物モル比で次の
組成を有していた。
2.40CuO.Al 2 O 3 .40SiO 2 Example 5 <Preparation of catalyst 5> 20 g of Na-type ZSM-5 obtained in Example 1 was subjected to copper ion exchange and vacuum drying in the same manner as in Example 1. It was fired in vacuum to obtain a catalyst 5. As a result of investigating the copper content of this copper monovalent exchange zeolite by a chemical analysis, it had the following composition in terms of oxide molar ratio in anhydrous base.

【0026】 1.29CuO・Al・40SiO 比較例1<比較触媒1の調製> 実施例1において、真空焼成に代えて400ml/mi
n空気流通下で焼成を行った他は同様の方法で比較触媒
1を得た。この銅含有ゼオライトの銅含有量を化学分析
により調べた結果、無水ベースにおける酸化物モル比で
次の組成を有していた。
1.29 CuO.Al 2 O 3 .40SiO 2 Comparative Example 1 <Preparation of Comparative Catalyst 1> In Example 1, 400 ml / mi was used instead of vacuum firing.
Comparative catalyst 1 was obtained in the same manner except that the calcination was carried out under the flow of n air. As a result of investigating the copper content of this copper-containing zeolite by chemical analysis, it had the following composition in terms of oxide molar ratio on an anhydrous basis.

【0027】 1.90CuO・Al・40SiO 比較例2<比較触媒2の調製> 実施例1と同様にして得たアンモニウム型ZSM−5;
20gをゼオライト中に含まれるアルミナモル数に対し
て2倍の銅モル数となるように、0.1mol/リット
ルの酢酸第二銅水溶液に添加した。その後2.8%のア
ンモニアを添加してpH7.5に調整した後、20℃に
て20時間撹拌し、イオン交換処理を行った。固液分離
後、イオン交換操作を繰り返し、固液分離後、水洗し
た。実施例1と同様にして真空乾燥および真空焼成を施
し比較触媒2を得た。この銅含有ゼオライトの銅含有量
を化学分析により調べた結果、無水ベースおける酸化物
モル比で次の組成を有していた。
1.90 CuO.Al 2 O 3 .40SiO 2 Comparative Example 2 <Preparation of Comparative Catalyst 2> Ammonium type ZSM-5 obtained in the same manner as in Example 1;
20 g was added to a 0.1 mol / liter cupric acetate aqueous solution so that the number of moles of copper was twice the number of moles of alumina contained in the zeolite. After that, 2.8% ammonia was added to adjust the pH to 7.5, and then the mixture was stirred at 20 ° C. for 20 hours to perform ion exchange treatment. After solid-liquid separation, the ion exchange operation was repeated. Vacuum drying and vacuum calcination were carried out in the same manner as in Example 1 to obtain comparative catalyst 2. As a result of investigating the copper content of this copper-containing zeolite by chemical analysis, it had the following composition in terms of oxide molar ratio on an anhydrous basis.

【0028】 1.92CuO・Al・40SiO 実施例2<触媒活性評価試験> 触媒1〜4、比較触媒1、2を各々プレス成形後、粉砕
して12〜20メッシュに整粒した。整粒した各触媒2
ccを常圧固定床流通反応管に充填し、反応に供した。
反応前処理として、下記に示す組成のガス(以下、反応
ガス)を4000ml/minで流させながら550℃
まで昇温し、30分保持した。その後、250〜550
℃の間の任意の温度でNOxおよび炭化水素の浄化率を
測定した(反応1)。この時の空間速度(体積基準)
は、120000hr−1であった。表2には各温度に
おけるNOx浄化率を示している。尚、NOxおよび炭
化水素浄化率は次式で表される。
1.92 CuO.Al 2 O 3 .40SiO 2 Example 2 <Catalytic activity evaluation test> Catalysts 1 to 4 and comparative catalysts 1 and 2 were press-molded, respectively, and then crushed and sized to 12 to 20 mesh. . Each sized catalyst 2
cc was filled in a fixed pressure fixed bed flow reaction tube and used for the reaction.
As a reaction pretreatment, a gas having the composition shown below (hereinafter, reaction gas) is flown at 4000 ml / min at 550 ° C.
The temperature was raised to and held for 30 minutes. Then 250-550
The purification rate of NOx and hydrocarbons was measured at an arbitrary temperature between 0 ° C (reaction 1). Space velocity at this time (volume basis)
Was 120,000 hr −1 . Table 2 shows the NOx purification rate at each temperature. The NOx and hydrocarbon purification rates are expressed by the following equations.

