JPH06196386A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH06196386A
JPH06196386A JP4346073A JP34607392A JPH06196386A JP H06196386 A JPH06196386 A JP H06196386A JP 4346073 A JP4346073 A JP 4346073A JP 34607392 A JP34607392 A JP 34607392A JP H06196386 A JPH06196386 A JP H06196386A
Authority
JP
Japan
Prior art keywords
exposure
projection
movement
image
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4346073A
Other languages
Japanese (ja)
Other versions
JP3218484B2 (en
Inventor
Yasuyuki Sakakibara
康之 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP34607392A priority Critical patent/JP3218484B2/en
Priority to KR1019930030163A priority patent/KR100300618B1/en
Publication of JPH06196386A publication Critical patent/JPH06196386A/en
Priority to US08/345,325 priority patent/US5448332A/en
Priority to US08/482,555 priority patent/US5693439A/en
Priority to US09/276,441 priority patent/US6433872B1/en
Priority to KR1019990010828A priority patent/KR100307049B1/en
Priority to KR1019990010829A priority patent/KR100325182B1/en
Priority to KR1019990010827A priority patent/KR100306310B1/en
Priority to KR1019990011935A priority patent/KR100311427B1/en
Priority to KR1019990011934A priority patent/KR100306311B1/en
Priority to KR1019990015291A priority patent/KR100325184B1/en
Priority to KR1020010009581A priority patent/KR100300627B1/en
Priority to KR1020010009582A priority patent/KR100313732B1/en
Priority to KR1020010009876A priority patent/KR100325193B1/en
Application granted granted Critical
Publication of JP3218484B2 publication Critical patent/JP3218484B2/en
Priority to US10/186,687 priority patent/US6608681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Projection-Type Copiers In General (AREA)
  • Variable Magnification In Projection-Type Copying Machines (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To enhance the throughput of an aligner by a method wherein a height position is detected in advance during a movement to a next exposure region and a focusing operation is performed during the movement or immediately after the finish of the movement on the basis of information on the detected height position. CONSTITUTION:Information on the target position of an X-Y stage 21 in a next exposure operation or on the position of a desired measuring point for a region to be exposed next is input to an MCU 30 from a host computer or the like via an input means 31. A height position is found during the movement on the basis of a detection output signal FS by a prescribed light-receiving cell when the X-Y stage 21 has reached a prescribed position. In addition, a desired measuring point which does not pass a pattern image during a movement to a next exposure region and which cannot be measured during the movement is measured at a point of time when the desired measuring point has reached a point which is sufficiently close to the pattern image. In this manner, it is known in advance on the basis of a design item before starting an exposure operation and on the basis of known information whether the height of which position can be measured when the X-Y stage 21 has reached which position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投影露光装置に関し、
特に半導体製造工程において使用される投影露光装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus,
In particular, it relates to a projection exposure apparatus used in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】従来、半導体製造装置における投影露光
装置では、特開昭60─168112号公報等に開示さ
れているように、投影レンズによってマスクパターンを
転写すべき位置に配設された半導体ウェハに対し、斜め
方向から検出光を照射する斜め入射型の焦点位置検出装
置が使用されている。
2. Description of the Related Art Conventionally, in a projection exposure apparatus in a semiconductor manufacturing apparatus, as disclosed in Japanese Patent Laid-Open No. 168112/1985, a semiconductor wafer arranged at a position where a mask pattern should be transferred by a projection lens. On the other hand, an oblique incidence type focus position detection device that emits detection light from an oblique direction is used.

【0003】この焦点位置検出装置は、感光基板である
半導体ウェハの表面を被検面とし、スリット状のパター
ンを、その長手方向が入射面と垂直になる方向で被検面
に投射し、その反射光を光電変換素子でなる検出手段上
で再結像させて、検出手段上の反射光の入射位置を判知
しうるように構成されている。
This focus position detecting device uses the surface of a semiconductor wafer, which is a photosensitive substrate, as a surface to be inspected, projects a slit-shaped pattern on the surface to be inspected in a direction in which its longitudinal direction is perpendicular to the incident surface, and The reflected light is re-imaged on the detection means formed of a photoelectric conversion element, and the incident position of the reflected light on the detection means can be detected.

【0004】ところで、近年においてはLSI(Large
Scale Integration)の高集積化に伴い、ウェハの露光領
域(ショット領域)により微細なパターンを転写するこ
とが望まれており、これに対応するために投影レンズの
開口数NA(Numerial Aparture)は大きく構成されてい
る。この結果、投影レンズの焦点深度が浅くなるので、
スループットの低下を招くことなく、露光領域をより正
確かつ確実に投影レンズの焦点位置(焦点深度内)に位
置決めすることが望まれている。
By the way, in recent years, LSI (Large
With higher integration of (Scale Integration), it is desired to transfer a fine pattern to the exposure area (shot area) of the wafer, and in order to cope with this, the numerical aperture NA (Numerial Aparture) of the projection lens is large. It is configured. As a result, the depth of focus of the projection lens becomes shallower,
It is desired to position the exposure region more accurately and surely at the focal position (within the depth of focus) of the projection lens without lowering the throughput.

【0005】また、投影露光装置による露光領域の大型
化が進んでいる。これにより、1回の露光でLSIチッ
プ自体の露光面積の大型化を図ったり、あるいは1回の
露光で複数のLSIチップの焼付けを行っている。この
ため、スループットの低下を招くことなく、大型化する
露光領域全体をより正確にかつ確実に投影レンズの焦点
位置(焦点深度内)に位置決めすることが望まれてい
る。
In addition, the size of the exposure area of the projection exposure apparatus is increasing. As a result, the exposure area of the LSI chip itself is increased by one exposure, or a plurality of LSI chips are printed by one exposure. For this reason, it is desired to more accurately and surely position the entire size of the exposure area at the focus position (within the depth of focus) of the projection lens without lowering the throughput.

【0006】[0006]

【発明が解決しようとする課題】上述の焦点位置検出系
を有する従来の投影露光装置では、ウェハ上の露光領域
をXYステージの移動によって投影光学系の投影視野内
の所定位置に位置決めした後、露光領域内の所定計測点
における高さ位置を検出し、検出した高さ位置情報に基
づきZステージを適宜駆動して露光領域の露光面(例え
ば表面)を投影光学系の焦点深度内に位置決めして焦点
合わせを行った後、投影露光を行わなければならず、ス
ループットが低下するという不都合があった。
In the conventional projection exposure apparatus having the focus position detection system described above, after the exposure area on the wafer is positioned at a predetermined position within the projection field of the projection optical system by moving the XY stage, The height position at a predetermined measurement point in the exposure area is detected, and the Z stage is appropriately driven based on the detected height position information to position the exposure surface (for example, surface) of the exposure area within the depth of focus of the projection optical system. Since the focus exposure has to be carried out and projection exposure has to be carried out, there is a disadvantage that the throughput is lowered.

