JPH06197402A - Controller for ac electric rolling stock - Google Patents

Controller for ac electric rolling stock

Info

Publication number
JPH06197402A
JPH06197402A JP4343866A JP34386692A JPH06197402A JP H06197402 A JPH06197402 A JP H06197402A JP 4343866 A JP4343866 A JP 4343866A JP 34386692 A JP34386692 A JP 34386692A JP H06197402 A JPH06197402 A JP H06197402A
Authority
JP
Japan
Prior art keywords
width modulation
pulse width
power
power failure
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4343866A
Other languages
Japanese (ja)
Other versions
JP3186281B2 (en
Inventor
Yutaka Ide
豊 井手
Wataru Miyake
亙 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34386692A priority Critical patent/JP3186281B2/en
Publication of JPH06197402A publication Critical patent/JPH06197402A/en
Application granted granted Critical
Publication of JP3186281B2 publication Critical patent/JP3186281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Protection Of Static Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To prevent a power balance state of a power drive electric rolling stock and a regenerative electric rolling stock in the same power supply section and to detect power interruption by advancing a secondary current pattern at the time of regenerating at least to a control deviation or more, and so controlling that an actual secondary current becomes a specific phase angle or more lead angle. CONSTITUTION:An output of a current regulator 24 is compared with a secondary winding voltage Vs of a transformer 3 by an adder 25, its output is input to a PWM circuit 26 to be controlled. When power interruption occurs, a phase of the voltage Vs is varied, and hence the phase angle of the actual secondary current Is is so controlled thereto that a phase angle is advanced to 180 deg. or more to the AC power source voltage Es. Then, since a period of a zero-cross remains short, an output of a period detector 40 is continued in a state exceeding a range of a comparator 41, and the comparator 41 outputs a power failure detection signal. The detection signal is inputted to PWM circuits 26, 27 to stop operations of a pulse width modulation converter 5 and a pulse width modulation inverter 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主回路にパルス幅変調
コンバータ回路を用い、交流電力回生機能を有する交流
電気車の制御装置に係り、特に、交流電源の停電を検知
する機能を備えた交流電気車の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an AC electric vehicle having a pulse width modulation converter circuit as a main circuit and having an AC power regeneration function, and more particularly to a function for detecting a power failure of an AC power source. The present invention relates to a control device for an AC electric vehicle.

【0002】[0002]

【従来の技術】交流電気車の架線停電を検知する方式と
して、従来、特開平1−248968 号公報に示されているよ
うに、直流ステージ電圧(平滑コンデンサの両端電圧)
を監視し、予定の条件内の時、停電検知信号を送出する
ものがあった。
2. Description of the Related Art As a method for detecting a power failure of an overhead line of an AC electric vehicle, a DC stage voltage (voltage across a smoothing capacitor) has been disclosed in Japanese Patent Laid-Open No. 1-248968.
There was a device that monitors the power supply and sends out a power failure detection signal when it is within the scheduled conditions.

【0003】また、変圧器の2次巻線電圧と2次電流と
の位相差が、停電時に自動的に180°になってしまう
ことを利用して停電を検知する特開平1−252173号公報
があった。
Also, Japanese Patent Laid-Open No. 1-252173 detects a power failure by utilizing the fact that the phase difference between the secondary winding voltage and the secondary current of a transformer automatically becomes 180 ° during a power failure. was there.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
の前者では、同一き電区間内に回生車両が存在する場合
について考慮されてない。
However, the former case of the above-mentioned prior art does not consider the case where a regenerative vehicle exists in the same feeding section.

【0005】また、後者においては、回生運転時におい
て力率が−1、すなわちφが180°となるように2次電
流パターンIspを設定しているため、制御偏差が存在
すると実際の2次電流Isは、2次電流パターンIsp
に比べ位相が遅れてしまう。実際の2次電流Isが、2
次電流パターンIspに比べ位相が遅れる理由を、以下
に述べる。
Further, in the latter case, the secondary current pattern Isp is set so that the power factor becomes −1, that is, φ becomes 180 ° during the regenerative operation. Therefore, when there is a control deviation, the actual secondary current is present. Is is the secondary current pattern Isp
The phase is delayed compared to. The actual secondary current Is is 2
The reason why the phase is delayed compared to the next current pattern Isp will be described below.

【0006】回生運転を行なうためには、コンバータ入
力電圧Vcが変圧器2次巻線電圧Vsより位相が進みで
ないと回生電流が流れないので、図6に示すように、V
cとVsの間には常に位相差が存在し、同相になること
は無い。よって、Vs−ACR出力がVcであるから、
ACR出力は常に存在する。
In order to perform the regenerative operation, the regenerative current does not flow unless the converter input voltage Vc leads the transformer secondary winding voltage Vs in phase. Therefore, as shown in FIG.
There is always a phase difference between c and Vs, and they are never in phase. Therefore, since the Vs-ACR output is Vc,
ACR output is always present.