【0029】また、12〜20メッシュに整粒した触媒
2ccに反応ガスを流通させながら、800℃で5時間
の耐久処理を実施した。その後、反応1と同様の前処理
を行い、同様の反応条件でNOxの浄化率を測定した
(反応2)。結果を表3に示す。
Further, a durability treatment was carried out at 800 ° C. for 5 hours while circulating the reaction gas through the catalyst 2 cc of which particle size was adjusted to 12 to 20 mesh. Then, the same pretreatment as in Reaction 1 was performed, and the NOx purification rate was measured under the same reaction conditions (Reaction 2). The results are shown in Table 3.

【0030】XNOX ={([NOx]in−[NOx]ou
t )/[NOx]in}×100 XNOX :NOx浄化率 [NOx]in :入口ガスのNOx濃度 [NOx]out :出口ガスのNOx濃度
XNOX = {([NOx] in- [NOx] ou
t) / [NOx] in} × 100 XNOX: NOx purification rate [NOx] in: NOx concentration of inlet gas [NOx] out: NOx concentration of outlet gas

【0031】表1 反応ガス組成 CO 0.12vol% C 0.08vol% NO 0.12vol% O 4vol% CO 12vol% HO 10vol% N バランスTable 1 Reaction gas composition CO 0.12vol% C 3 H 6 0.08vol% NO 0.12vol% O 2 4vol% CO 2 12vol% H 2 O 10vol% N 2 balance

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】表2及び表3より明らかなように本発明
の方法によれば、低温で窒素酸化物を除去可能で、さら
に触媒を高温で使用後も窒素酸化物を除去することがで
きる。
As is clear from Tables 2 and 3, according to the method of the present invention, nitrogen oxides can be removed at a low temperature, and the nitrogen oxides can be removed even after the catalyst has been used at a high temperature. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】SiO/Alモル比が少なくとも
15以上であるゼオライトを一価の銅イオンあるいは一
価の銅錯イオンを含む水溶液でイオン交換後、真空焼成
した触媒を用いて、窒素酸化物及び炭化水素を含有する
酸素過剰の排ガスから窒素酸化物を除去する方法。
1. A catalyst having a SiO 2 / Al 2 O 3 molar ratio of at least 15 or more ion-exchanged with an aqueous solution containing a monovalent copper ion or a monovalent copper complex ion, followed by vacuum calcination using a catalyst. A method for removing nitrogen oxides from an oxygen-excess exhaust gas containing nitrogen oxides and hydrocarbons.
JP4358698A 1992-12-28 1992-12-28 Method for removing nitrogen oxide Pending JPH06198134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4358698A JPH06198134A (en) 1992-12-28 1992-12-28 Method for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4358698A JPH06198134A (en) 1992-12-28 1992-12-28 Method for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH06198134A true JPH06198134A (en) 1994-07-19

Family

ID=18460653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4358698A Pending JPH06198134A (en) 1992-12-28 1992-12-28 Method for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH06198134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523287B1 (en) * 2003-02-27 2005-10-25 학교법인 포항공과대학교 Cu/ZEOLITE CATALYST FOR REMOVAL OF NITROGEN OXIDES AND PROCESS OF PREPARING SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523287B1 (en) * 2003-02-27 2005-10-25 학교법인 포항공과대학교 Cu/ZEOLITE CATALYST FOR REMOVAL OF NITROGEN OXIDES AND PROCESS OF PREPARING SAME

Similar Documents

Publication Publication Date Title
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2008104914A (en) Nitrogen oxide purification catalyst and method
JPH03118836A (en) Catalyst for contact decomposition of nitrogen oxides and contact decomposition method
JPH06198134A (en) Method for removing nitrogen oxide
JPH07112121A (en) Method for removing nox
JP3511638B2 (en) Exhaust gas purification method
JPH06170166A (en) Removal of nitrogen oxide
JP3395221B2 (en) Nitrogen oxide removal method
JP3395220B2 (en) Nitrogen oxide removal method
JP3482661B2 (en) Nitrogen oxide removal method
JP3395219B2 (en) Nitrogen oxide removal method
JP3362401B2 (en) Exhaust gas purification catalyst
JPH06170168A (en) Removal of nitrogen oxide
JPH0478444A (en) Catalyst for purification of exhaust gas and its using method
JPH06238131A (en) Removing method for nitrogen oxide
JPH04219147A (en) Exhaust gas purification catalyst
JPH0760068A (en) Exhaust gas cleaning process
JPH06126184A (en) Catalyst for purifying exhaust gas and purifying method for exhaust gas by using it
JPH06126187A (en) Removing method for nitrogen oxide
JP3511637B2 (en) Exhaust gas purification method
JPH0796142A (en) Waste gas purifying method
JPH09168720A (en) Removing method for nitrogen oxide
JPH0760063A (en) Removing process for nitrogen oxid
JPH0760065A (en) Removing process for nitrogen oxide
JPH0760064A (en) Removing process for nitrogen oxide