【0007】また、XYステージの移動中に次の露光領
域内の所定点における高さ位置を検出しつつ焦点合わせ
を行う方法が提案されているが、移動中に検出した高さ
位置情報は仮の焦点合わせに用いられるものであり、こ
の方法では次の露光領域を所定の位置に移動して停止し
た後で改めて検出した高さ位置情報に基づいて、最終的
な焦点合わせをしなければならず、スループットがよく
ないという不都合があった。
Further, there has been proposed a method of focusing while detecting the height position at a predetermined point in the next exposure area while the XY stage is moving, but the height position information detected during the movement is tentative. In this method, the final focus must be made based on the height position information newly detected after the next exposure area is moved to a predetermined position and stopped. In addition, there was an inconvenience that the throughput was not good.

【0008】本発明は、上記の課題に鑑みてなされたも
のであり、次の露光領域への移動中に高さ位置を予め検
出し、検出した高さ位置情報に基づき移動中または移動
終了後直ちに焦点合わせを行うことのできる、スループ
ットの向上した投影露光装置を提供することを目的とす
る。
The present invention has been made in view of the above problems, and detects the height position in advance during the movement to the next exposure area, and during the movement or after the movement is completed based on the detected height position information. It is an object of the present invention to provide a projection exposure apparatus which can perform focusing immediately and has improved throughput.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、マスクのパターンを投影光学系
を介して感光基板上の複数の露光領域の各々に転写する
ための露光手段(PL)と、前記感光基板を保持して前
記投影光学系の光軸と垂直な面内で2次元移動するとと
もに、前記光軸に沿った方向に移動可能な基板ステージ
(21、22)とを備え、前記露光領域毎に、前記投影
光学系の結像面と前記露光領域の露光面とをほぼ一致さ
せて前記マスクのパターンを転写する投影露光装置にお
いて、前記感光基板上に所定形状のパターン像を結像す
るとともに、前記感光基板から反射した光を光電検出し
て、前記露光領域内の予め定められた複数の計測点の各
々における前記投影光学系の光軸方向の位置を検出する
位置検出手段(1乃至16)と、前記基板ステージの移
動中、前記マスクのパターンを転写すべき次の露光領域
内の複数の計測点の各々が前記パターン像と一致、もし
くは近接したときに前記位置検出手段から出力される検
出信号に基づいて、前記投影光学系の結像面と前記次の
露光領域の露光面との前記光軸方向のずれ量を算出する
演算手段(31、PSD17、MCU30)と、該検出
されたずれ量がほぼ零になるように前記基板ステージの
移動を制御する制御手段(18乃至20、30)とを備
えたことを特徴とする投影露光装置を提供する。
In order to solve the above-mentioned problems, in the present invention, an exposure means for transferring a mask pattern to each of a plurality of exposure areas on a photosensitive substrate via a projection optical system ( PL) and a substrate stage (21, 22) capable of holding the photosensitive substrate and moving two-dimensionally in a plane perpendicular to the optical axis of the projection optical system and moving in the direction along the optical axis. A projection exposure apparatus for transferring the pattern of the mask for each of the exposure areas by causing the image formation surface of the projection optical system and the exposure surface of the exposure area to substantially coincide with each other. A position for forming an image and photoelectrically detecting the light reflected from the photosensitive substrate to detect the position in the optical axis direction of the projection optical system at each of a plurality of predetermined measurement points in the exposure area. Detection means (1 16), and while the substrate stage is moving, output from the position detecting means when each of a plurality of measurement points in the next exposure region to which the pattern of the mask is to be transferred coincides with or comes close to the pattern image. Calculating means (31, PSD17, MCU30) for calculating the amount of deviation in the optical axis direction between the image plane of the projection optical system and the exposure surface of the next exposure area based on the detected signal, and the detection A projection exposure apparatus comprising: a control unit (18 to 20, 30) for controlling the movement of the substrate stage so that the amount of shift thus obtained becomes substantially zero.

【0010】また、本発明の好ましい実施態様によれ
ば、上記パターン像は、感光基板面上で交差する2つの
スリット像または感光基板面上でほぼ平行に配置された
3つのスリット像である。
Further, according to a preferred embodiment of the present invention, the pattern image is two slit images intersecting on the photosensitive substrate surface or three slit images arranged substantially parallel to each other on the photosensitive substrate surface.

【0011】[0011]

【作用】本願の発明者は、円形状のウェハに露光領域で
ある矩形のLSIチップが縦横に配置されること、次の
露光領域への移動が矩形チップの各辺に平行な直交二軸
に沿って行われること、重ね焼付け工程によりLSIチ
ップの露光面には予め段差があるため露光領域を平均的
にかつ網羅的に覆う複数の点において露光面の高さ位置
を計測する必要があること、被検面に所定形状のパター
ン像を結像させ該パターン像上の複数の点における高さ
位置を検出する斜入射光式の焦点位置検出装置がすでに
開発されていること等の事実を観察し、次の露光領域へ
の移動中に次の露光領域上の所望の計測点の一部が上記
所定形状のパターン像を通過すること、パターン像を通
過しない他の計測点についても移動終了前にパターン像
に十分近接することに着目し、本発明に想到した。
The present inventor has found that rectangular LSI chips, which are exposure regions, are arranged vertically and horizontally on a circular wafer, and the movement to the next exposure region is performed by using two orthogonal axes parallel to each side of the rectangular chip. It is necessary to measure the height position of the exposure surface at multiple points that cover the exposure area evenly and comprehensively because there is a step on the exposure surface of the LSI chip in advance due to the overprinting process. Observe the fact that an oblique incident light type focus position detection device that forms a pattern image of a predetermined shape on the surface to be detected and detects height positions at a plurality of points on the pattern image has already been developed. However, while moving to the next exposure area, some of the desired measurement points on the next exposure area should pass the pattern image of the above-mentioned predetermined shape, and other measurement points that do not pass the pattern image should also be moved before the end of movement. Be sufficiently close to the pattern image. Paying attention to, and conceived the present invention.

【0012】すなわち、本発明の投影露光装置では、次
の露光領域への移動中に、次の露光領域内の所望の計測
点が上記パターン像を通過するとき逐次高さ位置を検出
し、上記パターン像を通過しない他の所望の計測点につ
いては移動中近接したとき高さ位置を検出することがで
きる。こうして、次の露光領域への移動中に高さ位置を
予め検出し、検出した高さ位置情報に基づき移動中また
は移動終了後直ちに焦点合わせを行うことができる。
That is, in the projection exposure apparatus of the present invention, the height position is successively detected when a desired measurement point in the next exposure area passes through the pattern image while moving to the next exposure area, For other desired measurement points that do not pass through the pattern image, the height position can be detected when they approach each other during movement. In this way, the height position can be detected in advance during the movement to the next exposure region, and focusing can be performed during the movement or immediately after the movement ends based on the detected height position information.