【0007】ACR出力をACRのゲインGを割るとA
CR入力εIsとなる。厳密に言えば、ACR自身が遅
れ要素を持つので位相もわずかに変換するが、無視でき
る程度なので、ACR入力εIsは、ACR出力と同相
と考えてよい。また、ACRのゲインGは、制御系を安
定に動作させるため、有限な値である。従って、εIsと
いう偏差は必ず存在している。
ACR output divided by ACR gain G gives A
It becomes CR input εIs. Strictly speaking, since the ACR itself has a delay element, the phase is slightly converted, but since it is negligible, the ACR input εIs may be considered to be in phase with the ACR output. Further, the gain G of the ACR has a finite value in order to stably operate the control system. Therefore, the deviation εIs always exists.

【0008】Isp−Is=εIsであるからIsとI
spの関係は図6のようになり、実際の2次電流Is
は、2次電流パターンIspに比べ位相が遅れることに
なる。まず、力行運転を行なっている電気車Aの主回路
方式を、抵抗制御車や位相制御車と想定する。この場
合、電気車Aの等価回路は、純抵抗負荷分の誘導性負荷
分との直列回路で表すことが出来る。この時の等価回路
図を図9に示す。
Since Isp-Is = εIs, Is and I
The relationship of sp is as shown in FIG. 6, and the actual secondary current Is
Is delayed in phase as compared with the secondary current pattern Isp. First, it is assumed that the main circuit system of the electric vehicle A that is performing power running is a resistance control vehicle or a phase control vehicle. In this case, the equivalent circuit of the electric vehicle A can be represented by a series circuit with a pure resistance load component and an inductive load component. An equivalent circuit diagram at this time is shown in FIG.

【0009】従来の制御方式では、回生車の供給するI
sによって力行車側で純抵抗負荷分による電圧降下V
r′と誘導性負荷分による電圧降下V1′が発生する。
運転状態によって、そのベクトル図が図4のようになる
と、あたかも停電前の変圧器2次巻線電圧Vsと等しく
なってしまう。
In the conventional control method, the I supplied by the regenerative vehicle is supplied.
Voltage drop V due to pure resistance load on the power vehicle side due to s
A voltage drop V1 'occurs due to r'and the inductive load.
When the vector diagram becomes as shown in FIG. 4 depending on the operating state, it becomes equal to the transformer secondary winding voltage Vs before the power failure.

【0010】このとき純抵抗負荷分による電圧降下V
r′と誘導性負荷分による電圧降下V1′の合成による
変圧器2次巻線電圧Vsに対し、再び、2次電流パター
ンIspを発生するのでパワーバランスが崩れない限
り、車上側からみると、あたかも停電していないように
見える状態が続く。
At this time, the voltage drop V due to the pure resistance load
With respect to the transformer secondary winding voltage Vs resulting from the combination of r ′ and the voltage drop V1 ′ due to the inductive load, the secondary current pattern Isp is generated again. It continues to look like there is no power outage.

【0011】減速により回生側の発生する電力が減少し
ても、力行電気車が、抵抗制御車や位相制御車の場合、
架線電圧の低下により、力行側の消費する電力も減少す
るので、このベクトル図は相似形を保ったままであり、
バランス状態が継続することになる。
Even if the electric power generated on the regeneration side decreases due to deceleration, if the power running electric vehicle is a resistance control vehicle or a phase control vehicle,
Since the power consumption on the power running side also decreases due to the drop in the overhead line voltage, this vector diagram remains similar,
The balance will continue.

【0012】このバランス状態が継続するとき、直流ス
テージ電圧の変動を検出して、停電を検知する方式の場
合、直流ステージ電圧は変動しないので停電検知が困難
であるという問題があった。
When this balance state continues, in the case of the method of detecting the power failure by detecting the fluctuation of the DC stage voltage, there is a problem that it is difficult to detect the power failure because the DC stage voltage does not change.

【0013】また、停電時に位相差が自動的にφが18
0°になってしまうことを利用して検知しようとする方
式では、図4のようなバランス状態が生じた場合は、φ
=180°にはならないので、検知困難であるという問
題があった。
Also, when the power is cut off, the phase difference is automatically φ = 18.
In the method of detecting by utilizing the fact that the angle becomes 0 °, when the balance state as shown in FIG. 4 occurs, φ
Since the angle is not 180 °, there is a problem that detection is difficult.

【0014】いずれにしても上記従来技術では、同一給
電区間内に力行電気車と回生電気車とがある場合で、か
つ変電所に停電が生じたとき、力行電気車と回生電気車
の間にパワーバランスが発生した場合には、停電を速や
かに検知できない問題があった。
In any case, in the above prior art, when there is a power running electric vehicle and a regenerative electric vehicle in the same power feeding section and when a power failure occurs at the substation, the power running electric vehicle and the regenerative electric vehicle are connected between the power running electric vehicle and the regenerative electric vehicle. When a power balance occurred, there was a problem that the power failure could not be detected promptly.

【0015】本発明の目的は、停電を検知するのが困難
な条件下でも停電を確実に検知することのできる交流電
気車の制御装置を提供することにある。
It is an object of the present invention to provide a control device for an AC electric vehicle that can reliably detect a power failure even under conditions where it is difficult to detect a power failure.

