JPH06196810A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH06196810A
JPH06196810A JP3856193A JP3856193A JPH06196810A JP H06196810 A JPH06196810 A JP H06196810A JP 3856193 A JP3856193 A JP 3856193A JP 3856193 A JP3856193 A JP 3856193A JP H06196810 A JPH06196810 A JP H06196810A
Authority
JP
Japan
Prior art keywords
layer
algaas
type
clad
clad layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3856193A
Other languages
Japanese (ja)
Other versions
JP3238974B2 (en
Inventor
Keiichi Yoshitoshi
慶一 吉年
Akira Ibaraki
晃 茨木
Nobuhiko Hayashi
伸彦 林
Kotaro Furusawa
浩太郎 古沢
Atsushi Tajiri
敦志 田尻
Toru Ishikawa
徹 石川
Kenichi Matsukawa
健一 松川
Teruaki Miyake
輝明 三宅
Takenori Gotou
壮謙 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP03856193A priority Critical patent/JP3238974B2/en
Priority to US08/147,779 priority patent/US5416790A/en
Publication of JPH06196810A publication Critical patent/JPH06196810A/en
Priority to US08/365,176 priority patent/US5506170A/en
Priority to US08/536,370 priority patent/US5610096A/en
Application granted granted Critical
Publication of JP3238974B2 publication Critical patent/JP3238974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0658Self-pulsating

Abstract

PURPOSE:To provide a semiconductor laser element conducting self oscillation in small astigmatic difference at a small operating current value. CONSTITUTION:An n-type GaAs substrate 1, and n-type AlGaAs first clad layer 2 formed onto the n-type GaAs substrate 1, an active layer 4 shaped onto the first clad layer 2 and a p-type AlGaAs second clad layer 5 which a striped ridge section formed onto the active layer 4 are provided. An n-type AluGa1-u As first supersaturated optical absorption layer 3 is shaped into the first clad layer 2 while a p-type AluGa1-uAs second supersaturated optical absorption layer 6 is formed onto the p-type third AlGaAs clad layer 5a of the second clad layer 5, and the first and second supersaturated optical absorption layers 3, 6 have band gap energy equal to oscillation wavelength energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は出力レーザ光の戻り光に
起因する雑音を低減した半導体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device in which noise caused by returning light of output laser light is reduced.

【0002】[0002]

【従来の技術】従来の半導体レーザ素子は、出力レーザ
光の戻り光が半導体レーザ素子へ再入射された場合、こ
の戻り光に起因した雑音(以下、戻り光雑音という)が
出力レーザ光内に発生するといった問題があった。斯る
戻り光雑音は、例えば半導体レーザ素子を光ディスク装
置の光源として使用する場合に、ディスク面等からの反
射による出力レーザ光の戻り光が半導体レーザ素子へ再
入射することにより発生する。
2. Description of the Related Art In a conventional semiconductor laser device, when return light of output laser light is re-incident on the semiconductor laser device, noise caused by this return light (hereinafter referred to as return light noise) is present in the output laser light. There was a problem that it occurred. Such return light noise is generated, for example, when the semiconductor laser element is used as a light source of an optical disk device, and the return light of the output laser light due to reflection from the disk surface or the like is re-incident on the semiconductor laser element.

【0003】この半導体レーザ素子の戻り光雑音を低減
する為に、自励発振現象を利用する方法が知られてお
り、例えば特開昭63−202083号(H01S 3
/18)公報に開示されている。
A method of utilizing a self-oscillation phenomenon in order to reduce the return light noise of this semiconductor laser device is known, for example, Japanese Patent Application Laid-Open No. 63-202083 (H01S 3).
/ 18).

【0004】斯る半導体レーザ素子では、AlGaAs
活性層を挟むクラッド層のうち、一方のクラッド層に発
振波長に対応するエネルギー(発振波長エネルギー:h
ν)よりかなり大きなバンドギャップエネルギーを持つ
屈折率層もしくは該発振波長エネルギーよりかなり小さ
なバンドギャップエネルギーを持つ光吸収層を用いるこ
とにより、自励発振させることが記載されている。
In such a semiconductor laser device, AlGaAs
The energy corresponding to the oscillation wavelength (oscillation wavelength energy: h
It is described that self-excited oscillation is caused by using a refractive index layer having a bandgap energy much larger than ν) or a light absorption layer having a bandgap energy much smaller than the oscillation wavelength energy.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、本願出
願人の実験結果によると、上記発振波長エネルギーより
かなり大きなバンドギャップエネルギーをもつ屈折率層
の場合は、非点隔差が大きくなり、他方発振波長エネル
ギーよりかなり小さなバンドギャップエネルギーを持つ
光吸収層の場合は、動作電流値が大きくなるといったこ
とが判った。
However, according to the experimental results of the applicant of the present application, in the case of a refractive index layer having a bandgap energy considerably larger than the above oscillation wavelength energy, the astigmatic difference increases, while the oscillation wavelength energy increases. It was found that the operating current value becomes large in the case of the light absorption layer having a much smaller bandgap energy.

【0006】本発明は斯る問題点を鑑みて成されたもの
であり、小さな非点隔差で且つ小さな動作電流値で自励
発振を行う半導体レーザ素子を提供することを目的とす
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor laser device which performs self-sustained pulsation with a small astigmatic difference and a small operating current value.

【0007】[0007]

【課題を解決するための手段】本発明の半導体レーザ素
子は、第1導電型の半導体基板と、該半導体基板上に設
けた第1導電型の第1クラッド層と、該第1クラッド層
上に設けた活性層と、該活性層上に設けた第2導電型の
第2クラッド層とを備え、前記第1、第2クラッド層は
前記活性層より小さい屈折率及び大きいバンドギャップ
を有すると共に、前記第1、第2クラッド層の少なくと
も一方の層中に発振波長エネルギーに略等しいエネルギ
ーのバンドギャップを有する過飽和光吸収層(可飽和光
吸収層)を有したことを特徴とする。
A semiconductor laser device according to the present invention comprises a first conductivity type semiconductor substrate, a first conductivity type first clad layer provided on the semiconductor substrate, and a first clad layer on the first clad layer. And a second conductivity type second clad layer provided on the active layer, wherein the first and second clad layers have a refractive index smaller than that of the active layer and a large bandgap. At least one of the first and second cladding layers has a supersaturated light absorption layer (saturable light absorption layer) having a bandgap of energy substantially equal to the oscillation wavelength energy.