【0013】[0013]

【実施例】本発明の実施例を、添付図面に基づいて説明
する。図1は、本発明の一実施例による斜入射光式のA
F(オートフォーカス)系を備えた投影露光装置の構成
を部分的に示す図である。図1に示すAF系(1〜1
5)は多点AF系であり、投影レンズPLの投影視野内
の複数箇所に、ウェハWの光軸方向の位置ずれ(いわゆ
る焦点ずれ)を計測する測定点を設けたものである。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of an oblique incident light type A according to an embodiment of the present invention.
It is a figure which partially shows the structure of the projection exposure apparatus provided with the F (autofocus) system. The AF system (1 to 1 shown in FIG.
5) is a multi-point AF system in which measurement points for measuring the positional deviation (so-called focal deviation) of the wafer W in the optical axis direction are provided at a plurality of positions within the projection visual field of the projection lens PL.

【0014】図1において、ウェハW上に塗布されたレ
ジストに対して非感光性の照明光ILはスリット板1を
照明する。スリット板1に形成されたスリットを透過し
た光は、レンズ系2、ミラー3、絞り4、投光用対物レ
ンズ5、およびミラー6を介してウェハWを斜めに照射
する。尚、光源としてはハロゲンランプ等が用いられ
る。
In FIG. 1, the illumination light IL, which is non-photosensitive to the resist applied on the wafer W, illuminates the slit plate 1. The light transmitted through the slit formed in the slit plate 1 obliquely irradiates the wafer W through the lens system 2, the mirror 3, the diaphragm 4, the projection objective lens 5, and the mirror 6. A halogen lamp or the like is used as the light source.

【0015】ウェハWの表面が最良結像面Fo、すなわ
ち投影レンズPLのベストフォーカス位置にあれば、ス
リット板1のスリットの像がレンズ系2および対物レン
ズ5の作用により、ウェハWの表面に結像される。ミラ
ー6で反射した対物レンズ5の光軸とウェハ表面とのな
す角度は5乃至12度程度に設定され、スリット板1の
スリット像の中心は、投影レンズPLの光軸AXがウェ
ハWの表面と交差する点に位置する。
When the surface of the wafer W is at the best image plane Fo, that is, at the best focus position of the projection lens PL, the image of the slit of the slit plate 1 is formed on the surface of the wafer W by the action of the lens system 2 and the objective lens 5. It is imaged. The angle between the optical axis of the objective lens 5 reflected by the mirror 6 and the wafer surface is set to about 5 to 12 degrees, and the center of the slit image of the slit plate 1 is such that the optical axis AX of the projection lens PL is the surface of the wafer W. Located at the intersection with.

【0016】ウェハWで反射したスリット像光束は、ミ
ラー7、受光用対物レンズ8、レンズ系9、振動ミラー
10および平行平面板(プレーンパラレル)12を介し
て、受光用スリット板14上に再結像される。振動ミラ
ー10は、受光用スリット板14に結像するスリット像
を、その長手方向と直交する方向に微小振動させる作用
を有する。
The slit image light beam reflected by the wafer W is re-formed on the light receiving slit plate 14 via the mirror 7, the light receiving objective lens 8, the lens system 9, the vibrating mirror 10 and the plane parallel plate 12. It is imaged. The vibrating mirror 10 has a function of slightly vibrating a slit image formed on the light-receiving slit plate 14 in a direction orthogonal to the longitudinal direction thereof.

【0017】また、プレーンパラレル12は、スリット
板14のスリットと、ウェハWからの反射スリット像の
振動中心との相対関係を、スリット長手方向と直交する
方向にシフトさせる作用を有する。さらに、振動ミラー
10は、発振器(OSC)16が出力する駆動信号によ
りドライブされるミラー駆動部(M−DRV)11によ
って振動される。
The plane parallel 12 has a function of shifting the relative relationship between the slit of the slit plate 14 and the vibration center of the reflection slit image from the wafer W in a direction orthogonal to the slit longitudinal direction. Further, the vibrating mirror 10 is vibrated by a mirror drive unit (M-DRV) 11 driven by a drive signal output from an oscillator (OSC) 16.

【0018】スリット像が受光用スリット板14上で振
動すると、スリット板14のスリットを透過した光束は
アレイセンサ15で受光される。アレイセンサ15は、
スリット板14のスリットの長手方向を複数の微小領域
に分割し、各微小領域毎に個別の光電セルを配列したも
のである。アレイセンサとして、例えばシリコンフォト
ダイオード、フォトトランジスタ等を使用することがで
きる。
When the slit image vibrates on the light-receiving slit plate 14, the light flux transmitted through the slits of the slit plate 14 is received by the array sensor 15. The array sensor 15 is
In the slit plate 14, the longitudinal direction of the slit is divided into a plurality of minute regions, and individual photocells are arranged in each minute region. As the array sensor, for example, a silicon photodiode, a phototransistor or the like can be used.

【0019】アレイセンサ15の各受光セルからの信号
は、セレクタ回路13を介して同期検波回路(PSD)
17に入力する。PSD17にはOSC16からの駆動
信号と同じ位相の交流信号が入力し、この交流信号の位
相を基準として同期整流が行われる。
A signal from each light receiving cell of the array sensor 15 is sent through a selector circuit 13 to a synchronous detection circuit (PSD).
Enter in 17. An AC signal having the same phase as the drive signal from the OSC 16 is input to the PSD 17, and synchronous rectification is performed with the phase of this AC signal as a reference.

【0020】PSD17は、アレイセンサ15の中から
選ばれた複数の受光セルの各出力信号を個別に同期検波
するための複数の検波回路を備え、その各検波出力信号
FSは、いわゆるSカーブ信号と呼ばれ、受光用スリッ
ト板14のスリット中心とウェハWからの反射スリット
像の振動中心とが一致したときに零レベルになり、ウェ
ハWが零レベルより上方に変位しているときは正のレベ
ル、ウェハWが零レベルより下方に変位しているときは
負のレベルになる。したがって、出力信号FSが零レベ
ルになるウェハWの高さ位置が合焦点として検出され
る。
The PSD 17 is provided with a plurality of detection circuits for individually synchronously detecting the output signals of a plurality of light receiving cells selected from the array sensor 15. The detection output signals FS are so-called S-curve signals. It is called zero level when the slit center of the light receiving slit plate 14 and the vibration center of the reflection slit image from the wafer W coincide with each other, and is positive when the wafer W is displaced above the zero level. Level, a negative level when the wafer W is displaced below the zero level. Therefore, the height position of the wafer W at which the output signal FS becomes zero level is detected as the focus point.