【0016】[0016]

【課題を解決するための手段】本発明は、上記の課題を
解決し目的を達成する為に次のような手段を講じた。す
なわち、本発明はバランス状態に陥るのを防ぐために、
回生時の2次電流パターンIspを少なくとも制御偏差
の分あるいはそれ以上進ませる(力行電車Aが誘導性負
荷分の場合)ことにより、実際の2次電流Isの位相角
を180゜か、それより進み角となるように制御してい
る。
The present invention has taken the following means in order to solve the above problems and achieve the object. That is, in order to prevent the present invention from falling into a balanced state,
By advancing the secondary current pattern Isp during regeneration by at least the control deviation or more (when the power train A is an inductive load), the actual phase angle of the secondary current Is is 180 ° or more. It is controlled so that the lead angle is set.

【0017】[0017]

【作用】本発明による制御方法では、2次電流パターン
Ispを少なくとも制御偏差の分あるいはそれ以上、進
ませる(力行電気車が誘導性負荷の場合)ように制御す
る。
In the control method according to the present invention, the secondary current pattern Isp is controlled so as to advance by at least the control deviation or more (when the power running electric vehicle is an inductive load).

【0018】図7に示す回生電気車Bにこの制御方法を
採用した交流電気車の制御装置を搭載して運転している
とき、変電所の停電が発生した場合を考察する。図8に
各部の瞬時波形図を示す。停電発生以前は、交流電源電
圧Esが優勢であるため、変圧器2次巻線電圧の位相
は、交流電源電圧Esによって支配される。停電発生時
には、回生電車Bの発生する実際の2次電流Isによ
り、力行電気車Aの純抵抗負荷分による電圧降下Vr′
と誘導性負荷分による電圧降下Vl′の合成である変圧
器2次巻線電圧Vsが発生する。このとき、実際の2次
電流Isは、交流電源電圧Esに対しφが180゜ある
いは、それ以上進みとなるように制御されているので、
力行電車Aの純抵抗負荷分による電圧降下Vr′と誘導
性負荷分による電圧降下Vl′の合成による変圧器2次
巻線電圧Vsは、交流電源電圧Esに対し、少なくとも
誘導性負荷分による電圧降下Vl′の分だけ進むことに
なる。よって、停電時には、変圧器2次巻線電圧Vsの
位相が変化する。
Consider a case where a power failure occurs in a substation when the regenerative electric vehicle B shown in FIG. 7 is installed and operated with a control device for an AC electric vehicle that employs this control method. FIG. 8 shows an instantaneous waveform chart of each part. Since the AC power supply voltage Es is predominant before the occurrence of a power failure, the phase of the transformer secondary winding voltage is dominated by the AC power supply voltage Es. When a power failure occurs, the actual secondary current Is generated by the regenerative train B causes a voltage drop Vr ′ due to the pure resistance load of the power running electric vehicle A.
A transformer secondary winding voltage Vs, which is a combination of the voltage drop Vl ′ due to the inductive load component, is generated. At this time, since the actual secondary current Is is controlled so that φ advances by 180 ° or more with respect to the AC power supply voltage Es,
The transformer secondary winding voltage Vs obtained by combining the voltage drop Vr 'due to the pure resistance load component of the power train A and the voltage drop Vl' due to the inductive load component is at least a voltage due to the inductive load component with respect to the AC power supply voltage Es. It will advance by the amount of the drop Vl '. Therefore, during a power failure, the phase of the transformer secondary winding voltage Vs changes.

【0019】パルス幅変調コンバータを運転していると
き交流電源が停電すると、上述のように位相関係が変化
し、ゼロクロス周期が変化する。この結果、停電検知装
置から停電検知信号が出力される。したがって、この信
号を使ってパルス幅変調コンバータ及びパルス幅変調イ
ンバータの運転を直ちに停止させることが可能となる。
When the AC power source fails during the operation of the pulse width modulation converter, the phase relationship changes as described above, and the zero-cross cycle changes. As a result, the power failure detection device outputs a power failure detection signal. Therefore, it becomes possible to immediately stop the operation of the pulse width modulation converter and the pulse width modulation inverter using this signal.

【0020】回生電気車Bが停電を検知すれば、パルス
幅変調コンバータ及びパルス幅変調インバータの運転を
停止して、機械ブレーキ等により速やかに電気車を停止
させるなどの必要な処置を講じることができる。また力
行電気車Aも、エネルギが断たれるので、停電の検知が
可能となり、同様に必要な処置を講じることができる。
If the regenerative electric vehicle B detects a power failure, it is possible to take necessary measures such as stopping the operation of the pulse width modulation converter and the pulse width modulation inverter and quickly stopping the electric vehicle by a mechanical brake or the like. it can. Further, since the power running electric vehicle A is also cut off from the energy, it is possible to detect a power failure and similarly take necessary measures.

【0021】[0021]

【実施例】図10は、本発明が適用される交流電気車の
制御装置の一実施例を示す図である。
FIG. 10 is a diagram showing an embodiment of a control device for an AC electric vehicle to which the present invention is applied.

【0022】変電所で交流電源11から架線1に供給さ
れた交流電力は、パンタグラフ2により電気車に受電さ
れる。この交流電力は、変圧器3,変圧器の漏れインダ
クタンスを利用したリアクトル4を介してパルス幅変調
コンバータ本体5へ供給され、パルス幅変調コンバータ
本体5で直流電力に変換されるとともに平滑コンデンサ
6で平滑されてパルス幅変調インバータ7に供給され
る。このパルス幅変調インバータ7によって交流電動機
8が駆動される。
The AC power supplied from the AC power supply 11 to the overhead line 1 at the substation is received by the electric vehicle by the pantograph 2. This AC power is supplied to the pulse width modulation converter main body 5 via the transformer 3 and the reactor 4 using the leakage inductance of the transformer, converted into DC power by the pulse width modulation converter main body 5, and at the smoothing capacitor 6. It is smoothed and supplied to the pulse width modulation inverter 7. The AC motor 8 is driven by the pulse width modulation inverter 7.