【0008】特に、前記第1クラッド層は、第1AlG
aAsクラッド層と第2AlGaAsクラッド層とから
なり、該第1AlGaAsクラッド層と第2AlGaA
sクラッド層との間に第1導電型のAluGa1-uAs第
1過飽和光吸収層を有し、且つ前記第2クラッド層は前
記活性層上に形成された第3AlGaAsクラッド層と
該第3AlGaAsクラッド層上に形成されたストライ
プ状リッジ部をなす第4AlGaAsクラッド層とから
なり、前記第3AlGaAsクラッド層上に第2導電型
のAluGa1-uAs第2過飽和光吸収層を形成したこと
を特徴とする。
In particular, the first cladding layer is a first AlG layer.
an aAs clad layer and a second AlGaAs clad layer, and the first AlGaAs clad layer and the second AlGaA
an Al u Ga 1-u As first supersaturated light absorption layer of the first conductivity type between the second cladding layer and the third AlGaAs cladding layer formed on the active layer; And a fourth AlGaAs clad layer forming a striped ridge portion formed on the third AlGaAs clad layer, and forming a second conductivity type Al u Ga 1-u As second supersaturated light absorption layer on the third AlGaAs clad layer. It is characterized by having done.

【0009】[0009]

【作用】本発明によれば、活性層を挟む第1、第2クラ
ッド層のうち、少なくとも一方の層中に発振波長エネル
ギーに略等しいバンドギャップエネルギーを有する過飽
和光吸収層を設けるので、自励発振が低非点隔差、低動
作電流、且つ単一横モードで起こる。
According to the present invention, since the supersaturated light absorption layer having the bandgap energy substantially equal to the oscillation wavelength energy is provided in at least one of the first and second cladding layers that sandwich the active layer, self-excitation Oscillation occurs with low astigmatic difference, low operating current, and single transverse mode.

【0010】特に、前記第1クラッド層は、第1AlG
aAsクラッド層と第2AlGaAsクラッド層とから
なり、該第1、第2AlGaAsクラッド層間に第1導
電型のAluGa1-uAs第1過飽和光吸収層を有し、且
つ前記第2クラッド層は前記活性層上に形成された第3
AlGaAsクラッド層と該第3AlGaAsクラッド
層上に形成されたストライプ状リッジ部をなす第4Al
GaAsクラッド層とからなり、第3AlGaAsクラ
ッド層上に第2導電型のAluGa1-uAs第2過飽和光
吸収層を形成した構成の場合、前記AluGa1-uAs第
2過飽和光吸収層がストライプ状リッジ部をなす第4A
lGaAsクラッド層を形成する際のエッチング停止層
としても機能するので、前記活性層上に形成される第3
AlGaAsクラッド層の層厚を高精度に且つ容易に形
成できる。
In particular, the first cladding layer is a first AlG layer.
an AlAs clad layer and a second AlGaAs clad layer, and has a first conductivity type Al u Ga 1-u As first saturable light absorption layer between the first and second AlGaAs clad layers, and the second clad layer is A third layer formed on the active layer
AlGaAs clad layer and fourth Al forming a striped ridge portion formed on the third AlGaAs clad layer.
And a second conductivity type Al u Ga 1-u As second supersaturated light absorption layer formed on the third AlGaAs clad layer, the Al u Ga 1-u As second supersaturated light 4A in which the absorption layer forms a striped ridge
The third layer formed on the active layer also functions as an etching stop layer when forming the 1 GaAs clad layer.
The layer thickness of the AlGaAs clad layer can be easily formed with high precision.

【0011】[0011]

【実施例】本発明に係る一実施例を図面を参照しつつ詳
細に説明する。図1は本実施例のAlGaAs系半導体
レーザ素子を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an AlGaAs semiconductor laser device of this embodiment.

【0012】図中、1はn型GaAs基板であり、該n
型GaAs基板1上には、層厚1〜2μmのn型の第1
AlxaGa1-xaAs(AlGaAs)クラッド層(典型
的には組成比xa=0.51)2a、層厚S1のn型A
uGa1-uAs第1過飽和光吸収層(組成比uは0.1
2≦u≦0.14,キャリア濃度2×1017〜5×10
17cm-3)3、及び層厚t1が0.3μmのn型の第2
AlxbGa1-xbAs(AlGaAs)クラッド層(典型
的には組成xb=0.51)2bがこの順序で形成され
ており、該クラッド層2a、2bにより第1クラッド層
2が構成されている。即ち、第1クラッド層2中に第1
過飽和光吸収層3が形成されている。
In the figure, 1 is an n-type GaAs substrate,
On the n-type GaAs substrate 1, a first n-type film having a layer thickness of 1 to 2 μm is formed.
Al xa Ga 1-xa As (AlGaAs) cladding layer (typically composition ratio xa = 0.51) 2a, n-type A with layer thickness S 1
l u Ga 1-u As first saturable light absorbing layer (composition ratio u of 0.1
2 ≦ u ≦ 0.14, carrier concentration 2 × 10 17 to 5 × 10
17 cm −3 ) 3, and an n-type second layer having a layer thickness t 1 of 0.3 μm
An Al xb Ga 1-xb As (AlGaAs) clad layer (typically composition xb = 0.51) 2b is formed in this order, and the clad layers 2a and 2b constitute the first clad layer 2. There is. That is, the first clad layer 2 has a first
The supersaturated light absorption layer 3 is formed.

【0013】前記第1クラッド層2上には層厚0.08
μmのアンドープのAlqGa1-qAs(組成比q=0.
13)活性層4が形成されている。
A layer thickness of 0.08 is formed on the first cladding layer 2.
μm undoped Al q Ga 1-q As (composition ratio q = 0.
13) The active layer 4 is formed.

【0014】前記活性層4上には、層厚t2が0.3μ
mであるp型の第3AlyaGa1-yaAs(AlGaA
s)クラッド層(典型的には組成比ya=0.51)5
a、層厚S2のp型AluGa1-uAs第2過飽和光吸収
層(組成比uは0.12≦u≦0.14,キャリア濃度
4×1017〜2×1018cm-3)6、及び高さが0.5
〜1μmでストライプ下面幅Wが4μmのストライプ状
リッジ部をなすp型の第4AlybGa1-ybAs(AlG
aAs)クラッド層(典型的には組成比yb=0.5
1)5bがこの順序で形成されており、該クラッド層5
a、5bによりストライプ状リッジ部を有する第2クラ
ッド層5が構成されている。
A layer thickness t 2 of 0.3 μm is formed on the active layer 4.
p-type third Al ya Ga 1-ya As (AlGaA
s) Cladding layer (typically composition ratio ya = 0.51) 5
a, p-type Al u Ga 1 -u As second supersaturated light absorption layer having a layer thickness S 2 (composition ratio u is 0.12 ≦ u ≦ 0.14, carrier concentration 4 × 10 17 to 2 × 10 18 cm − 3 ) 6, and height is 0.5
P-type fourth Al yb Ga 1 -yb As (AlG) forming a striped ridge having a stripe lower surface width W of 4 μm.
aAs) clad layer (typically composition ratio yb = 0.5
1) 5b are formed in this order, and the cladding layer 5
The second cladding layer 5 having a striped ridge portion is constituted by a and 5b.