【0021】ただし、このような斜入射光方式では合焦
点(出力信号FSが零レベル)となったウェハWの高さ
位置が、常に最良結合面Foと必ず一致しているという
保証はない。すなわち、斜入射光方式では、その系自体
できまる仮想的な基準面を有し、その基準面にウェハW
の表面が一致したときにPSDの出力信号FSが零レベ
ルになるのであって、基準面と最良結像面Foとは装置
製造時に極力一致するように設定されてはいるが、長期
間に亘って一致しているという保証はない。したがっ
て、図1中のプレーンパラレル12を傾けることによっ
て仮想的な基準面を光軸AX方向に変位させて、基準面
と最良結像面Foとの一致を図ることができるように、
すなわち、キャリブレーションができるように構成され
ている。
However, in such an oblique incident light system, there is no guarantee that the height position of the wafer W at the in-focus point (the output signal FS is at the zero level) always always coincides with the best coupling surface Fo. That is, in the oblique incident light system, the system itself has a virtual reference plane, and the wafer W is placed on the reference plane.
The output signal FS of the PSD becomes zero level when the surfaces of the two are coincident with each other. Therefore, the reference surface and the best image forming surface Fo are set so as to coincide as much as possible at the time of manufacturing the device, but for a long period of time. There is no guarantee that they will agree. Therefore, by tilting the plane parallel 12 in FIG. 1, the virtual reference plane can be displaced in the optical axis AX direction so that the reference plane and the best imaging plane Fo can be matched.
That is, the calibration is possible.

【0022】また、図1において、MCU30は、光電
センサ45の出力信号KSを受けて斜入射光方式の多点
AF系をキャリブレーションする機能、プレーンパラレ
ル12の傾きを設定する機能、多点AF系の各出力信号
FSに基づいてZステージ20の駆動用モータ19をド
ライブする回路(Z−DRV)18に指令信号DSを出
力する機能、およびXYステージ21を駆動する駆動部
(モータとその制御回路とを含む)22に指令信号を出
力する機能等を備えている。
In FIG. 1, the MCU 30 receives the output signal KS of the photoelectric sensor 45 to calibrate the multipoint AF system of the oblique incident light system, the function to set the inclination of the plane parallel 12, and the multipoint AF. A function of outputting a command signal DS to a circuit (Z-DRV) 18 that drives a drive motor 19 of a Z stage 20 based on each output signal FS of the system, and a drive unit that drives an XY stage 21 (motor and its control 22) (including a circuit) and the like to output a command signal.

【0023】さらに、図1において、Zステージ20上
にはレベリングステージ23が設けられており、MCU
30は、多点AF系の各出力信号FSに基づいて、レベ
リングステージ23を駆動するレベリングステージ駆動
部24(モータとその制御回路を含む)への指令信号を
出力する機能も備えている。レベリングステージ23を
適宜駆動させることにより、ウェハ面を全体的に所望量
だけ傾けることができる。
Further, in FIG. 1, a leveling stage 23 is provided on the Z stage 20, and the leveling stage 23 is provided.
The reference numeral 30 also has a function of outputting a command signal to the leveling stage drive unit 24 (including the motor and its control circuit) that drives the leveling stage 23, based on each output signal FS of the multipoint AF system. By appropriately driving the leveling stage 23, the wafer surface can be tilted as a whole by a desired amount.

【0024】また、Zステージ20上には最良結像面F
oを求めるためのフィディーシャルマークFMが設けら
れている。マークFMの表面にはスリット状の開口部が
複数個設けられており、マークFMはファイバー41を
介して露光光とほぼ同一の波長の光で下方から(Zステ
ージ側から)照明される。マークFMの表面の高さはウ
ェハWの表面の高さとほぼ一致するように構成されてい
る。マークFMのスリット状開口を透過した光は投影レ
ンズPLを介して図示を省略したレチクル(マスク)で
反射し、開口部の下方に設けられた光電センサ45に開
口部を介して入射する。Zステージ20、すなわちマー
クFMの表面を高さ方向(光軸AX方向)に移動させ、
この光電センサ45で受光した光のコントラストが最高
(すなわち出力信号KSの電圧値がピーク)になるマー
FMの表面の位置が最良結像面(ベストフォーカス位
置)Foとなる。従って、投影レンズPLの投影視野内
の複数の点(例えば多点AF系の複数の計測点と一致さ
せておくと良い)の各々にマークFMを位置決めして上
記計測を繰り返し行うことによって、投影レンズPLの
最良結像面を求めることができる。
On the Z stage 20, the best image plane F
A fiducial mark FM for determining o is provided. A plurality of slit-shaped openings are provided on the surface of the mark FM, and the mark FM is illuminated from below (from the Z stage side) with light having substantially the same wavelength as the exposure light via the fiber 41. The height of the surface of the mark FM is configured to substantially match the height of the surface of the wafer W. The light transmitted through the slit-shaped opening of the mark FM is reflected by a reticle (mask) (not shown) via the projection lens PL, and is incident on the photoelectric sensor 45 provided below the opening through the opening. The Z stage 20, that is, the surface of the mark FM is moved in the height direction (optical axis AX direction),
The position of the surface of the mer FM at which the contrast of the light received by the photoelectric sensor 45 is highest (that is, the voltage value of the output signal KS is the peak) is the best image forming surface (best focus position) Fo. Therefore, the mark FM is positioned at each of a plurality of points in the projection field of the projection lens PL (for example, a plurality of measurement points of the multipoint AF system should be matched), and the above measurement is repeated to project the image. The best image plane of the lens PL can be obtained.

【0025】図2は、投影レンズPLの投影視野If
と、AF系の投光スリット像STとの位置関係をウェハ
W面上でみた図である。投影視野Ifは一般的に円形で
あり、レチクルRのパターン領域PAは、その円内に包
含される矩形形状を有する。スリット像STは、XYス
テージ21の移動座標軸X、Yのそれぞれに対して45
°程度傾いた2つの交差するスリット像ST1、ST2
としてウェハ上に形成される。各スリット像ST1、S
T2は、それぞれ上述した一対の斜入射光方式の多点A
F系によって形成される。したがって、一方のAF系の
投光用対物レンズ5と受光用対物レンズ8の両光軸AF
x1はウェハ面ではスリットST1と、他方のAF系の
投光用対物レンズ5と受光用対物レンズ8の両光軸AF
x2はウェハ面ではスリットST2と、それぞれ直交し
た方向に延びている。
FIG. 2 shows the projection field If of the projection lens PL.
FIG. 6 is a diagram showing the positional relationship between the light projection slit image ST of the AF system and the AF system on the wafer W surface. The projection visual field If is generally circular, and the pattern area PA of the reticle R has a rectangular shape included in the circle. The slit image ST is 45 with respect to each of the moving coordinate axes X and Y of the XY stage 21.
Two intersecting slit images ST1 and ST2 that are inclined by about °
Is formed on the wafer as. Each slit image ST1, S
T2 is a pair of oblique incident light type multipoints A described above.
It is formed by the F system. Therefore, both the optical axis AF of the light-projecting objective lens 5 and the light-receiving objective lens 8 of one AF system
x1 is a slit ST1 on the wafer surface, and both optical axis AF of the projection objective lens 5 and the reception objective lens 8 of the other AF system.
On the wafer surface, x2 extends in a direction orthogonal to the slit ST2.