【0023】パルス幅変調コンバータ本体5は、電気車
の力行運転時には、交流→直流変換(順変換)動作とな
り、回生運転時には、直流→交流変換(逆変換)動作と
なる。両動作中、パルス幅変調コンバータ本体5は、一
般的には、平滑コンデンサ6の両端電圧Vdを一定値に
保つとともに変圧器3の2次巻線電圧Vsと変圧器3の
2次電流Isとの位相差φで決まる力率cosφ を制御す
る。力率は、通常、最高値のcosφ =±1、つまりφが
0°または180°となるように制御される。図2は、
力行運転時に力率が1、すなわち、φ=0°となるよう
にパルス幅変調コンバータ本体5を動作させたときの交
流回路の電圧と電流Isとのベクトル図である。図3
は、回生運転時に力率が−1、すなわち、φが180°
となるようにパルス幅変調コンバータ本体5を動作させ
たときの交流回路の電圧と電流Isとのベクトル図であ
る。
The pulse width modulation converter main body 5 performs an AC → DC conversion (forward conversion) operation during a power running operation of an electric vehicle, and a DC → AC conversion (reverse conversion) operation during a regenerative operation. During both operations, the pulse-width modulation converter main body 5 generally keeps the voltage Vd across the smoothing capacitor 6 at a constant value, and the secondary winding voltage Vs of the transformer 3 and the secondary current Is of the transformer 3. Controls the power factor cosφ determined by the phase difference φ of. The power factor is usually controlled so that the maximum value cos φ = ± 1, that is, φ is 0 ° or 180 °. Figure 2
FIG. 6 is a vector diagram of a voltage and a current Is of an AC circuit when the pulse width modulation converter main body 5 is operated such that a power factor is 1, that is, φ = 0 ° during a power running operation. Figure 3
Has a power factor of -1 during regenerative operation, that is, φ is 180 °
FIG. 7 is a vector diagram of a voltage and a current Is of an AC circuit when the pulse width modulation converter main body 5 is operated so that

【0024】パルス幅変調コンバータを用いた交流電気
車では、つぎのような問題が生じる。即ち、パルス幅変
調コンバータは自己消弧能力素子を用いているため、停
電中にもその動作が可能である。このため、もし同一給
電区間内に力行電気車と回生電気車とがあって停電が生
じた場合、両電気車間でエネルギの授受を行なってしま
い、変電所の停電を知らずに走行してしまう恐れがあ
る。
The AC electric vehicle using the pulse width modulation converter has the following problems. That is, since the pulse width modulation converter uses the self-extinguishing capability element, it can operate even during a power failure. Therefore, if there is a power running electric vehicle and a regenerative electric vehicle in the same power supply section and a power outage occurs, energy will be transferred between the two electric vehicles, and there is a risk of traveling without knowing the power outage at the substation. There is.

【0025】図7に示すように、同一変電所から架線電
源を供給する区間(以下同一セクションと称する。)に
A,B2本の電気車が存在し、電気車Bが図1に示した
システムの車両で回生運転をおこない、電気車Aが、力
行運転を行なっていた場合、架線が停電、即ち、変電所
が送電を中断した場合でも電気車Bから電気車Aに電力
を供給する状態で運転が続くことがあるが、この状態を
保安上避ける必要がある。地震などによる地上設備の異
常の際、架線停電させることで電気車を止める方式を採
用している鉄道では特に重要な問題となる。
As shown in FIG. 7, there are two electric cars A and B in the section for supplying overhead line power from the same substation (hereinafter referred to as the same section), and the electric car B is the system shown in FIG. When electric vehicle A is performing powering operation when the vehicle is in a state of supplying power from electric vehicle B to electric vehicle A even when the overhead line has a power failure, that is, when the substation interrupts power transmission. Driving may continue, but it is necessary to avoid this situation for security reasons. This is a particularly important issue for railways that employ a system that stops electric vehicles by causing a power outage from overhead lines in the event of an abnormality in ground equipment such as an earthquake.

【0026】以下、図面を参照しながら実施例を説明す
る。図1は本発明の一実施例の制御方法を採用した交流
電気車制御装置を搭載した電気車の回路図の一例であ
る。
Embodiments will be described below with reference to the drawings. FIG. 1 is an example of a circuit diagram of an electric vehicle equipped with an AC electric vehicle control device adopting a control method according to an embodiment of the present invention.