【0015】前記第4AlGaAsクラッド層5bのそ
のリッジ部上面には、層厚0.3μmのp型GaAsキ
ャップ層7が形成されており、該p型GaAsキャップ
層7の側面、前記第4AlGaAsクラッド層5bの側
面、及び第2過飽和光吸収層6上には層厚0.8μmの
n型GaAs電流阻止層8、8が形成されている。前記
n型GaAs電流阻止層8、8及びp型GaAsキャッ
プ層7上には層厚4μmのp型GaAsコンタクト層9
が形成されている。
A p-type GaAs cap layer 7 having a layer thickness of 0.3 μm is formed on the upper surface of the ridge portion of the fourth AlGaAs clad layer 5b, and the side surface of the p-type GaAs cap layer 7 and the fourth AlGaAs clad layer are formed. N-type GaAs current blocking layers 8 having a layer thickness of 0.8 μm are formed on the side surface of 5b and on the second supersaturated light absorption layer 6. A p-type GaAs contact layer 9 having a thickness of 4 μm is formed on the n-type GaAs current blocking layers 8 and 8 and the p-type GaAs cap layer 7.
Are formed.

【0016】図示しないが、前記p型GaAsコンタク
ト層9上にはAu−Crからなるp型側オーミック電
極、前記n型GaAs基板1下面にはAu−Sn−Cr
からなるn型側オーミック電極が形成されている。
Although not shown, a p-type ohmic electrode made of Au-Cr is formed on the p-type GaAs contact layer 9, and Au-Sn-Cr is formed on the lower surface of the n-type GaAs substrate 1.
The n-type ohmic electrode made of is formed.

【0017】斯る半導体レーザ素子において、前記n型
AluGa1-uAs第1過飽和光吸収層3及びp型Alu
Ga1-uAs第2過飽和光吸収層6の組成比u(ここで
は、共に同一組成比)と層厚(ここでは、共に同一層
厚:S1=S2)を変化させ、γ値(ビジビリティ)、非
点隔差、光出力3mW時の動作電流値を調べた。尚、こ
こでは一例としてレーザ共振器長250μmの素子に端
面コートを施さないで行ったものを示す。
In such a semiconductor laser device, the n-type Al u Ga 1-u As first supersaturated light absorption layer 3 and the p-type Al u are used.
The composition ratio u (here, both are the same composition ratio) and the layer thickness (here, the same layer thickness: S 1 = S 2 ) of the Ga 1 -u As second supersaturated light absorption layer 6 are changed, and the γ value ( Visibility), astigmatic difference, and operating current value at optical output of 3 mW were examined. Incidentally, here, as an example, an example in which an element having a laser cavity length of 250 μm is not coated with an end face is shown.

【0018】ここで、前記γ値は自励発振(縦モード間
の干渉性)の程度を示しており、γ=1の場合は自励発
振は行われず、γが0に近づく程自励発振性が強まる。
本願発明者の実験結果によると、光ディスク装置に半導
体レーザ素子を搭載した場合、γ値が0.7以下で良好
なC/N値が得られ、0.6以下で特に良好なC/N値
が得られることが判明しており、また、前記非点隔差は
一般のディスク装置で用いられる光学系において、17
μm以下の小さな値で十分なレーザ光の集光が行えて良
好なC/N値が得られ、特に15μm以下で良好なレー
ザ光の集光が行えてより良好なC/N値を得ることがで
きることが判った。
Here, the γ value indicates the degree of self-sustained pulsation (interference between longitudinal modes). When γ = 1, self-sustained pulsation is not performed, and as γ approaches 0, the self-sustained pulsation becomes higher. Get stronger.
According to the experimental results of the inventor of the present application, when the semiconductor laser device is mounted on the optical disk device, a good C / N value is obtained when the γ value is 0.7 or less, and a particularly good C / N value is obtained when the γ value is 0.6 or less. It has been found that the above-mentioned astigmatic difference is 17 in the optical system used in a general disc device.
With a small value of μm or less, sufficient laser light can be collected and a good C / N value can be obtained, and particularly with a value of 15 μm or less, good laser light can be collected and a better C / N value can be obtained. It turns out that

【0019】最初に、図2に前記AluGa1-uAs第
1、第2過飽和光吸収層3、6の組成比uが0.12〜
0.14の範囲における該第1、第2過飽和光吸収層
3、6の層厚とγ値の関係を示す。
First, FIG. 2 shows that the composition ratio u of the Al u Ga 1-u As first and second supersaturated light absorption layers 3 and 6 is 0.12 to 0.12.
The relationship between the γ value and the layer thickness of the first and second supersaturated light absorption layers 3 and 6 in the range of 0.14 is shown.

【0020】この図2から前記過飽和光吸収層3、6の
層厚が0.01μm以上の場合にγ値が0.7以下とな
り、0.02μm以上でγ値が0.6以下となることが
判る。
From FIG. 2, the γ value is 0.7 or less when the layer thickness of the supersaturated light absorbing layers 3 and 6 is 0.01 μm or more, and the γ value is 0.6 or less when 0.02 μm or more. I understand.

【0021】次に、図3に前記第1、第2過飽和光吸収
層3、6の組成比uが0.12〜0.14の範囲におけ
る該第1、第2過飽和光吸収層3、6の層厚と非点隔差
の関係を示す。
Next, referring to FIG. 3, the first and second supersaturated light absorption layers 3 and 6 in the composition ratio u of the first and second supersaturated light absorption layers 3 and 6 are in the range of 0.12 to 0.14. The relation between the layer thickness and the astigmatic difference is shown.

【0022】この図3から、前記第1、第2過飽和光吸
収層3、6の層厚が0.01μm以上では組成比uが
0.13以下の範囲であれば、17μm以下の非点隔差
となり、0.02μm以上では組成比uが0.14以下
の範囲で、17μm以下の非点隔差が得られることが判
る。
From FIG. 3, when the layer thickness of the first and second supersaturated light absorption layers 3 and 6 is 0.01 μm or more, and the composition ratio u is 0.13 or less, the astigmatic difference is 17 μm or less. It can be seen that when 0.02 μm or more, an astigmatic difference of 17 μm or less is obtained when the composition ratio u is 0.14 or less.