【0026】さらに、各スリット像ST1、ST2の中
心は光軸AXとほぼ一致するように位置決めされてい
る。
Further, the centers of the slit images ST1 and ST2 are positioned so as to substantially coincide with the optical axis AX.

【0027】一般に、パターンが投影露光されるウェハ
W表面上の露光領域(ショット領域)には、パターン像
と重ね合わされる回路パターンがすでに形成されてい
る。スタック型のメモリーIC等では高集積化対応のた
め、ウェハ表面に大きな段差形状を有している。さらに
ショット領域内には、デバイス製造のプロセスを経る度
に凹凸部分の変化が顕在化し、スリット像STの長手方
向においても、大きな凹凸変化が存在しうる。このた
め、スリット像STはパターン領域PAの投影領域内で
できるだけ長くのびるように、換言すれば平均的かつ網
羅的に覆うように構成されている。
Generally, in the exposure area (shot area) on the surface of the wafer W on which the pattern is projected and exposed, a circuit pattern to be superimposed on the pattern image is already formed. A stack type memory IC or the like has a large step shape on the wafer surface for high integration. Further, in the shot area, a change in the unevenness becomes noticeable each time the device manufacturing process is performed, and a large unevenness may exist in the longitudinal direction of the slit image ST. For this reason, the slit image ST is configured to extend as long as possible within the projection area of the pattern area PA, in other words, to cover the slit area ST evenly and comprehensively.

【0028】本実施例では、各スリット像を5つの部分
に分割し、図2中に示す5つの計測点を選択している。
スリット像をどのように配置し、各スリット像をどのよ
うに分割し、どの分割部分に計測点を選択し、さらに分
割部分のどの位置に計測点を選択するかは、露光すべき
パターン、1回に露光すべきチップ数およびその配列、
露光前に既に形成されている段差等の条件に依存する。
これらの条件は、すべて各投影露光工程前に既知であ
り、いわゆる変更可能な設計事項に関する。
In this embodiment, each slit image is divided into five parts, and five measurement points shown in FIG. 2 are selected.
How to arrange the slit images, how to divide each slit image, to select the measurement point at which division part, and to which position of the division part to select the measurement point depends on the pattern to be exposed, The number of chips to be exposed at one time and their arrangement,
It depends on conditions such as a step already formed before exposure.
All these conditions are known before each projection exposure step and relate to so-called modifiable design considerations.

【0029】以上のように構成された本発明の投影露光
装置の動作を、以下に説明する。MCU30には、入力
手段31を介して上位コンピュータ等から次の露光時の
XYステージ21の目標位置、次の露光すべき領域の所
望計測点位置等の情報が入力される。XYステージ21
の現在位置、次の目標位置、および感光基板面上におけ
るアレイセンサ15の各受光セルの対応位置、すなわち
多点AF系のパターン像上の高さ計測可能位置等の情報
から、次の露光領域への移動中に、次の露光領域内の所
望計測位置のうちどの計測点がパターン像を通過し、そ
の結果移動中の測定が可能であるかを求める。
The operation of the projection exposure apparatus of the present invention constructed as above will be described below. Information such as the target position of the XY stage 21 at the time of the next exposure and the desired measurement point position of the next exposure area is input to the MCU 30 from the host computer or the like via the input means 31. XY stage 21
Of the present position, the next target position, and the corresponding position of each light receiving cell of the array sensor 15 on the photosensitive substrate surface, that is, the height measurable position on the pattern image of the multipoint AF system, and the like, from the next exposure area. It is determined which measurement point of the desired measurement positions in the next exposure area passes through the pattern image during the movement to, and as a result, the measurement during the movement is possible.

【0030】こうして、次の露光領域への移動中に計測
可能である所望計測点については、XYステージ21が
所定の位置に達したときの所定の受光セルの検波出力信
号FSから高さ位置を移動中に求めることができる。ま
た、次の露光領域への移動中にパターン像を通過せず、
したがって移動中に計測不可能である所望計測点につい
ては、所望計測点がパターン像に十分近接した時点で計
測を行う。換言すれば、パターン像を通過しない他の所
望計測点については、所望計測点に十分近接した位置に
おいて移動中に計測を行う。
In this way, the desired measurement point that can be measured during the movement to the next exposure area is set at the height position from the detection output signal FS of the predetermined light receiving cell when the XY stage 21 reaches the predetermined position. Can be requested on the move. Also, during the movement to the next exposure area does not pass through the pattern image,
Therefore, for the desired measurement point that cannot be measured during movement, the measurement is performed when the desired measurement point is sufficiently close to the pattern image. In other words, for other desired measurement points that do not pass through the pattern image, measurement is performed while moving at a position sufficiently close to the desired measurement point.

【0031】このように、露光開始前の設計事項および
既知情報から、XYステージ21がどの位置に達したと
き、どの受光セルの検波出力信号FSから露光領域内の
どの位置の高さを計測することができるかを予め知るこ
とができる。
As described above, based on the design items and known information before the start of exposure, when the XY stage 21 reaches the position, the height of the position in the exposure area from the detection output signal FS of which light receiving cell is measured. You can know in advance if you can.

【0032】すなわち、MCU30はXY−DRV22
に次の目標位置を設定してXYステージ21を次の露光
領域に移動開始させ、その移動中の位置情報はXY−D
RV22から逐次MCU30に入力される。逐次入力さ
れるXYステージ21の位置情報と予め求めた計測位置
情報とを比較し、位置が一致した時点における所定の受
光セルの検波出力信号FSから、複数の高さ位置情報を
移動中に得ることができる。得られた複数の高さ位置情
報から露光領域の焦点位置からの高さ方向のずれを求
め、MCU30が制御信号DSをZ−DRV18に出力
してZステージ20を所定量だけ移動させ、さらには必
要に応じてレベリングステージ23をも駆動して、露光
領域を投影レンズPLの焦点深度内の適正位置に位置決
めする。
That is, the MCU 30 uses the XY-DRV 22.
The next target position is set to, and the XY stage 21 is started to move to the next exposure area, and the position information during the movement is XY-D.
It is sequentially input from the RV 22 to the MCU 30. The position information of the XY stage 21 that is sequentially input is compared with the measurement position information that is obtained in advance, and a plurality of height position information is obtained during movement from the detection output signal FS of a predetermined light receiving cell at the time when the positions match. be able to. The height shift from the focus position of the exposure area is obtained from the obtained plurality of height position information, and the MCU 30 outputs the control signal DS to the Z-DRV 18 to move the Z stage 20 by a predetermined amount. The leveling stage 23 is also driven as necessary to position the exposure area at an appropriate position within the depth of focus of the projection lens PL.