【0027】変電所で交流電源11から架線1に供給さ
れている交流電力は、パンタグラフ2を介して電気車に
受電される。この交流電力は変圧器3,変圧器の漏れイ
ンダクタンスを利用したリアクトル4を介して自己消弧
能力素子によって構成されたパルス幅変調コンバータ本
体5へ供給され、パルス幅変調コンバータにより直流電
力に変換され平滑コンデンサ6で平滑されて、パルス幅
変調インバータ7に供給される。このパルス幅変調イン
バータ7によって交流電動機8が駆動される。パルス幅
変調コンバータ本体5は、力行運転時には、交流→直流
変換(順変換)動作を行ない、回生運転時には、直流→交
流変換(逆変換)動作を行なう。両動作中、パルス幅変
調コンバータ本体5は、一般的には、平滑コンデンサ6
の両端電圧Vdを一定値に保つとともに交流電源電圧E
sと変圧器3の2次電流Isとの位相差φで決まる力率
cosφ が高い値に維持されるように交流入力電圧Vcが
制御される。
The AC power supplied from the AC power supply 11 to the overhead line 1 at the substation is received by the electric vehicle via the pantograph 2. This AC power is supplied to the pulse width modulation converter main body 5 composed of the self-extinguishing capability element via the transformer 3 and the reactor 4 utilizing the leakage inductance of the transformer, and is converted into DC power by the pulse width modulation converter. It is smoothed by the smoothing capacitor 6 and supplied to the pulse width modulation inverter 7. The AC motor 8 is driven by the pulse width modulation inverter 7. The pulse width modulation converter main body 5 performs an AC → DC conversion (forward conversion) operation during a power running operation, and performs a DC → AC conversion (reverse conversion) operation during a regenerative operation. During both operations, the pulse-width modulation converter body 5 generally has a smoothing capacitor 6
The voltage Vd at both ends of the
power factor determined by the phase difference φ between s and the secondary current Is of the transformer 3
The AC input voltage Vc is controlled so that cosφ is maintained at a high value.

【0028】変圧器3の電圧Epを、電源に含まれるノ
イズや高調波を除去する目的で設置された同期電源フィ
ルタ30を通して導入し、ゼロクロス検出器31によっ
てゼロクロスパルスを得る。このゼロクロスパルスの周
期を周期検出装置40によって測定し、比較器41で設
定値と比較する。このゼロクロスパルスの周期と設定値
との差が、ある一定範囲を越えると停電検知信号をPW
M回路26及び27に出力する。
The voltage Ep of the transformer 3 is introduced through a synchronous power supply filter 30 installed for the purpose of removing noise and harmonics contained in the power supply, and a zero-cross detector 31 obtains a zero-cross pulse. The cycle of the zero-cross pulse is measured by the cycle detector 40, and the comparator 41 compares it with the set value. If the difference between the cycle of the zero-cross pulse and the set value exceeds a certain fixed range, the power failure detection signal is set to PW.
It outputs to the M circuits 26 and 27.

【0029】クロック信号をカウントし、ゼロクロスパ
ルスによってリセットされるカウンタ33により正弦波
ROMのアドレスが決定されるが、2次電流パターンI
spの位相を変えるため位相設定器37の出力をカウン
タ33の出力に加算器34によって加算することで、ア
ドレスにオフセットを加えている。このオフセットを加
えたアドレスを正弦波ROM35に与えることにより正
弦波のデジタルデータが得られる。この正弦波ROMの
デジタル出力信号をD/Aコンバータ36に入力しアナ
ログ信号に変換する。但し、デジタル制御とすれば、D
/Aコンバータ36は不要である。
The counter 33, which counts the clock signal and is reset by the zero-cross pulse, determines the address of the sine wave ROM.
An offset is added to the address by adding the output of the phase setting device 37 to the output of the counter 33 by the adder 34 in order to change the phase of sp. By giving the address to which this offset is added to the sine wave ROM 35, sine wave digital data can be obtained. The digital output signal of the sine wave ROM is input to the D / A converter 36 and converted into an analog signal. However, if digital control is used, D
The / A converter 36 is unnecessary.

【0030】直流電圧の目標値Vdpと測定値Vdとを
加算器20で比較し、その差をAVR(電圧調節器)21
に入力する。このAVR(電圧調節器)21の出力と、
正弦波ROM35のデジタル出力信号をアナログ信号に
変換したものとを乗算器22で掛け合わせると2次電流
パターンIspが得られる。
The target value Vdp of the DC voltage and the measured value Vd are compared by the adder 20, and the difference is compared with the AVR (voltage regulator) 21.
To enter. The output of this AVR (voltage regulator) 21,
A secondary current pattern Isp is obtained by multiplying the digital output signal of the sine wave ROM 35 converted to an analog signal by the multiplier 22.

【0031】この2次電流パターンIspと変流器9の
出力とを加算器23で比較し、その結果をACR(電流
調節器)24に入力する。ACR(電流調節器)24の
出力と変圧器3の2次巻線電圧Vsとを加算器25で比
較し、その出力をPWM回路26に入力し所定のゲート
信号を得る。
The secondary current pattern Isp and the output of the current transformer 9 are compared by the adder 23, and the result is input to the ACR (current regulator) 24. The adder 25 compares the output of the ACR (current regulator) 24 with the secondary winding voltage Vs of the transformer 3 and inputs the output to the PWM circuit 26 to obtain a predetermined gate signal.