【0023】引き続いて、図4に前記第1、第2過飽和
光吸収層3、6の組成比uが0.12〜0.14の範囲
における該第1、第2過飽和光吸収層3、6の層厚と光
出力3mW時の動作電流の関係を示す。
Subsequently, in FIG. 4, the first and second supersaturated light absorption layers 3 and 6 in the composition ratio u of the first and second supersaturated light absorption layers 3 and 6 are in the range of 0.12 to 0.14. Shows the relationship between the layer thickness and the operating current when the light output is 3 mW.

【0024】この図4から、組成比が0.12以上の場
合には第1、第2過飽和光吸収層3、6の層厚が0.0
32μm以下、組成比が0.13以上の場合には層厚が
0.041μm以下、組成比が0.14以上の場合には
層厚が0.043μm以下で動作電流が実用上問題ない
80mA以下の小さな値になることが判る。
From FIG. 4, when the composition ratio is 0.12 or more, the layer thickness of the first and second supersaturated light absorption layers 3 and 6 is 0.0.
32 μm or less, when the composition ratio is 0.13 or more, the layer thickness is 0.041 μm or less, and when the composition ratio is 0.14 or more, the layer thickness is 0.043 μm or less, and the operating current is 80 mA or less, which is practically no problem. It turns out that it becomes a small value of.

【0025】この図2〜図4から判るように、前記n型
AluGa1-uAs第1過飽和光吸収層3及びp型Alu
Ga1-uAs第2過飽和光吸収層6は前記AlqGa1-q
As活性層4とのAl組成比の差が−0.01〜0.0
1(即ち、q−0.01≦u≦q+0.01;0≦u<
1)の範囲で、単一横モードであって従来に比べてγ
値、非点隔差、及び動作電流値共に良好な範囲とするこ
とが可能である。このように良好な効果を呈するのは、
前記第1、第2過飽和光吸収層3、6はそれらバンドギ
ャップエネルギーが前記活性層3のバンドギャップエネ
ルギー、即ち発振波長エネルギーとの絶対値差が0.0
125eV以下であって略等しいので、良好な過飽和状
態となるためである。
As can be seen from FIGS. 2 to 4, the n-type Al u Ga 1 -u As first supersaturated light absorption layer 3 and the p-type Al u.
The Ga 1 -u As second supersaturated light absorption layer 6 is made of Al q Ga 1 -q.
The difference in the Al composition ratio from the As active layer 4 is -0.01 to 0.0.
1 (that is, q-0.01≤u≤q + 0.01; 0≤u <
In the range of 1), it is a single transverse mode and γ
The values, the astigmatic difference, and the operating current value can be within good ranges. Such a good effect is
The band gap energy of the first and second supersaturated light absorption layers 3 and 6 is 0.0 in terms of an absolute value difference from the band gap energy of the active layer 3, that is, the oscillation wavelength energy.
This is because the values are 125 eV or less and are substantially equal to each other, so that a good supersaturated state is achieved.

【0026】更に言及すると、上記AlqGa1-qAs活
性層4の組成比qは0.13に限らず、0≦q<1の範
囲から選択した場合においても、AluGa1-uAs第
1、第2過飽和光吸収層3、6の各組成比u(0≦u<
1)と各層厚の値S1,S2は、図5中の斜線部で示され
る範囲内から選択すれば、単一横モードであってγ値、
非点隔差、及び動作電流値共に従来に比べて良好な値と
なる。
Further, the composition ratio q of the Al q Ga 1-q As active layer 4 is not limited to 0.13, and Al u Ga 1-u is selected even when selected from the range of 0 ≦ q <1. As composition ratio u of the first and second supersaturated light absorption layers 3 and 6 (0 ≦ u <
1) and the values S 1 and S 2 of the respective layer thicknesses, if selected from the range shown by the hatched portion in FIG.
Both the astigmatic difference and the operating current value are better than those of the conventional one.

【0027】上述では、前記第2AlGaAsクラッド
層2bの層厚t1及び第3AlGaAsクラッド層5a
の層厚t2は共に0.3μmであるが、この層厚t1、t
2を共に層厚tに変化させて、γ値(ビジビリティ)、
非点隔差、光出力3mW時の動作電流値を調べた。尚、
ここではAluGa1-uAs第1、第2過飽和光吸収層
3、6の組成比u及び層厚は共にu=0.13、0.0
3μm、またAlqGa1 -qAs活性層4の組成比qは
0.13である。
In the above description, the layer thickness t 1 of the second AlGaAs clad layer 2b and the third AlGaAs clad layer 5a are set.
The layer thickness t 2 of each is 0.3 μm, but the layer thicknesses t 1 , t
By changing both 2 to the layer thickness t, the γ value (visibility),
The astigmatic difference and the operating current value when the light output was 3 mW were examined. still,
Here, the composition ratio u and the layer thickness of the Al u Ga 1-u As first and second supersaturated light absorption layers 3 and 6 are both u = 0.13 and 0.0.
3 μm, and the composition ratio q of the Al q Ga 1 -q As active layer 4 is 0.13.

【0028】図6は前記層厚tとγ値(ビジビリティ)
の関係を示す。この図から前記層厚tは0.27μm以
上でγ値が0.7以下になり、該層厚がは0.28μm
以上でγ値が0.6以下になることが判る。
FIG. 6 shows the layer thickness t and the γ value (visibility).
Shows the relationship. From this figure, the layer thickness t is 0.27 μm or more, the γ value is 0.7 or less, and the layer thickness is 0.28 μm.
From the above, it can be seen that the γ value becomes 0.6 or less.

【0029】図7は前記層厚tと非点隔差の関係を示
す。この図から前記層厚tは0.33μm以下で非点隔
差が17μm以下になり、0.32μm以下で非点隔差
が15μm以下になることが判る。
FIG. 7 shows the relationship between the layer thickness t and the astigmatic difference. It can be seen from this figure that the astigmatic difference is 17 μm or less when the layer thickness t is 0.33 μm or less, and the astigmatic difference is 15 μm or less when the layer thickness t is 0.32 μm or less.

【0030】図8は前記層厚tと動作電流の関係を示
す。この図から前記層厚tが0.33μm以下の範囲で
特に良好な値であり、0.32μm以下の範囲で顕著に
良好な値になることが判る。
FIG. 8 shows the relationship between the layer thickness t and the operating current. From this figure, it can be seen that the layer thickness t has a particularly good value in the range of 0.33 μm or less and a remarkably good value in the range of 0.32 μm or less.