【0033】次いで、次の露光領域への移動中における
計測のタイミングについて、図3を参照して具体的に説
明する。図3(A)は、投影露光後の第1の露光領域P
A1と次に投影露光すべき第2の露光領域PA2が並列
している状態を示している。第1の露光領域PA1内に
示す5つの点51乃至55は、高さ位置の測定点であ
る。次の露光領域PA2内に示す5つの点61乃至65
は、所望の計測点である。第1の露光領域PA1の投影
露光が終了すると、次の投影露光のため、図示する第1
の露光領域PA1の位置に第2の露光領域PA2が移動
するまで、XYステージ21を図中矢印の方向に駆動す
る。
Next, the measurement timing during the movement to the next exposure area will be specifically described with reference to FIG. FIG. 3A shows the first exposure area P after projection exposure.
It shows a state in which A1 and the second exposure area PA2 to be projected and exposed next are juxtaposed. Five points 51 to 55 shown in the first exposure area PA1 are measurement points at height positions. Five points 61 to 65 shown in the next exposure area PA2
Is a desired measurement point. When the projection exposure of the first exposure area PA1 is completed, the first projection shown in FIG.
The XY stage 21 is driven in the direction of the arrow in the drawing until the second exposure area PA2 is moved to the position of the exposure area PA1.

【0034】図中、計測すべき所望計測点のうち、61
および62は移動中にスリット像STを通過する点、さ
らに詳細には移動中に測定点54および55に一致する
点であり、他の3つの点63乃至65は移動中にスリッ
ト像STを通過しない点である。
In the figure, 61 out of the desired measurement points to be measured
And 62 are points that pass the slit image ST during movement, more specifically, points that coincide with the measurement points 54 and 55 during movement, and the other three points 63 to 65 pass through the slit image ST during movement. The point is not.

【0035】図3(B)に示すように、スリット像ST
を通過する所望計測点61および62については、測定
点51および52にそれぞれ一致した時点で移動中に測
定することができる。また、図3(C)に示すように、
スリット像STを通過しない所望計測点63乃至65に
ついては、測定点53乃至55に十分近接した時点で移
動中に測定することができる。
As shown in FIG. 3B, the slit image ST
The desired measurement points 61 and 62 passing through can be measured during the movement when they coincide with the measurement points 51 and 52, respectively. In addition, as shown in FIG.
The desired measurement points 63 to 65 that do not pass through the slit image ST can be measured during movement when they are sufficiently close to the measurement points 53 to 55.

【0036】すなわち、5つの所望計測点のうち61お
よび62については所望位置において、63乃至65に
ついては所望位置から図中左側に僅かにずれた位置にお
いて移動中に測定することができる。
That is, 61 and 62 of the five desired measurement points can be measured during movement at desired positions, and 63 to 65 can be measured during movement at positions slightly deviated from the desired position to the left side in the drawing.

【0037】なお、結像面の傾斜(凹凸)を考慮するこ
となく本実施例を説明したが、実際には、レチクルの保
持の不正確さ等に起因して、投影光学系の最良結像面は
必ずしも平面ではない。すなわち、測定点51乃至55
の各位置における合焦点は必ずしも一平面内には存在せ
ず、全体的に凹凸状に分布する。このため、プレーンパ
ラレル12を用いて、全体的な結像面の傾斜を平均的に
キャリブレーションしている。
Although the present embodiment has been described without considering the inclination (irregularities) of the image forming surface, in reality, the best image formation of the projection optical system is caused due to inaccuracy of holding the reticle. The face is not necessarily a plane. That is, the measurement points 51 to 55
The in-focus points at the respective positions do not necessarily exist in one plane, and are distributed unevenly as a whole. For this reason, the plane parallel 12 is used to calibrate the inclination of the entire image plane on average.

【0038】本発明では、本来測定点51および52で
測定すべき高さ位置を測定点54および55でそれぞれ
先読みして計測している。したがって、測定点51と5
4または測定点52と55との間の結像面の傾斜に起因
するΔzのオフセット量を考慮する必要がある。より具
体的には、結像面の傾斜に起因して測定点54または5
5の合焦点が測定点51または52の合焦点よりΔzだ
け上方に位置するとしてキャリブレーションされている
とすれば、測定点54または55における実際の計測値
にΔzのオフセットをのせる必要がある。また、測定点
53乃至55に近接する点において計測した値には、必
要に応じて線形補完等の適当な方法で補正することもで
きる。
In the present invention, the height positions to be originally measured at the measurement points 51 and 52 are pre-read at the measurement points 54 and 55 and measured. Therefore, measuring points 51 and 5
4 or the offset amount of Δz due to the inclination of the image plane between the measurement points 52 and 55 needs to be considered. More specifically, the measurement point 54 or 5 is caused by the inclination of the image plane.
If it is calibrated that the focal point of 5 is located Δz above the focal point of the measurement point 51 or 52, it is necessary to offset the actual measurement value at the measurement point 54 or 55 by Δz. . Further, the values measured at points close to the measurement points 53 to 55 can be corrected by an appropriate method such as linear interpolation if necessary.

【0039】なお、本実施例では、交差する2つのスリ
ット像からなるパターン像を用いて説明したが、ほぼ平
行する複数の、好ましくは3つのスリット像からなるパ
ターン像を用いてもよい。また、露光領域のほぼ全面に
明暗パターンを投影し、ここで反射した光を撮像素子
(CCDカメラ等)の受光面上に結像するAF系を用い
てもよい。このAF系は受光面上でのパターン像の位置
(又はピッチ)の所定の規準位置からのずれ量を検出す
ることで、露光領域の高さ位置を求めるものであり、そ
の最大の特徴は露光領域内の任意の点での高さ位置を検
出できることである。従って、このようなAF系を用い
れば、露光領域内の段差構造やその形状等の条件が変化
しても当該条件に対応して最適な複数の計測点が選択で
きるという利点が得られる。例えば、隣接する2つの露
光領域間で、高さ位置を計測すべき複数の点のうち少な
くとも1つでも異なる場合でも、上記AF系を用いるこ
とにより適宜計測点を選択、変更できる。
Although the present embodiment has been described by using the pattern image composed of two intersecting slit images, a pattern image composed of a plurality of slit images, preferably three slit images, which are substantially parallel to each other may be used. Further, an AF system may be used in which a bright / dark pattern is projected on almost the entire exposure area and the light reflected here is imaged on the light receiving surface of the image sensor (CCD camera or the like). This AF system obtains the height position of the exposure area by detecting the amount of deviation of the position (or pitch) of the pattern image on the light receiving surface from a predetermined reference position, and the greatest feature is the exposure. The height position can be detected at any point in the area. Therefore, if such an AF system is used, there is an advantage that even if conditions such as the step structure in the exposure area and the shape thereof change, a plurality of optimum measurement points can be selected according to the conditions. For example, even if at least one of the plurality of points whose height positions are to be measured is different between two adjacent exposure areas, the measurement point can be appropriately selected and changed by using the AF system.