【0032】図8は、停電時における各部電圧・電流の
瞬時波形図を示す。停電が発生すると、まず変圧器2次
巻線電圧Vsの位相が変化する。これは、通常時、交流
電源電圧Esが優勢であり、変圧器2次巻線電圧Vsも
交流電源電圧Esに支配されていたものが、停電によ
り、力行電気車の純抵抗負荷分による電圧降下Vr′と
誘導性負荷分による電圧降下Vl′の合成で生じる変圧
器2次巻線電圧Vsとなるためである。
FIG. 8 shows an instantaneous waveform diagram of the voltage / current of each part during a power failure. When a power failure occurs, first, the phase of the transformer secondary winding voltage Vs changes. This is because the AC power supply voltage Es is normally dominant and the transformer secondary winding voltage Vs is also dominated by the AC power supply voltage Es. However, due to a power failure, the voltage drop due to the pure resistance load of the power running electric vehicle is caused. This is because the transformer secondary winding voltage Vs is generated by the combination of Vr ′ and the voltage drop Vl ′ due to the inductive load.

【0033】この時、本制御法では実際の2次電流Is
の位相角を交流電源電圧Esに対しφが180゜あるい
は、それ以上の進みとなるように制御されているので、
Vsの位相は、停電前に対して少なくとも誘導性負荷分
による電圧降下Vl′の分だけ進むことになる。
At this time, in the present control method, the actual secondary current Is
Since the phase angle of is controlled so that φ is 180 ° or more with respect to the AC power supply voltage Es,
The phase of Vs is advanced by at least the voltage drop Vl 'due to the inductive load before the power failure.

【0034】その結果、ゼロクロス周期が短くなり、2
次電流パターンIspが変化する。この2次電流パター
ンIspに対し実際の2次電流Isが流れ、再び純抵抗
負荷分による電圧降下Vr′と誘導性負荷分による電圧
降下Vl′の合成で生じる変圧器2次巻線電圧Vsが発
生する。
As a result, the zero-cross period becomes short, and 2
The next current pattern Isp changes. The actual secondary current Is flows to this secondary current pattern Isp, and the transformer secondary winding voltage Vs generated by the combination of the voltage drop Vr ′ due to the pure resistance load and the voltage drop Vl ′ due to the inductive load is again generated. Occur.

【0035】よって、ゼロクロスの周期は、短くなった
ままであり、周期検出器40の出力が、比較器41の範
囲を超えた状態が継続する。この時、比較器41から、
停電検知信号が出力される。
Therefore, the zero-cross cycle remains short, and the output of the cycle detector 40 continues to exceed the range of the comparator 41. At this time, from the comparator 41,
A power failure detection signal is output.

【0036】この停電検知信号が、26及び27のパル
ス幅変調回路に入力され、パルス幅変調コンバータ及び
パルス幅変調インバータの動作が停止する。
This power failure detection signal is input to the pulse width modulation circuits 26 and 27, and the operation of the pulse width modulation converter and the pulse width modulation inverter is stopped.

【0037】このような構成であると、図7に示すよう
に、同一給電区間内に力行電気車Aと回生電気車Bとが
あり、変電所Cに停電が生じ、給電が停止すると前述の
ように、変圧器2次電圧Vsの位相が変化し、ゼロクロ
ス周期が変化するため比較器41より停電検知信号が出
力される。したがって、回生電気車B側のパルス幅変調
コンバータ本体5及びパルス幅変調インバータ本体7の
動作が停止する。また、力行電気車Aは電源が完全に断
たれるので、通常の検出系の動作によって停電を検知す
ることが出来る。
With such a configuration, as shown in FIG. 7, there are a power running electric vehicle A and a regenerative electric vehicle B in the same power feeding section, a power failure occurs at the substation C, and power feeding is stopped. As described above, since the phase of the transformer secondary voltage Vs changes and the zero-cross cycle changes, the power failure detection signal is output from the comparator 41. Therefore, the operation of the pulse width modulation converter main body 5 and the pulse width modulation inverter main body 7 on the regenerative electric vehicle B side is stopped. Further, since the power supply of the power running electric vehicle A is completely cut off, the power failure can be detected by the operation of the normal detection system.

【0038】[0038]

【発明の効果】本発明によれば、従来の方法では検知が
困難であったような条件での停電、例えば同一給電区間
内に力行電気車と回生電気車が存在し、それぞれの電力
がバランスするような条件下でも停電が検知可能となり
鉄道システムとしての保安度が大きく向上する。また、
本発明の制御方法は、従来の制御回路にわずかな修正を
加えるだけで実現可能である。
According to the present invention, there is a power outage under a condition that is difficult to detect by the conventional method, for example, a power running electric vehicle and a regenerative electric vehicle exist in the same power feeding section, and the respective electric powers are balanced. Even under such a condition, a power failure can be detected, and the safety of the railway system is greatly improved. Also,
The control method of the present invention can be realized with a slight modification to the conventional control circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による交流電気車の制御装置の回路図。FIG. 1 is a circuit diagram of a control device for an AC electric vehicle according to the present invention.

【図2】力行時の交流回路の電圧と電流とのベクトル
図。
FIG. 2 is a vector diagram of voltage and current of an AC circuit during power running.

【図3】回生時の交流回路の電圧と電流とのベクトル
図。
FIG. 3 is a vector diagram of voltage and current of an AC circuit during regeneration.