【0031】従って、前記第2AlGaAsクラッド層
2b及び第3AlGaAsクラッド層5aの層厚tは
0.27μm以上0.33μm以下の範囲内で選択で
き、望ましくは0.28μm以上0.32μm以下の範
囲内で選択できる。尚、前記第2AlGaAsクラッド
層2b及び第3AlGaAsクラッド層5aは層厚t
(0.27μm≦t≦0.33μm)としたが、前記層
厚t1、t2は0.27μm以上0.33μm以下の範囲
で選択した場合も同様に効果が得られ、特に0.28μ
m以上0.32μm以下の範囲で選択した場合により望
ましい効果が得られる。
Therefore, the layer thickness t of the second AlGaAs clad layer 2b and the third AlGaAs clad layer 5a can be selected within the range of 0.27 μm or more and 0.33 μm or less, and preferably within the range of 0.28 μm or more and 0.32 μm or less. You can select with. The second AlGaAs cladding layer 2b and the third AlGaAs cladding layer 5a have a layer thickness t.
Although (0.27 μm ≦ t ≦ 0.33 μm), the same effect can be obtained when the layer thicknesses t 1 and t 2 are selected in the range of 0.27 μm or more and 0.33 μm or less, and in particular 0.28 μm
A more desirable effect can be obtained by selecting in the range of m or more and 0.32 μm or less.

【0032】尚、AluGa1-uAs第1、第2過飽和光
吸収層3、6及び活性層4の各組成比、各層厚等を変え
た場合も、前記第2AlGaAsクラッド層2b及び第
3AlGaAsクラッド層5aの層厚等を最適化するこ
とにより好ましい効果が得られる。
When the composition ratios of the Al u Ga 1-u As first and second supersaturated light absorption layers 3 and 6 and the active layer 4 and the layer thicknesses are changed, the second AlGaAs cladding layer 2b and the second AlGaAs cladding layer 2b are also changed. A preferable effect can be obtained by optimizing the layer thickness of the 3AlGaAs cladding layer 5a.

【0033】斯る半導体レーザ素子の製造方法を図9を
用いて説明する。
A method of manufacturing such a semiconductor laser device will be described with reference to FIG.

【0034】最初に、図9(a)に示すように、有機金
属気相成長法(MOCVD法)又は分子線エピタキシャ
ル成長法(MBE法)により、n型GaAs基板1上に
n型の第1AlGaAsクラッド層2a、n型Alu
1-uAs第1過飽和光吸収層3、n型の第2AlGa
Asクラッド層2b、アンドープのAlqGa1-qAs活
性層4、p型の第3AlGaAsクラッド層5a、p型
AluGa1-uAs第2過飽和光吸収層6、p型の第4A
lGaAsクラッド層5b、及びp型GaAsキャップ
層7をこの順序で連続成長する。
First, as shown in FIG. 9A, the n-type first AlGaAs cladding is formed on the n-type GaAs substrate 1 by the metal organic chemical vapor deposition method (MOCVD method) or the molecular beam epitaxial growth method (MBE method). Layer 2a, n-type Al u G
a 1-u As first supersaturated light absorption layer 3, n-type second AlGa
As clad layer 2b, undoped Al q Ga 1-q As active layer 4, p-type third AlGaAs clad layer 5a, p-type Al u Ga 1-u As second supersaturated light absorption layer 6, p-type fourth A
The 1GaAs clad layer 5b and the p-type GaAs cap layer 7 are continuously grown in this order.

【0035】次に、図9(b)に示すように、通常のフ
ォトリソグラフィ技術等を用いて、前記p型GaAsキ
ャップ層7上にストライプ状の層厚0.2μmのSiO
2マスク層10を形成する。前記SiO2マスク層10を
マスクとして燐酸系エッチング液により、前記p型の第
4AlGaAsクラッド層5bが0.1〜0.3μm厚
残余するように前記p型GaAsキャップ層7及びp型
の第4AlGaAsクラッド層5bをエッチングした
後、塩酸エッチング液により該残余したクラッド層5b
をエッチング除去してストライプ状のリッジ部形状にす
る。ここで、前記塩酸エッチング液ではAl組成比の小
さいAltGa1-tAsがAl組成比の大きいAlsGa
1-sAs(t<s)に比べてエッチングレートが小さい
ので、前記p型AluGa1-uAs第2過飽和光吸収層6
は所謂エッチング停止層としての作用も兼ね備える。従
って、前記エッチングはこの第2過飽和光吸収層6で制
御性良く止めることができる。
Next, as shown in FIG. 9B, a stripe-shaped SiO 2 layer having a thickness of 0.2 μm is formed on the p-type GaAs cap layer 7 by using an ordinary photolithography technique or the like.
2 The mask layer 10 is formed. Using the phosphoric acid-based etchant with the SiO 2 mask layer 10 as a mask, the p-type GaAs cap layer 7 and the p-type fourth AlGaAs are left so that the p-type fourth AlGaAs cladding layer 5b remains to a thickness of 0.1 to 0.3 μm. After the cladding layer 5b is etched, the remaining cladding layer 5b is etched with a hydrochloric acid etching solution.
Are removed by etching to form a striped ridge portion. Here, in the hydrochloric acid etching solution, Al t Ga 1-t As having a small Al composition ratio is changed to Al s Ga having a large Al composition ratio.
Since the etching rate is smaller than that of 1-s As (t <s), the p-type Al u Ga 1-u As second supersaturated light absorption layer 6 is used.
Also has a function as a so-called etching stop layer. Therefore, the etching can be stopped with good controllability by the second supersaturated light absorption layer 6.

【0036】その後、図9(c)に示すように、前記S
iO2マスク層10を介した状態で、MOCVD法又は
MBE法により前記第2過飽和光吸収層6上並びにリッ
ジ部形状をなすp型GaAsキャップ層7及びp型の第
4AlGaAsクラッド層5bの側面にn型GaAs電
流阻止層8、8を形成する。
After that, as shown in FIG.
On the second supersaturated light absorption layer 6 and on the side surfaces of the p-type GaAs cap layer 7 and the p-type fourth AlGaAs cladding layer 5b in the shape of a ridge by MOCVD or MBE with the iO 2 mask layer 10 interposed. The n-type GaAs current blocking layers 8 and 8 are formed.

【0037】続いて、図1に示すように、前記SiO2
マスク層10をフッ酸系エッチング液で除去して前記p
型GaAsキャップ層7を露出させた後、MOCVD法
又はMBE法によりこの露出したp型GaAsキャップ
層7上及び前記n型GaAs電流阻止層8、8上にp型
GaAsコンタクト層9を形成する。その後、前記p型
GaAsコンタクト層9の上面及びn型GaAs基板1
の下面にそれぞれAu−Crからなるp型側オーミック
電極、Au−Sn−Crからなるn型側オーミック電極
を形成する。
[0037] Subsequently, as shown in FIG. 1, the SiO 2
The mask layer 10 is removed with a hydrofluoric acid-based etching solution to remove the p
After the type GaAs cap layer 7 is exposed, a p type GaAs contact layer 9 is formed on the exposed p type GaAs cap layer 7 and the n type GaAs current blocking layers 8 and 8 by MOCVD or MBE. Then, the upper surface of the p-type GaAs contact layer 9 and the n-type GaAs substrate 1
A p-type side ohmic electrode made of Au—Cr and an n-type side ohmic electrode made of Au—Sn—Cr are formed on the lower surfaces of the two.