【0040】また、本実施例では、感光基板として半導
体製造工程で使用されるウェハを例に採って説明した
が、他のいかなる感光基板についても、本発明が適用可
能であることは明らかである。さらに、本発明の変形例
として、その範囲を逸脱することなく、求めた高さ位置
情報を平均化処理または重み係数の総和で平均化する加
重平均化処理して目標焦点面を求めること、並びに最適
な移動経路の選択および制御を行うことができることは
明らかである。
In this embodiment, a wafer used in a semiconductor manufacturing process is taken as an example of the photosensitive substrate, but it is obvious that the present invention can be applied to any other photosensitive substrate. . Furthermore, as a modified example of the present invention, without deviating from the range, the obtained height position information is averaged or a weighted averaging is performed to average the sum of weighting factors to obtain a target focal plane, and It is obvious that the optimal travel route can be selected and controlled.

【0041】また、ウェハWの最外周に位置する露光領
域は、その一部が欠けていることがある。このような露
光領域に対してレチクルパターンを転写するとき、当然
ながら当該領域内で高さ位置を計測すべき計測点の数は
減り得る。そこで、上記領域への移動前に多点AF系の
複数の計測点の中から上記領域で使用する計測点を選択
しておき、この選択された少なくとも1つの計測点と多
点AF系の複数の計測点のいずれかとが一致し、もしく
は近接したときに、その高さ位置を検出することが望ま
しい。
The exposure area located at the outermost periphery of the wafer W may be partially cut off. When the reticle pattern is transferred to such an exposure area, the number of measurement points for measuring the height position in the area can naturally be reduced. Therefore, before moving to the area, a measurement point to be used in the area is selected from a plurality of measurement points of the multipoint AF system, and at least one selected measurement point and a plurality of points of the multipoint AF system are selected. It is desirable to detect the height position when any of the measurement points of (1) and (2) coincide with each other or are close to each other.

【0042】[0042]

【効果】以上説明したごとく、本発明の投影露光装置に
あっては、パターン像が、複数の計測点を露光領域上で
網羅的且つ平均的に選択することができるような形状を
有しているので、次の露光領域への移動中に、次の露光
領域内の所望の計測点が上記パターン像を通過するとき
逐次高さ位置を検出し、上記パターン像を通過しない他
の所望の計測点については移動中近接したとき高さ位置
を検出することができるため、次の露光領域への移動中
に高さ位置を予め検出し、検出した高さ位置情報に基づ
き移動中または移動終了後直ちに焦点合わせを行うこと
ができるので、スループットが著しく向上する。
As described above, in the projection exposure apparatus of the present invention, the pattern image has such a shape that a plurality of measurement points can be comprehensively and averagely selected on the exposure area. Therefore, while moving to the next exposure area, the height position is successively detected when a desired measurement point in the next exposure area passes the pattern image, and another desired measurement that does not pass the pattern image is performed. Since the height position of a point can be detected when moving and approaching, the height position can be detected in advance while moving to the next exposure area, and the height position can be detected based on the detected height position information during or after the movement. Throughput can be significantly improved since focusing can be done immediately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る投影露光装置の構成を部
分的に示す図である。
FIG. 1 is a diagram partially showing a configuration of a projection exposure apparatus according to an embodiment of the present invention.

【図2】投影視野とパターン像との位置関係を示す図で
ある。
FIG. 2 is a diagram showing a positional relationship between a projected visual field and a pattern image.

【図3】パターン像を通過する所望計測点および通過し
ない所望計測点について、それぞれ移動中に計測するタ
イミングを説明する図である。
FIG. 3 is a diagram illustrating timings at which a desired measurement point that passes a pattern image and a desired measurement point that does not pass the pattern image are measured during movement.

【符号の説明】[Explanation of symbols]