【図4】従来制御による回生運転中に停電した場合でバ
ランスした状態における交流回路の電圧と電流のベクト
ル図。
FIG. 4 is a vector diagram of the voltage and current of the AC circuit in a balanced state when a power failure occurs during regenerative operation by conventional control.

【図5】本発明制御法を適用した場合で回生運転中に停
電した場合の交流回路の電圧と電流のベクトル図。
FIG. 5 is a vector diagram of voltage and current of an AC circuit when a power failure occurs during regenerative operation when the control method of the present invention is applied.

【図6】2次電流パターンIspと2次電流Isの関係
を表すベクトル図および制御ブロック図。
FIG. 6 is a vector diagram and a control block diagram showing a relationship between a secondary current pattern Isp and a secondary current Is.

【図7】同一給電区間内に力行電気車Aと回生電気車B
とがある場合を示した説明図。
FIG. 7: Power running electric vehicle A and regenerative electric vehicle B in the same power feeding section
Explanatory drawing showing the case where there is.

【図8】本発明制御法を適用した場合の停電時における
各部電圧・電流の瞬時波形図。
FIG. 8 is an instantaneous waveform diagram of voltage / current of each part at the time of power failure when the control method of the present invention is applied.

【図9】力行運転を行なっている電気車Aの主回路方式
を、抵抗制御車や位相制御車と想定し、電気車Aの等価
回路及び回生電気車Bの間の極性を示した回路図。
FIG. 9 is a circuit diagram showing the polarities between the equivalent circuit of the electric vehicle A and the regenerative electric vehicle B, assuming that the main circuit system of the electric vehicle A performing power running is a resistance control vehicle or a phase control vehicle. .

【図10】従来からある交流電気車の制御装置の回路
図。
FIG. 10 is a circuit diagram of a conventional control device for an AC electric vehicle.

【符号の説明】[Explanation of symbols]

1…架線、2…パンタグラフ、3…変圧器、4…リアク
トル、5…パルス幅変調コンバータ、6…平滑コンデン
サ、7…パルス幅変調インバータ、8…交流電動機、9
…電流検出装置、10…真空遮断機、11…交流電源、
20,23…加算器、21…AVR、22…乗算器、2
4…ACR、25,34,41…比較器、26及び27
…パルス幅変調回路、30…同期電源フィルタ、31…
ゼロクロス検出器、32…クロックパルス発生器、33
…カウンタ、35…正弦波ROM、36…D/Aコンバ
ータ、37…位相設定器、40…周期検出器。
1 ... overhead line, 2 ... pantograph, 3 ... transformer, 4 ... reactor, 5 ... pulse width modulation converter, 6 ... smoothing capacitor, 7 ... pulse width modulation inverter, 8 ... AC motor, 9
... current detection device, 10 ... vacuum circuit breaker, 11 ... AC power supply,
20, 23 ... Adder, 21 ... AVR, 22 ... Multiplier, 2
4 ... ACR, 25, 34, 41 ... Comparators, 26 and 27
... Pulse width modulation circuit, 30 ... Synchronous power supply filter, 31 ...
Zero cross detector, 32 ... Clock pulse generator, 33
... counter, 35 ... sine wave ROM, 36 ... D / A converter, 37 ... phase setting device, 40 ... cycle detector.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】交流電源と、前記交流電源に接続された複
数の巻線を備えた変圧器と、前記変圧器の一つの巻線に
接続されたパルス幅変調コンバータと、前記パルス幅変
調コンバータの直流側に接続された平滑コンデンサと、
前記平滑コンデンサに接続されたパルス幅変調インバー
タと、前記パルス幅変調インバータに接続された交流電
動機とにより構成された電動機制御装置において、2次
電流パターンの位相を変える手段と、前記交流電源の停
電を検知し停電検知出力信号を出力する手段と、停電検
知信号により前記パルス幅変調コンバータ並びに前記パ
ルス幅変調インバータを停止するための制御信号を出力
する制御手段を備えたことを特徴とする交流電気車の制
御装置。
1. An AC power supply, a transformer having a plurality of windings connected to the AC power supply, a pulse width modulation converter connected to one winding of the transformer, and the pulse width modulation converter. A smoothing capacitor connected to the DC side of
In a motor controller including a pulse width modulation inverter connected to the smoothing capacitor and an AC motor connected to the pulse width modulation inverter, a means for changing the phase of a secondary current pattern, and a power failure of the AC power supply. AC electrical equipment comprising a means for detecting a power failure detection output signal and a control means for outputting a control signal for stopping the pulse width modulation converter and the pulse width modulation inverter by the power failure detection signal. Car controller.
【請求項2】前記2次電流パターンの位相を変える手段
は、カウンタからROMに与えるアドレス信号に、オフ
セットを加える手段を備えた請求項1に記載の交流電気
車の制御装置。
2. The control device for an AC electric vehicle according to claim 1, wherein the means for changing the phase of the secondary current pattern comprises means for adding an offset to an address signal supplied from the counter to the ROM.
【請求項3】前記停電検知手段は、交流電圧の周期を検
出する周期検出装置と、前記周期検出装置の出力が設定
された周期内に入っているかどうかを判別する比較器と
を備えた請求項1に記載の交流電気車の制御装置。
3. The power failure detecting means comprises a cycle detecting device for detecting a cycle of the AC voltage, and a comparator for judging whether or not the output of the cycle detecting device is within a set cycle. Item 2. A control device for an AC electric vehicle according to Item 1.
【請求項4】前記停電検知信号によりパルス幅変調コン
バータ並びにパルス幅変調インバータを停止するための
制御信号を出力する制御手段は、請求項3に記載の停電
検知手段から出力される停電検知信号を受けて、パルス
幅変調コンバータ並びにパルス幅変調インバータのゲー
ト信号を停止する制御手段を備えた請求項1に記載の交
流電気車の制御装置。
4. The control means for outputting a control signal for stopping the pulse width modulation converter and the pulse width modulation inverter according to the power failure detection signal is the power failure detection signal output from the power failure detection means according to claim 3. The control device for an AC electric vehicle according to claim 1, further comprising control means for receiving and stopping the gate signals of the pulse width modulation converter and the pulse width modulation inverter.
JP34386692A 1992-12-24 1992-12-24 AC electric vehicle control device Expired - Lifetime JP3186281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34386692A JP3186281B2 (en) 1992-12-24 1992-12-24 AC electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34386692A JP3186281B2 (en) 1992-12-24 1992-12-24 AC electric vehicle control device

Publications (2)

Publication Number Publication Date
JPH06197402A true JPH06197402A (en) 1994-07-15
JP3186281B2 JP3186281B2 (en) 2001-07-11

Family

ID=18364845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34386692A Expired - Lifetime JP3186281B2 (en) 1992-12-24 1992-12-24 AC electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3186281B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167608A2 (en) * 2000-06-21 2002-01-02 Whirlpool Corporation A method and apparatus for power loss detection and saving of operation settings in an appliance
JP2006320139A (en) * 2005-05-13 2006-11-24 Railway Technical Res Inst Vehicle braking method and braking system
AT504106B1 (en) * 2006-08-24 2008-03-15 Elin Ebg Traction Gmbh METHOD FOR CONTROLLING A POWER SUPPLY FOR RAIL VEHICLES
JP2010115018A (en) * 2008-11-06 2010-05-20 Mitsubishi Electric Corp Controller of ac-powered vehicle
JP2010237120A (en) * 2009-03-31 2010-10-21 Panasonic Electric Works Denro Co Ltd Watt-hour meter
JP2012023903A (en) * 2010-07-15 2012-02-02 Toshiba Corp Converter controller of ac electric train
EP2819286A1 (en) * 2013-06-27 2014-12-31 Hitachi Ltd. Converter control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167608A2 (en) * 2000-06-21 2002-01-02 Whirlpool Corporation A method and apparatus for power loss detection and saving of operation settings in an appliance
EP1167608A3 (en) * 2000-06-21 2003-11-19 Whirlpool Corporation A method and apparatus for power loss detection and saving of operation settings in an appliance
JP2006320139A (en) * 2005-05-13 2006-11-24 Railway Technical Res Inst Vehicle braking method and braking system
AT504106B1 (en) * 2006-08-24 2008-03-15 Elin Ebg Traction Gmbh METHOD FOR CONTROLLING A POWER SUPPLY FOR RAIL VEHICLES
JP2010115018A (en) * 2008-11-06 2010-05-20 Mitsubishi Electric Corp Controller of ac-powered vehicle
JP2010237120A (en) * 2009-03-31 2010-10-21 Panasonic Electric Works Denro Co Ltd Watt-hour meter
JP2012023903A (en) * 2010-07-15 2012-02-02 Toshiba Corp Converter controller of ac electric train
EP2819286A1 (en) * 2013-06-27 2014-12-31 Hitachi Ltd. Converter control device
CN104253528A (en) * 2013-06-27 2014-12-31 株式会社日立制作所 Converter control device
CN104253528B (en) * 2013-06-27 2017-04-12 株式会社日立制作所 Converter control device

Also Published As

Publication number Publication date
JP3186281B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US4335337A (en) Control system for electric motor vehicle
JP3890924B2 (en) Electric car drive system
JP4243321B1 (en) AC electric vehicle control device
JPS6315231B2 (en)
JP3186281B2 (en) AC electric vehicle control device
JPH11308894A (en) Process for power failure of motor
WO2014002260A1 (en) Method for controlling ac electric vehicle
JP2672911B2 (en) Blackout detection method for AC electric vehicles
JP2003189631A (en) Power failure detector of power conversion circuit
JP4153879B2 (en) Vehicle drive control device
JP2004104959A (en) Regenerative control method of power converter for driving motor
WO2024084668A1 (en) Power conversion device for railroad car
KR100758979B1 (en) Regenerative inverter system for DC railway system and method thereof
JP7545374B2 (en) Control device and control method for power converter
JP3186495B2 (en) Power converter for AC electric vehicles
JP2672885B2 (en) Power failure detection device for AC electric vehicles
JP2994892B2 (en) Electric vehicle power converter
WO2024147187A1 (en) Propulsion control device
KR100884153B1 (en) Electric car controller
JPS6311001A (en) Controller for electric rolling stock
JPH01136503A (en) Controller for ac electric vehicle
JPH0866055A (en) Power conversion apparatus
JP2677804B2 (en) How to start / stop the inverter
JPH01252173A (en) Control method for power converter
JP2635120B2 (en) Induction machine control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12