【0038】上述のように、前記p型AluGa1-uAs
第2過飽和光吸収層6は、発振波長エネルギーとほぼ等
しいバンドギャップエネルギーを有するので(Alt
1-tAsはその組成比tが大きくなる程バンドギャッ
プが大きく且つ屈折率が小さくなる)、第4AlybGa
1-ybAsクラッド層5bに比べてAl組成比が小さく
(u<yb)、該クラッド層5bに比べてエッチングレ
ートが遅くなり、且つ過度な光吸収が行われないので十
分な層厚を選択できる。この結果、この第2過飽和光吸
収層6は前記メサエッチングの際にエッチング停止層と
して十分に機能するので、前記活性層4上の第3AlG
aAsクラッド層5aの層厚を高精度にできる。
As described above, the p-type Al u Ga 1-u As
Second saturable light absorbing layer 6, because it has a substantially equal band gap energy and the oscillation wavelength energy (Al t G
a 1-t As has a larger band gap and a smaller refractive index as the composition ratio t thereof increases, and the fourth Al yb Ga
The Al composition ratio is smaller than that of the 1-yb As clad layer 5b (u <yb), the etching rate is slower than that of the clad layer 5b, and excessive light absorption is not performed, so a sufficient layer thickness is selected. it can. As a result, the second supersaturated light absorption layer 6 sufficiently functions as an etching stop layer during the mesa etching, and thus the third AlG on the active layer 4 is formed.
The layer thickness of the aAs clad layer 5a can be made highly accurate.

【0039】上記実施例では、活性層4としてAlq
1-qAs(0≦q<1)層を用いたが、量子井戸構造
であっても勿論よい。この場合においても第1、第2過
飽和光吸収層3、6のバンドギャップエネルギーを発振
波長エネルギーと略等しくなるように各組成比uを選択
すれば、同様に低動作電流において低非点隔差、単一横
モードで良好な自励発振が起こると共に第2過飽和光吸
収層6は第4AlGaAsクラッド層5bに比べてAl
組成比がかなり小さく、エッチング停止層として機能す
る。尚、前記第1、第2AlGaAsクラッド層2a、
2b、第3、第4AlGaAsクラッド層5a、5b
(0<xa,xb,ya,yb<1)は、上記実施例と
同様に活性層4に比べて屈折率が小さく且つバンドギャ
ップが大きい、即ち発振波長の光とキャリアを十分に閉
じ込めることができる範囲で、各層厚又は各組成比が最
適化される。
In the above embodiment, Al q G is used as the active layer 4.
Although the a 1-q As (0 ≦ q <1) layer is used, a quantum well structure may of course be used. Also in this case, if each composition ratio u is selected so that the bandgap energy of the first and second supersaturated light absorption layers 3 and 6 is substantially equal to the oscillation wavelength energy, a low astigmatic difference at a low operating current is obtained. Good self-sustained pulsation occurs in the single transverse mode, and the second supersaturated light absorption layer 6 is more Al than the fourth AlGaAs cladding layer 5b.
The composition ratio is considerably small, and it functions as an etching stop layer. The first and second AlGaAs cladding layers 2a,
2b, third and fourth AlGaAs cladding layers 5a and 5b
(0 <xa, xb, ya, yb <1) has a smaller refractive index and a larger bandgap than the active layer 4 similarly to the above embodiment, that is, light and carriers having an oscillation wavelength can be sufficiently confined. Each layer thickness or each composition ratio is optimized to the extent possible.

【0040】また、第2過飽和光吸収層6は、上記位置
に限らず第3、第4AlGaAsクラッド層5a、5b
の層厚を適宜変更して該層5a中又は層5b中の適当な
位置に設けてもよく、更に発振波長エネルギーとの絶対
値差が0.0125eV以下であって略等しいバンドギ
ャップエネルギーを有する過飽和光吸収層は活性層を挟
むクラッド層のどちらか一方に該活性層に適当な距離離
間して設ければ同様の効果があり、例えば本実施例のリ
ッジ型の半導体レーザ素子に限らず、セルフアライン型
等の他の構造の半導体レーザ素子に用いても効果があ
る。但し、活性層の両側に過飽和光吸収層を設ける方
が、一方にのみ過飽和光吸収層を設けるより出力された
レーザ光のスポット形状が対称になるので好ましい。
Further, the second supersaturated light absorption layer 6 is not limited to the above position, but the third and fourth AlGaAs clad layers 5a and 5b.
May be provided at an appropriate position in the layer 5a or the layer 5b by appropriately changing the layer thickness. Further, the absolute value difference from the oscillation wavelength energy is 0.0125 eV or less, and the band gap energies are substantially equal. The supersaturated light absorption layer has the same effect if it is provided on either one of the clad layers sandwiching the active layer with an appropriate distance from the active layer, and is not limited to, for example, the ridge type semiconductor laser device of the present embodiment, It is also effective when used in a semiconductor laser device having another structure such as a self-aligned type. However, it is preferable to provide the supersaturated light absorption layers on both sides of the active layer because the spot shape of the output laser light becomes symmetric when the supersaturated light absorption layer is provided only on one side.

【0041】更に、上述ではAlGaAs系半導体レー
ザ素子について述べたが、AlGaInP系等の他の材
料でも発振波長エネルギーに略等しいバンドギャップエ
ネルギーをもつ過飽和光吸収層を少なくとも一方のクラ
ッド層に設けることにより、低動作電流において低非点
隔差、単一横モードで良好な自励発振が起こるといった
同様の効果が得られる。
Further, although the AlGaAs semiconductor laser device has been described above, other materials such as AlGaInP may be provided with a saturable light absorption layer having a bandgap energy substantially equal to the oscillation wavelength energy in at least one cladding layer. Similar effects such as low astigmatic difference at low operating current and good self-sustained pulsation in single transverse mode can be obtained.

【0042】尚、本発明でいうクラッド層中に過飽和光
吸収層を有するとは、クラッド層の上面又は下面に設け
たものも含む。
The term "having a supersaturated light absorption layer in the clad layer" as used in the present invention also includes those provided on the upper surface or the lower surface of the clad layer.

【0043】[0043]

【発明の効果】本発明によれば、第1、第2クラッド層
のうち、少なくとも一方の層中に発振波長エネルギーに
略等しいバンドギャップエネルギーを有する過飽和光吸
収層を設けるので、従来に比べて十分小さな動作電流に
おいて、従来に比べて十分に小さい非点隔差、単一横モ
ードで良好な自励発振が起こる。この結果、戻り光雑音
を低減でき、光学系が容易で、且つ信頼性の高い半導体
レーザ素子が得られる。
According to the present invention, a supersaturated light absorption layer having a bandgap energy substantially equal to the oscillation wavelength energy is provided in at least one of the first and second cladding layers. At sufficiently small operating current, good self-sustained pulsation occurs in single transverse mode with astigmatic difference sufficiently smaller than in the past. As a result, a return light noise can be reduced, an optical system is easy, and a highly reliable semiconductor laser device can be obtained.

【0044】特に、前記第1クラッド層は、第1AlG
aAsクラッド層と第2AlGaAsクラッド層とから
なり、該第1、第2AlGaAsクラッド層間に第1導
電型のAluGa1-uAs第1過飽和光吸収層を有し、且
つ前記第2クラッド層は前記活性層上に形成された第3
AlGaAsクラッド層と、該第3AlGaAsクラッ
ド層上に形成されたストライプ状リッジ部をなす第4A
lGaAsクラッド層とからなり、第3AlGaAsク
ラッド層上に第2導電型のAluGa1-uAs第2過飽和
光吸収層を形成した場合、前記AluGa1-uAs第2過
飽和光吸収層がストライプ状リッジ部形状の第4AlG
aAsクラッド層を形成する際のエッチング停止層とし
ても機能するので、前記活性層上の第3AlGaAsク
ラッド層の層厚を高精度にできるといった効果がある。
この結果、戻り光雑音に強く、光学系が容易で、且つ信
頼性の高い半導体レーザ素子を容易に歩留まり良く形成
できる。
In particular, the first cladding layer is a first AlG layer.
an AlAs clad layer and a second AlGaAs clad layer, and has a first conductivity type Al u Ga 1-u As first saturable light absorption layer between the first and second AlGaAs clad layers, and the second clad layer is A third layer formed on the active layer
An AlGaAs clad layer and a fourth ridge forming a striped ridge portion formed on the third AlGaAs clad layer.
consists of a lGaAs cladding layer, when forming the second conductivity type Al u Ga 1-u As second saturable light absorbing layer on the 3AlGaAs cladding layer, the Al u Ga 1-u As second saturable light absorbing layer Is a striped ridge-shaped fourth AlG
Since it also functions as an etching stop layer when forming the aAs clad layer, there is an effect that the layer thickness of the third AlGaAs clad layer on the active layer can be made highly accurate.
As a result, it is possible to easily form a semiconductor laser device that is strong against return light noise, has an easy optical system, and is highly reliable, with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の半導体レーザ素子の断
面図である。
FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention.

【図2】上記実施例の過飽和光吸収層の組成比u及び層
厚と、γ値の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a composition ratio u and a layer thickness of a supersaturated light absorption layer and a γ value in the above example.

【図3】上記実施例の過飽和光吸収層の組成比u及び層
厚と、非点隔差の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the composition ratio u and the layer thickness of the supersaturated light absorption layer of the above-described example and the astigmatic difference.

【図4】上記実施例の過飽和光吸収層の組成比u及び層
厚と、動作電流の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a composition ratio u and a layer thickness of a supersaturated light absorption layer of the above-described example and an operating current.

【図5】上記実施例の過飽和光吸収層の組成比u及び層
厚と、良好な特性との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the composition ratio u and the layer thickness of the supersaturated light absorption layer of the above-described example, and good characteristics.

【図6】上記実施例の第2、第3AlGaAsクラッド
層の層厚tとγ値の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the layer thickness t and the γ value of the second and third AlGaAs cladding layers in the above-mentioned embodiment.

【図7】上記実施例の第2、第3AlGaAsクラッド
層の層厚tと非点隔差の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the layer thickness t and the astigmatic difference of the second and third AlGaAs clad layers in the above-mentioned embodiment.

【図8】上記実施例の第2、第3AlGaAsクラッド
層の層厚tと動作電流の関係を示す図である。
FIG. 8 is a diagram showing the relationship between the layer thickness t of the second and third AlGaAs cladding layers and the operating current in the above-mentioned embodiment.

【図9】上記実施例の半導体レーザ素子の製造工程を示
す図である。
FIG. 9 is a diagram showing a manufacturing process of the semiconductor laser device according to the embodiment.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板(半導体基板) 2 第1クラッド層 2a n型第1AlGaAsクラッド層 2b n型第2AlGaAsクラッド層 3 n型AluGa1-uAs第1過飽和光吸収層 4 活性層 5 第2クラッド層 5a n型第1AlGaAsクラッド層 5b n型第2AlGaAsクラッド層(リッジ部) 6 p型AluGa1-uAs第2過飽和光吸収層1 n-type GaAs substrate (semiconductor substrate) 2 first clad layer 2a n-type first AlGaAs clad layer 2b n-type second AlGaAs clad layer 3 n-type Al u Ga 1-u As first supersaturated light absorption layer 4 active layer 5 second Clad layer 5a n-type first AlGaAs clad layer 5b n-type second AlGaAs clad layer (ridge portion) 6 p-type Al u Ga 1-u As second supersaturated light absorption layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古沢 浩太郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 田尻 敦志 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 石川 徹 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 松川 健一 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 三宅 輝明 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 後藤 壮謙 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kotaro Furusawa, 2-18, Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor, Atsushi Tajiri 2--18, Keihan Hondori, Moriguchi City, Osaka Sanyo Denki (72) Inventor Toru Ishikawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Kenichi Matsukawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. ( 72) Inventor Teruaki Miyake 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Soken Goto 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板と、該半導体基
板上に設けた第1導電型の第1クラッド層と、該第1ク
ラッド層上に設けた活性層と、該活性層上に設けた第2
導電型の第2クラッド層とを備え、前記第1、第2クラ
ッド層は前記活性層より小さい屈折率及び大きいバンド
ギャップを有すると共に、前記第1、第2クラッド層の
少なくとも一方の層中に発振波長エネルギーに略等しい
エネルギーのバンドギャップを有する過飽和光吸収層を
有したことを特徴とする半導体レーザ素子。
1. A semiconductor substrate of a first conductivity type, a first conductivity type first clad layer provided on the semiconductor substrate, an active layer provided on the first clad layer, and an active layer on the active layer. Second provided
A second clad layer of conductivity type, wherein the first and second clad layers have a refractive index and a larger bandgap smaller than that of the active layer, and at least one of the first and second clad layers is provided. A semiconductor laser device having a supersaturated light absorption layer having a bandgap having an energy substantially equal to an oscillation wavelength energy.
【請求項2】 前記第1クラッド層は、第1AlGaA
sクラッド層と第2AlGaAsクラッド層とからな
り、該第1AlGaAsクラッド層と第2AlGaAs
クラッド層との間に第1導電型のAluGa1-uAs(0
≦u<1)第1過飽和光吸収層を有し、且つ前記第2ク
ラッド層は前記活性層上に形成された第3AlGaAs
クラッド層と該第3AlGaAsクラッド層上に形成さ
れたストライプ状リッジ部をなす第4AlGaAsクラ
ッド層とからなり、前記第3AlGaAsクラッド層上
に第2導電型のAluGa1-uAs(0≦u<1)第2過
飽和光吸収層を形成したことを特徴とする請求項1記載
の半導体レーザ素子。
2. The first cladding layer is a first AlGaA layer.
s clad layer and a second AlGaAs clad layer, the first AlGaAs clad layer and the second AlGaAs
The first conductivity type Al u Ga 1-u As (0
≦ u <1) A third AlGaAs having a first supersaturated light absorption layer and the second cladding layer formed on the active layer.
It is composed of a clad layer and a fourth AlGaAs clad layer forming a striped ridge portion formed on the third AlGaAs clad layer, and has a second conductivity type Al u Ga 1-u As (0 ≦ u) on the third AlGaAs clad layer. <1) The semiconductor laser device according to claim 1, wherein a second supersaturated light absorption layer is formed.
【請求項3】 前記活性層はAlqGa1-qAs(0≦q
<1)層からなり、前記第1、第2過飽和光吸収層の各
組成比uはq−0.01≦u≦q+0.01の範囲から
選択したことを特徴とする請求項2記載の半導体レーザ
素子。
3. The active layer comprises Al q Ga 1-q As (0 ≦ q
3. The semiconductor according to claim 2, wherein the semiconductor is composed of a <1) layer, and the composition ratio u of each of the first and second supersaturated light absorption layers is selected from the range of q-0.01 ≦ u ≦ q + 0.01. Laser device.
JP03856193A 1992-11-06 1993-02-26 Semiconductor laser device Expired - Fee Related JP3238974B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03856193A JP3238974B2 (en) 1992-11-06 1993-02-26 Semiconductor laser device
US08/147,779 US5416790A (en) 1992-11-06 1993-11-04 Semiconductor laser with a self-sustained pulsation
US08/365,176 US5506170A (en) 1992-11-06 1994-12-28 Method of making a semiconductor laser with a self-sustained pulsation
US08/536,370 US5610096A (en) 1992-11-06 1995-09-29 Semiconductor laser with a self sustained pulsation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-297178 1992-11-06
JP29717892 1992-11-06
JP03856193A JP3238974B2 (en) 1992-11-06 1993-02-26 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH06196810A true JPH06196810A (en) 1994-07-15
JP3238974B2 JP3238974B2 (en) 2001-12-17

Family

ID=26377825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03856193A Expired - Fee Related JP3238974B2 (en) 1992-11-06 1993-02-26 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3238974B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204282A (en) * 1995-01-19 1996-08-09 Nec Corp Semiconductor laser
WO1996030977A1 (en) * 1995-03-31 1996-10-03 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and optical disk apparatus using the same
WO1996034439A1 (en) * 1995-04-28 1996-10-31 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and optical disk device using the laser
US5608752A (en) * 1994-04-28 1997-03-04 Sanyo Electric Co., Ltd. Semiconductor laser device and method of designing the same
US5751756A (en) * 1995-09-05 1998-05-12 Matsushita Electronics Corporation Semiconductor laser device for use as a light source of an optical disk or the like
US5933442A (en) * 1996-06-10 1999-08-03 Nec Corporation Semiconductor laser
US6160829A (en) * 1997-05-21 2000-12-12 Nec Corporation Self-sustained pulsation semiconductor laser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608752A (en) * 1994-04-28 1997-03-04 Sanyo Electric Co., Ltd. Semiconductor laser device and method of designing the same
JPH08204282A (en) * 1995-01-19 1996-08-09 Nec Corp Semiconductor laser
WO1996030977A1 (en) * 1995-03-31 1996-10-03 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and optical disk apparatus using the same
US6072817A (en) * 1995-03-31 2000-06-06 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and optical disk apparatus using the same
US6081541A (en) * 1995-03-31 2000-06-27 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and optical disk apparatus using the same
US6141364A (en) * 1995-03-31 2000-10-31 Matsushita Electric Industrial Co., Ltd Semiconductor laser device and optical disk apparatus using the same
WO1996034439A1 (en) * 1995-04-28 1996-10-31 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and optical disk device using the laser
US5751756A (en) * 1995-09-05 1998-05-12 Matsushita Electronics Corporation Semiconductor laser device for use as a light source of an optical disk or the like
US5933442A (en) * 1996-06-10 1999-08-03 Nec Corporation Semiconductor laser
US6160829A (en) * 1997-05-21 2000-12-12 Nec Corporation Self-sustained pulsation semiconductor laser

Also Published As

Publication number Publication date
JP3238974B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US5416790A (en) Semiconductor laser with a self-sustained pulsation
US5143863A (en) Method of manufacturing semiconductor laser
JP3718952B2 (en) Semiconductor laser
JP3238974B2 (en) Semiconductor laser device
JPH0722695A (en) Self-excited oscillation type semiconductor laser element
JPH09181389A (en) Self-excited semiconductor laser device
JP2569036B2 (en) Semiconductor laser device
JP3859839B2 (en) Refractive index semiconductor laser device
JPH0728102B2 (en) Semiconductor laser and manufacturing method thereof
JPH0416032B2 (en)
JP3876023B2 (en) Semiconductor laser element
JP2000183449A (en) Semiconductor laser
JP2927661B2 (en) Super luminescent diode element and method of manufacturing the same
US7050472B2 (en) Semiconductor laser device and method for manufacturing the same
JPH0799373A (en) Semiconductor laser device
JPH0671121B2 (en) Semiconductor laser device
JP3453916B2 (en) Semiconductor laser
JP3063684B2 (en) Semiconductor laser and manufacturing method thereof
JP3572157B2 (en) Semiconductor laser device
JPS61112392A (en) Semiconductor laser and manufacture thereof
JP3277711B2 (en) Semiconductor laser and manufacturing method thereof
JPH0671122B2 (en) Semiconductor laser device
JP2949927B2 (en) Semiconductor laser and method of manufacturing the same
JP3612900B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2564343B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091005

LAPS Cancellation because of no payment of annual fees