2、9 レンズ系 3、6 ミラー 4、 絞り 5 投光用対物レンズ 9 結像光学系 10 振動ミラー 11 ミラー駆動部 12 パラレルプレーン 13 セレクタ 14 スリット板 15 アレイセンサ 17 同期検波回路 2, 9 Lens system 3, 6 Mirror 4, Aperture 5 Projection objective lens 9 Imaging optical system 10 Oscillating mirror 11 Mirror drive unit 12 Parallel plane 13 Selector 14 Slit plate 15 Array sensor 17 Synchronous detection circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マスクのパターンを投影光学系を介して
感光基板上の複数の露光領域の各々に転写するための露
光手段と、前記感光基板を保持して前記投影光学系の光
軸と垂直な面内で2次元移動するとともに、前記光軸に
沿った方向に移動可能な基板ステージとを備え、前記露
光領域毎に、前記投影光学系の結像面と前記露光領域の
露光面とをほぼ一致させて前記マスクのパターンを転写
する投影露光装置において、 前記感光基板上に所定形状のパターン像を結像するとと
もに、前記感光基板から反射した光を光電検出して、前
記露光領域内の予め定められた複数の計測点の各々にお
ける前記投影光学系の光軸方向の位置を検出する位置検
出手段と、 前記基板ステージの移動中、前記マスクのパターンを転
写すべき次の露光領域内の複数の計測点の各々が前記パ
ターン像と一致、もしくは近接したときに前記位置検出
手段から出力される検出信号に基づいて、前記投影光学
系の結像面と前記次の露光領域の露光面との前記光軸方
向のずれ量を算出する演算手段と、 該検出されたずれ量がほぼ零になるように前記基板ステ
ージの移動を制御する制御手段とを備えたことを特徴と
する投影露光装置。
1. An exposure unit for transferring a pattern of a mask to each of a plurality of exposure regions on a photosensitive substrate via a projection optical system, and holding the photosensitive substrate and perpendicular to an optical axis of the projection optical system. And a substrate stage movable in the direction along the optical axis while moving two-dimensionally in the plane, and for each of the exposure areas, an image plane of the projection optical system and an exposure surface of the exposure area. In a projection exposure apparatus that transfers the pattern of the mask in a substantially coincident manner, a pattern image of a predetermined shape is formed on the photosensitive substrate, and the light reflected from the photosensitive substrate is photoelectrically detected to detect the light in the exposure area. Position detection means for detecting a position in the optical axis direction of the projection optical system at each of a plurality of predetermined measurement points, and during movement of the substrate stage, within the next exposure area to which the pattern of the mask is to be transferred plural Based on the detection signal output from the position detection means when each of the measurement points coincides with or comes close to the pattern image, the image formation surface of the projection optical system and the exposure surface of the next exposure area are described above. A projection exposure apparatus comprising: a calculation unit that calculates a shift amount in the optical axis direction; and a control unit that controls the movement of the substrate stage so that the detected shift amount becomes substantially zero.
【請求項2】 上記パターン像は、感光基板面上で交差
する2つのスリット像であることを特徴とする請求項1
に記載の投影露光装置。
2. The pattern image is two slit images intersecting each other on the surface of the photosensitive substrate.
The projection exposure apparatus according to.
【請求項3】 上記パターン像は、感光基板面上でほぼ
平行に配置された3つのスリット像であることを特徴と
する請求項1に記載の投影露光装置。
3. The projection exposure apparatus according to claim 1, wherein the pattern image is three slit images arranged substantially parallel to each other on the surface of the photosensitive substrate.
JP34607392A 1992-12-25 1992-12-25 Projection exposure apparatus, exposure method, and semiconductor manufacturing method using the same Expired - Fee Related JP3218484B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP34607392A JP3218484B2 (en) 1992-12-25 1992-12-25 Projection exposure apparatus, exposure method, and semiconductor manufacturing method using the same
KR1019930030163A KR100300618B1 (en) 1992-12-25 1993-12-24 EXPOSURE METHOD, EXPOSURE DEVICE, AND DEVICE MANUFACTURING METHOD USING THE DEVICE
US08/345,325 US5448332A (en) 1992-12-25 1994-11-21 Exposure method and apparatus
US08/482,555 US5693439A (en) 1992-12-25 1995-06-07 Exposure method and apparatus
US09/276,441 US6433872B1 (en) 1992-12-25 1999-03-25 Exposure method and apparatus
KR1019990011935A KR100311427B1 (en) 1992-12-25 1999-03-29 A scanning exposure method, and a method of fabricating a device using the same
KR1019990010829A KR100325182B1 (en) 1992-12-25 1999-03-29 A scanning type exposure apparatus, an exposure method, and a method of fabricating a device
KR1019990010827A KR100306310B1 (en) 1992-12-25 1999-03-29 A scanning type exposure apparatus, a method of fabricating a device using the same, and a scanning exposure method
KR1019990010828A KR100307049B1 (en) 1992-12-25 1999-03-29 A scanning type exposure apparatus, a scanning exposure method, and a method of fabricating a device
KR1019990011934A KR100306311B1 (en) 1992-12-25 1999-03-29 A scanning type exposure apparatus, a method of fabricating a device using the same, and a scanning exposure method
KR1019990015291A KR100325184B1 (en) 1992-12-25 1999-04-28 An exposure method, an exposure apparatus, and a method of fabricating a device
KR1020010009582A KR100313732B1 (en) 1992-12-25 2001-02-26 Scanning type exposure apparatus, method of fabricating a device using the same, and scanning exposure method
KR1020010009581A KR100300627B1 (en) 1992-12-25 2001-02-26 Scanning type exposure apparatus, method of fabricating a device using the same, and scanning exposure method
KR1020010009876A KR100325193B1 (en) 1992-12-25 2001-02-27 Scanning type exposure apparatus, method of fabricating a device using the same, and scanning exposure method
US10/186,687 US6608681B2 (en) 1992-12-25 2002-07-02 Exposure method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34607392A JP3218484B2 (en) 1992-12-25 1992-12-25 Projection exposure apparatus, exposure method, and semiconductor manufacturing method using the same

Publications (2)

Publication Number Publication Date
JPH06196386A true JPH06196386A (en) 1994-07-15
JP3218484B2 JP3218484B2 (en) 2001-10-15

Family

ID=18380963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34607392A Expired - Fee Related JP3218484B2 (en) 1992-12-25 1992-12-25 Projection exposure apparatus, exposure method, and semiconductor manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP3218484B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927448A (en) * 1995-07-11 1997-01-28 Nikon Corp Projection exposure device
JPH10163100A (en) * 1996-11-28 1998-06-19 Nikon Corp Projection light-exposure device, projection light-exposure method, and scan light-exposure method
JPH1140489A (en) * 1997-07-15 1999-02-12 Canon Inc Projection exposure method and aligner
JP2006156508A (en) * 2004-11-26 2006-06-15 Nikon Corp Method of deciding target value, moving method, exposing method, exposing device, and lithography system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927448A (en) * 1995-07-11 1997-01-28 Nikon Corp Projection exposure device
JPH10163100A (en) * 1996-11-28 1998-06-19 Nikon Corp Projection light-exposure device, projection light-exposure method, and scan light-exposure method
JPH1140489A (en) * 1997-07-15 1999-02-12 Canon Inc Projection exposure method and aligner
JP2006156508A (en) * 2004-11-26 2006-06-15 Nikon Corp Method of deciding target value, moving method, exposing method, exposing device, and lithography system

Also Published As

Publication number Publication date
JP3218484B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JP3374413B2 (en) Projection exposure apparatus, projection exposure method, and integrated circuit manufacturing method
KR100311427B1 (en) A scanning exposure method, and a method of fabricating a device using the same
JP3555230B2 (en) Projection exposure equipment
JP3376179B2 (en) Surface position detection method
JP3572430B2 (en) Exposure method and apparatus
KR100266729B1 (en) Surface position detecting method and scanning exposure method using the same
JP3303329B2 (en) Focus detection device, exposure apparatus and method
JP3518826B2 (en) Surface position detecting method and apparatus, and exposure apparatus
JPH06196386A (en) Projection aligner
US5991007A (en) Step and scan exposure system and semiconductor device manufactured using said system
US6539326B1 (en) Position detecting system for projection exposure apparatus
JP2004247476A (en) Surface position measuring method
JP3428825B2 (en) Surface position detection method and surface position detection device
JP3647227B2 (en) Scanning exposure equipment
JPH05190423A (en) Projection aligner
JP3376219B2 (en) Surface position detecting device and method
JP3465710B2 (en) Projection exposure apparatus, projection exposure method, and integrated circuit manufacturing method
JPH06314648A (en) Aligning method
JPH104053A (en) Surface position detector and manufacture of device thereby
JPH10209029A (en) Exposure device provided with alignment system
JP2002043218A (en) Exposure method
JPH10270304A (en) Method for evaluating exposure pattfrn, mark for evaluating exposure pattern, and device for evaluating exposure pattern
JPH10284366A (en) Focal point position detecting equipment and focal point position detecting method
JP2000074623A (en) Face position measuring method and face position measuring equipment
JPH10340853A (en) Scanning aligner, method of exposure, and manufacture of circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees