JPH06194695A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPH06194695A
JPH06194695A JP34452892A JP34452892A JPH06194695A JP H06194695 A JPH06194695 A JP H06194695A JP 34452892 A JP34452892 A JP 34452892A JP 34452892 A JP34452892 A JP 34452892A JP H06194695 A JPH06194695 A JP H06194695A
Authority
JP
Japan
Prior art keywords
incident
liquid crystal
sin
angle
optical deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34452892A
Other languages
Japanese (ja)
Inventor
Koetsu Hibino
光悦 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34452892A priority Critical patent/JPH06194695A/en
Publication of JPH06194695A publication Critical patent/JPH06194695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the deflector optical which obtains an extended angle of deflection than the conventional by making incident light, transmitted through a polarizing plate, incident on an incidence surface from one direction and making the normal of the incidence surface unmatch with the incidence direction. CONSTITUTION:This optical deflector is equipped with a wedge type or Fresnel type liquid crystal prism where the incident light transmitted through the polarizing plate is made incident on the incidence surface from the one direction and the emission light is emitted from the emission surface in a direction deflected from the incidence direction. Then the normal of this incidence surface does not match the incidence direction. The wedge type liquid crystal prism is made with 1st and 2nd flat plate shaped transparent substrates 1 and 2 joined at a prescribed vertex angle alpha deg. with a sealant, forming 1st and 2nd transparent conductive films on the inner surfaces of the 1st and 2nd transparent substrates 1 and 2, and further 1st and 2nd horizontal orientation films on the inner surfaces of the 1st and 2nd transparent conductive films are formed. Then nematic liquid crystal 3 having positive dielectric anisotropy is sealed in the wedge shaped space partitioned with the 1st and 2nd transparent substrates 1 and 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光偏向器に関する。この
光偏向器は、計算機の表示部等各種ディスプレイ、レー
ザプリンタ、レーザレーダ等に利用可能である。
FIELD OF THE INVENTION The present invention relates to an optical deflector. This optical deflector can be used for various displays such as a display unit of a computer, a laser printer, a laser radar and the like.

【0002】[0002]

【従来の技術】例えば、楔型液晶プリズムとして、図1
9に示すものが知られている。この楔型液晶プリズムで
は、平板状の第1、2透明基板91、92が所定の頂角
α(°)でシール剤93により接合され、各第1、2透
明基板91、92の内面にはそれぞれ第1、2透明導電
膜94、95が形成されており、各第1、2透明導電膜
94、95の内面にはさらに第1、2水平配向膜96、
97が形成されている。そして、各第1、2透明基板9
1、92により画定された楔状の空間内には正の誘電異
方性をもつネマチック液晶98が封入されている。
2. Description of the Related Art For example, as a wedge type liquid crystal prism, FIG.
The one shown in 9 is known. In this wedge-shaped liquid crystal prism, flat plate-shaped first and second transparent substrates 91 and 92 are joined by a sealant 93 at a predetermined apex angle α (°), and the inner surfaces of the first and second transparent substrates 91 and 92 are First and second transparent conductive films 94 and 95 are formed, and first and second horizontal alignment films 96 and 96 are formed on the inner surfaces of the first and second transparent conductive films 94 and 95, respectively.
97 is formed. Then, each of the first and second transparent substrates 9
A nematic liquid crystal 98 having a positive dielectric anisotropy is enclosed in a wedge-shaped space defined by 1 and 92.

【0003】この種の楔型液晶プリズムを偏光板99等
とともに光偏向器として組み込み、各第1、2透明導電
膜94、95間にしきい電圧を超える電圧を交流電源8
0により印加すれば、液晶98は、弾性エネルギと電界
効果の釣り合いが崩れ、弾性エネルギの小さい中央部か
ら偏向し始める。ここで、偏光板99を透過した入射光
Biが第1透明基板91の入射面91aに垂直に入射さ
れれば、出射光Boを第2透明基板92の出射面92a
から垂直方向に対してθ(°)偏向した方向に出射させ
る。つまり、液晶分子の動きは複屈折の変化を伴うの
で、入射光Biと出射光Boとがなす偏向角θ(°)は
複屈折の差となる。かかる偏向角、複屈折の差は、液晶
プリズムをレンズ等として利用する際の重要な効果とな
る(日本眼光学学会誌(1988年)、第30〜33頁
「焦点距離可変液晶レンズ」)。
A wedge-shaped liquid crystal prism of this kind is incorporated as a light deflector together with a polarizing plate 99 and the like, and a voltage exceeding the threshold voltage is applied between the first and second transparent conductive films 94 and 95 by the AC power source 8.
When 0 is applied, the liquid crystal 98 loses the balance between the elastic energy and the electric field effect, and starts to be deflected from the central portion where the elastic energy is small. Here, if the incident light Bi transmitted through the polarizing plate 99 is perpendicularly incident on the incident surface 91a of the first transparent substrate 91, the emitted light Bo is emitted as the outgoing surface 92a of the second transparent substrate 92.
To the direction perpendicular to the vertical direction by θ (°). That is, since the movement of the liquid crystal molecules is accompanied by a change in birefringence, the deflection angle θ (°) formed by the incident light Bi and the outgoing light Bo is the difference in birefringence. The difference between the deflection angle and the birefringence has an important effect when the liquid crystal prism is used as a lens or the like (Journal of the Ophthalmological Society of Japan (1988), pages 30 to 33, "focal length variable liquid crystal lens").

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の光偏向
器では、入射光を透明基板の入射面に常に垂直に入射す
るように構成していたため、偏向角が数度しかなく、液
晶プリズムの利用価値を低減させる一因となっていた。
なお、フレネル型液晶プリズムを複数の楔型液晶プリズ
ムの組み合わせとみれば、フレネル型液晶プリズムを採
用した光偏向器においても同様である。例えば、上記刊
行物では、頂角α=4.7(°)の楔型液晶プリズムの
場合、しきい電圧以上の電圧印加により、偏向角が3.
2〜2.4(°)までの範囲で連続的に変化することを
開示している。また、頂角α=20(°)のフレネル型
液晶プリズムの場合、偏向角が4〜1(°)までの範囲
で連続的に変化することを開示している。
However, in the conventional optical deflector, since the incident light is always incident perpendicularly on the incident surface of the transparent substrate, the deflection angle is only a few degrees and the liquid crystal prism has It was one of the factors that reduced the utility value.
If the Fresnel type liquid crystal prism is regarded as a combination of a plurality of wedge type liquid crystal prisms, the same applies to an optical deflector using the Fresnel type liquid crystal prism. For example, in the above publication, in the case of a wedge-shaped liquid crystal prism having an apex angle α = 4.7 (°), the deflection angle is 3. by applying a voltage equal to or higher than the threshold voltage.
It is disclosed that it continuously changes in the range of 2 to 2.4 (°). It also discloses that in the case of a Fresnel type liquid crystal prism having an apex angle α = 20 (°), the deflection angle continuously changes in the range of 4 to 1 (°).

【0005】本発明は、上記従来の実情に鑑みてなされ
たものであって、従来よりも拡大した偏向角が得られる
光偏向器を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and an object thereof is to provide an optical deflector capable of obtaining a deflection angle wider than that of the conventional one.

【0006】[0006]

【課題を解決するための手段】本発明の光偏向器は、偏
光板を透過した入射光が入射面に一方向から入射され、
出射光を出射面から該一方向に対して偏向した方向に出
射させる楔型又はフレネル型液晶プリズムを有する光偏
向器であって、該入射面の法線は該一方向と一致してい
ないことを特徴とするものである。
In the optical deflector of the present invention, the incident light transmitted through the polarizing plate is incident on the incident surface from one direction,
An optical deflector having a wedge-type or Fresnel-type liquid crystal prism that emits outgoing light in a direction deflected from the outgoing surface with respect to the one direction, and a normal line of the incoming surface does not coincide with the one direction. It is characterized by.

【0007】[0007]

【作用】本発明の光偏向器では、偏光板を透過した入射
光が入射面に傾斜して入射されるため、出射面から出射
する出射光は偏向角が拡大した状態で出射する。
In the optical deflector of the present invention, the incident light transmitted through the polarizing plate is incident on the incident surface with an inclination, so that the emitted light emitted from the emitting surface is emitted in a state where the deflection angle is enlarged.

【0008】[0008]

【実施例】この光偏向器は、図1に示す楔型液晶プリズ
ムを図示しない偏光板等とともに組み込んだものであ
る。楔型液晶プリズムは、上記従来のものと同様のもの
であり、平板状の第1、2透明基板1、2が所定の頂角
α(°)でシール剤により接合され、各第1、2透明基
板1、2の内面にはそれぞれ図示しない第1、2透明導
電膜が形成されており、各第1、2透明導電膜の内面に
はさらに第1、2水平配向膜が形成されている。そし
て、各第1、2透明基板1、2により画定された楔状の
空間内には正の誘電異方性をもつネマチック液晶3が封
入されている。第1、2透明導電膜間には交流電源より
しきい電圧を超える電圧が印加可能になされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS This optical deflector incorporates the wedge type liquid crystal prism shown in FIG. 1 together with a polarizing plate and the like not shown. The wedge-shaped liquid crystal prism is similar to the above-mentioned conventional one, and the first and second flat plate-shaped transparent substrates 1 and 2 are joined by a sealant at a predetermined apex angle α (°) to form the first and second transparent substrates. First and second transparent conductive films (not shown) are formed on the inner surfaces of the transparent substrates 1 and 2, respectively, and first and second horizontal alignment films are further formed on the inner surfaces of the first and second transparent conductive films. . A nematic liquid crystal 3 having a positive dielectric anisotropy is enclosed in the wedge-shaped space defined by the first and second transparent substrates 1 and 2. A voltage exceeding the threshold voltage can be applied from the AC power supply between the first and second transparent conductive films.

【0009】この光偏向器において、液晶プリズムへの
入射角と出射角との関係について、計算方法と結果につ
いて説明する。 1.基本式の導出 (1)記号等の設定 表1に示すように、第1、2透明基板1、2及び液晶3
の屈折率と、第1、2透明基板1、2の厚みとを設定す
る。
In this optical deflector, the calculation method and the result of the relationship between the incident angle to the liquid crystal prism and the outgoing angle will be described. 1. Derivation of basic formula (1) Setting of symbols etc. As shown in Table 1, first and second transparent substrates 1 and 2 and liquid crystal 3
And the thicknesses of the first and second transparent substrates 1 and 2 are set.

【0010】[0010]

【表1】 また、図中に下記の条件を記入する。[Table 1] In addition, enter the following conditions in the figure.

【0011】PO:入射光 x軸:楔頂辺に垂直な第1透明基板1面内の軸 y軸:楔頂辺に平行な第1透明基板1面内の軸 z軸:第1透明基板1面に垂直な軸 H0 :z軸に対する入射角(入射光が入射する一方向と
x−y座標により決定される入射面とがなす角度) D1 :P点より第1透明基板1面へ下ろした足がx軸と
なす角度(入射偏向角) α:楔の頂角 但し、計算範囲は以下の通りとする。
PO: incident light x axis: axis within the plane of the first transparent substrate 1 perpendicular to the wedge top side y axis: axis within the plane of the first transparent substrate 1 parallel to the wedge top side z axis: first transparent substrate Axis H 0 perpendicular to the 1st plane: incident angle with respect to z-axis (angle formed by one direction of incident light and incident plane determined by xy coordinates) D 1 : 1st transparent substrate from P point Angle formed by the foot lowered to the x-axis (incident deflection angle) α: Wedge vertical angle However, the calculation range is as follows.

【0012】0≦H0 <90(°) 0≦D1 <180(°) (2)第1透明基板1内の光路 第1透明基板1の入射面の入射点を(0, 0, 0)とし
た時の位置関係を図2及び図3に示す。ここで、SNE
LLの法則より、 sin H0 =nK1・sin H1 、また、座標(x,y,z)
は、(−T1 ・tan H1 ・cos D1 ,T1 ・tan H1
sin D1 ,−T1 )となる。 (3)液晶3内の光路 液晶3への出射角H2 は、次の関係にある。
0 ≦ H 0 <90 (°) 0 ≦ D 1 <180 (°) (2) Optical path in the first transparent substrate 1 The incident point on the incident surface of the first transparent substrate 1 is (0, 0, 0). 2) and FIG. Where SNE
From the law of LL, sin H 0 = n K1 · sin H 1 and coordinates (x, y, z)
Is (-T 1 · tan H 1 · cos D 1 , T 1 · tan H 1 ·
sin D 1, a -T 1). (3) Optical Path in Liquid Crystal 3 The exit angle H 2 to the liquid crystal 3 has the following relationship.

【0013】nK1・sin H1 =nL ・sin H2 ここで、図4に示すように、液晶3の上面の入射点Pを
原点とし、液晶3内からの出射点をOとする。P点から
液晶3の下面の出射面に下した足をNとする。P点から
頂辺までの距離をlとする。P点を通るy−z平面に対
し、液晶3の下面に沿ってO点より下した足をQとす
る。
N K1 · sin H 1 = n L · sin H 2 Here, as shown in FIG. 4, the incident point P on the upper surface of the liquid crystal 3 is the origin, and the exit point from the liquid crystal 3 is O. Let N be the foot descended from the point P to the emission surface of the lower surface of the liquid crystal 3. Let l be the distance from point P to the top side. Let Q be a foot below the O point along the lower surface of the liquid crystal 3 with respect to the yz plane passing through the P point.

【0014】これにより、N点及び(−1 ,0,0)点
を結ぶ線分と線分ONとのなす角度をD4 とすれば、D
4 は第2透明基板2に対する入射偏向角となる。そし
て、偏向角D1 で入射した光は液晶3の下面より第2透
明基板2に入射する際、その法線PNにより入射角H3
が決まるため、光の進行方向はD1 方向からD4 方向に
曲げられる。
Accordingly, if the angle between the line segment connecting the N point and the (-1, 0, 0) point and the line segment ON is D 4 , then D
4 is the incident deflection angle with respect to the second transparent substrate 2. Then, when the light incident at the deflection angle D 1 is incident on the second transparent substrate 2 from the lower surface of the liquid crystal 3, the incident angle H 3 is caused by the normal line PN.
Therefore, the traveling direction of light is bent from the D 1 direction to the D 4 direction.

【0015】以下に第2透明基板2への入射角H3 を求
める。図4の関係より、ベクトルPOの単位ベクトルの
方向余弦は、(−sin H2 ・cos D1 ,sin H2 ・sin
1 ,−cos H2 )、また、ベクトルPNの単位ベクト
ルの方向余弦は、(−sin α,0,−cos α)である。
The incident angle H 3 on the second transparent substrate 2 will be determined below. From the relationship of FIG. 4, the direction cosine of the unit vector of the vector PO is (−sin H 2 · cos D 1 , sin H 2 · sin
D 1 , −cos H 2 ) and the direction cosine of the unit vector of the vector PN is (−sin α, 0, −cos α).

【0016】したがって、入射角H3 は、cos H3 =si
n H2 ・cos D1 ・sin α+cos α・cos H2と表され
る。次に、第2透明基板2へ入射時の偏向角D4 を求め
る。図5、6に断面での位置関係を示す。図5において
ROが液晶3通過時の第2透明基板2への射影である。
前述の通り、第1透明基板1への入射時の偏向角は図の
ように表され、捩じれることがわかる。
Therefore, the incident angle H 3 is cos H 3 = si
It is expressed as n H 2 · cos D 1 · sin α + cos α · cos H 2 . Next, the deflection angle D 4 upon incidence on the second transparent substrate 2 is obtained. 5 and 6 show the positional relationship in the cross section. In FIG. 5, RO is a projection on the second transparent substrate 2 when passing through the liquid crystal 3.
As described above, the deflection angle at the time of incidence on the first transparent substrate 1 is expressed as shown in the figure, and it can be seen that it is twisted.

【0017】P点の座標を(0,0,0)、O点の座標
を(x,y,z)とする時、R点の座標は(0,0,−
tan α)、Q点の座標は(0,y,−tan α)、T点の
座標は(0,y,z)となる。
When the coordinates of the P point are (0,0,0) and the coordinates of the O point are (x, y, z), the coordinates of the R point are (0,0,-).
The coordinates of tan α) and Q point are (0, y, −tan α), and the coordinates of T point are (0, y, z).

【0018】また、TQの長さは、−tan α−z、OT
の長さは、x、OQの長さは、(x2 +(tan α+z)
21/2 、NRの長さは、sin α・tan αである。
The length of TQ is -tan α-z, OT
Is x, and the length of OQ is (x 2 + (tan α + z)
2 ) 1/2 , the length of NR is sin α · tan α.

【0019】従って、 tan D4 =RQ/OU=y/((x2 +(tan α+z)
21/2 −sin α・tan α) である。次に、O点の座標(x,y,z)を求める。液
晶3の下面(第2透明基板2の上面)の方程式は、 z+tan α=−tan α・x である。線分POの方程式はtをパラメータとして、 x/(−sin H2 ・cos D1 )=y/(sin H2 ・sin D1 =z/(−cos H2 ) =t となり、両式より、t=tan α/(cos H2 +tan α・
sin H2 ・cos D1 ) が得られる。以上のように座標(x,y,z)は与えら
れる。
Therefore, tan D 4 = RQ / OU = y / ((x 2 + (tan α + z)
2 ) 1/2 −sin α · tan α). Next, the coordinates (x, y, z) of the O point are obtained. The equation of the lower surface of the liquid crystal 3 (upper surface of the second transparent substrate 2) is z + tan α = −tan α · x. The equation of the line segment PO is x / (− sin H 2 · cos D 1 ) = y / (sin H 2 · sin D 1 = z / (− cos H 2 ) = t with t as a parameter. , T = tan α / (cos H 2 + tan α ・
sin H 2 · cos D 1 ) is obtained. The coordinates (x, y, z) are given as described above.

【0020】また、tan D4 は、図5より、符号を考慮
して tan D4 =y・cos α/(−x−sin2α) ように書くことができる。 (4)第2透明基板2以下の光路 第2透明基板2内への出射角H4 は、 nL ・sin H3 =nK2・sin H4 と表される。
Further, tan D 4, from 5, taking into account the sign tan D 4 = y · cos α / (- x-sin 2 α) can be written as. (4) Optical Path Below Second Transparent Substrate 2 The exit angle H 4 into the second transparent substrate 2 is expressed as n L · sin H 3 = n K2 · sin H 4 .

【0021】第2透明基板2内への入射点を原点とする
と、出射点の座標(x,y,z)は、第1透明基板1内
の光路の場合と同様に、(−T2 ・tan H4 ・cos
4 ,T2 ・tan H4 ・sin D4 ,−T2 )となる。こ
の座標は、図4のO点を原点とする座標系に対し、αだ
け回転しているので、O点を通るy軸のまわりで座標系
の変換を図7を参考に行う。
Assuming that the point of incidence on the second transparent substrate 2 is the origin, the coordinates (x, y, z) of the point of emission are (-T 2 ·. tan H 4・ cos
D 4 , T 2 · tan H 4 · sin D 4 , −T 2 ). Since these coordinates are rotated by α with respect to the coordinate system having the origin at the point O in FIG. 4, the coordinate system is converted around the y-axis passing through the point O with reference to FIG. 7.

【0022】弦の長さrは、r=(x2 +z2 1/2
偏向角θは、θ=tan -1(z/x)、これらより出射点
の座標(x,y,z)は、 ((x2 +z21/2 ・cos (θ−α),y,(x2
21/2 ・sin (θ−α))となる。
The chord length r is r = (x 2 + z 2 ) 1/2 ,
The deflection angle θ is θ = tan −1 (z / x), and from these, the coordinates (x, y, z) of the emission point are ((x 2 + z 2 ) 1/2 · cos (θ−α), y , (X 2 +
z 2 ) 1/2 · sin (θ-α)).

【0023】第2透明基板2内以降では、偏向角はD4
で変わらない。さらに第2透明基板2から空気中への射
出角H5 は、 sin H5 =nK2・sin H4 と表される。以上で、入射角H0 、偏向角D1 で頂角α
の液晶プリズムに入射した光が出射される位置及び出射
角H5 、偏向角D4 が求められた。 (5)入射光からみた出射光の方向 入射光からみ出射光の方向を求めるために、入射光に相
当するPO軸を新しいX軸とし、図8の様に座標系の変
換を行う。
From the inside of the second transparent substrate 2, the deflection angle is D 4
It does not change. Further, the exit angle H 5 from the second transparent substrate 2 into the air is expressed as sin H 5 = n K2 · sin H 4 . Thus, the incident angle H 0 , the deflection angle D 1 and the apex angle α
The exit position H 5 , the exit angle H 5 and the deflection angle D 4 of the liquid crystal prism were determined. (5) Direction of outgoing light viewed from incident light In order to find the direction of outgoing light viewed from incident light, the PO axis corresponding to the incoming light is set as a new X axis, and the coordinate system is converted as shown in FIG.

【0024】ここでY軸は、x−y平面内にとる。X軸
であるベクトルPOのx−y−z座標系での単位ベクト
ルは、(sin H0 ・cos D1 ,−sin H0 ・sin D1
cos H0 )、同様にY軸、Z軸の単位ベクトルは、それ
ぞれ(sin D1 ,cos D1 ,0)、(−cos H0 ・cos
1 ,cos H0 ・sin D1 ,sin H0 )のように書け
る。
Here, the Y axis is in the xy plane. The unit vector in the x-y-z coordinate system of the vector PO that is the X axis is (sin H 0 · cos D 1 , −sin H 0 · sin D 1 ,
cos H 0 ), similarly, the Y-axis and Z-axis unit vectors are (sin D 1 , cos D 1 , 0) and (−cos H 0 · cos, respectively).
D 1 , cos H 0 · sin D 1 , sin H 0 ).

【0025】ところで、x−z平面でαだけ傾いた第2
透明基板2面にX* 軸、これに垂直にZ* 軸をとる。こ
れを図9に示した。X* 、y、Z* 軸の単位ベクトルを
x−y−z平面で表すと、 X* 軸の単位ベクトルは、(cos α,0,−sin α)、 y軸の単位ベクトルは、(0,1 ,0) Z* 軸の単位ベクトルは、(sin α,0,cos α) のようになる。
By the way, the second tilted by α in the xz plane
X * axis transparent substrate 2 side, taking Z * axis perpendicular thereto. This is shown in FIG. When the unit vector of the X * , y, Z * axes is expressed in the xyz plane, the unit vector of the X * axis is (cos α, 0, −sin α), and the unit vector of the y axis is (0 , 1, 0) The unit vector of the Z * axis becomes (sin α, 0, cos α).

【0026】また、図10にX* −Z* 平面での出射位
置関係を示した。液晶プリズムからの射出光の単位ベク
トル(X* 、y、Z* )は、(−sin H5 ・cos D4
sin H5 ・sin D4 ,−cos H5 )である。従って、図
9からの関係を考慮して射出光の単位ベクトル(X*
y、Z* )は、x−y−z系座標で表すと、 x=X* ・cos α+Z* ・sin α y=sin H5 ・sin D4 z=−X* ・sin α+Z* ・cos α となる。
Further, FIG. 10 shows the emission position relationship on the X * -Z * plane. The unit vector (X * , y, Z * ) of the light emitted from the liquid crystal prism is (−sin H 5 · cos D 4 ,
sin H 5 · sin D 4 , −cos H 5 ). Therefore, in consideration of the relationship from FIG. 9, the unit vector (X * ,
y, Z * ) is expressed in x-y-z system coordinates as follows: x = X * · cos α + Z * · sin α y = sin H 5 · sin D 4 z = −X * · sin α + Z * · cos α Becomes

【0027】同様に、図8の関係より、射出光のx−y
−z系座標を狙いのX−Y−Z系座標で表すと、 X=x・sin H0 ・cos D1 −y・sin H0 ・sin D1 +z・cos H0 Y=x・sin D1 +y・cos D1 Z=−x・cos H0 ・cos D1 +y・cos H0 ・sin D1 +z・sin H0 となる。
Similarly, from the relationship shown in FIG.
When the −z system coordinate is expressed by the aimed XYZ system coordinate, X = x · sin H 0 · cos D 1 −y · sin H 0 · sin D 1 + z · cos H 0 Y = x · sin D a 1 + y · cos D 1 Z = -x · cos H 0 · cos D 1 + y · cos H 0 · sin D 1 + z · sin H 0.

【0028】従って、例えば液晶プリズム前方10
(m)のY−Z平面での光線の軌跡(Y’,Z’)は、 Y’=−1 0000・Y/X Z’=−1 0000・Z/X となる。2.レーザの捩り角度の入射偏向角依存性を以
下に示す。
Therefore, for example, the front 10 of the liquid crystal prism
The locus (Y ′, Z ′) of the ray on the YZ plane of (m) is Y ′ = − 10000 · Y / X Z ′ = − 10000 · Z / X. 2. The dependence of the laser twist angle on the incident deflection angle is shown below.

【0029】入射光としてレーザを採用し、材料物性
値、入射角を与える時、液晶の屈折率及び入射偏向角を
変えて液晶プリズム前方10(m)のY−Z平面での光
線の軌跡を得る。座標軸の取り方は前述の通りとする。
図11〜14に楔の頂角が10(°)で、入射角をそれ
ぞれ30(°)、50(°)、60(°)、70(°)
とした時の結果を示す。同様に、図15〜18にそれぞ
れ頂角が30(°)で、入射角をそれぞれ0(°)、1
0(°)、30(°)、50(°)とした時の結果を示
す。図中、パラメータに屈折率と偏向角を取って示し
た。
When a laser is used as the incident light and the physical properties of the material and the incident angle are given, the trajectory of the light beam on the YZ plane in front of the liquid crystal prism 10 (m) is changed by changing the refractive index of the liquid crystal and the incident deflection angle. obtain. The method of taking coordinate axes is as described above.
In FIGS. 11 to 14, the wedge apex angle is 10 (°) and the incident angles are 30 (°), 50 (°), 60 (°), and 70 (°), respectively.
The results are shown below. Similarly, in FIGS. 15 to 18, the apex angle is 30 (°) and the incident angles are 0 (°) and 1 respectively.
The results when 0 (°), 30 (°), and 50 (°) are shown. In the figure, the refractive index and the deflection angle are shown as parameters.

【0030】ここで、第1、2透明基板1、2の屈折率
はガラス板を想定して1.520、液晶3の屈折率は
1.1〜2.0まで変えた。また、10(m)前方のス
クリーンに中心点Oから5又は10(°)毎に等角度線
がある。したがって、紙面垂直にO点方向に入った光線
が、10(m)前方のスクリーン上に描く軌跡を示した
ことになる(中心点Oは、液晶の屈折率1.0の時のス
クリーン上の軌跡である。)。
Here, the refractive index of the first and second transparent substrates 1 and 2 was changed to 1.520 on the assumption of glass plates, and the refractive index of the liquid crystal 3 was changed to 1.1 to 2.0. Further, there is an equiangular line every 5 or 10 (°) from the center point O on the screen 10 (m) ahead. Therefore, the light ray entering the O point direction perpendicular to the paper surface shows a locus drawn on the screen 10 (m) forward (the center point O is on the screen when the liquid crystal has a refractive index of 1.0). It is a locus.)

【0031】図11、図15が全般的な軌跡の特徴を示
している。即ち、図15の入射角0(°)の時は(第1
透明基板1面に垂直に入射)、偏向角を変えても座標系
が回転するのみで、軌跡はO点を中心に放射状に描か
れ、屈折率の軌跡は円を描く。また、図12では、光線
を傾けて入射させた場合を示している。偏向角0(°)
では、入射光方向から見た座標系でY軸方向に液晶プリ
ズムの頂辺を置くことになる。ここで、偏向角を増す
と、入射光方向から見た座標系では液晶プリズムを偏向
角分だけ反時計まわりに回転し、設置した位置関係にな
る。偏向角が0(°)から132(°)へ増大するにつ
れ、屈折率2.0の軌跡は、中心点Oからの角度で単調
に増大している。さらに、132(°)を超えて増大す
ると、単調に減少し、最大偏向角を与える屈折率は2.
0から減少している。この減少する偏向角範囲では、液
晶プリズムからの出射面である第2透明基板2と空気の
界面(第4界面)とで光線が全反射している。図13、
14により、入射角が増すにつれ全反射を起こす偏向角
が低下し、図15〜18より、頂角が増すにつれ全反射
を起こす偏向角が低下することがわかる。
11 and 15 show the characteristics of the general locus. That is, when the incident angle is 0 (°) in FIG.
Even if the deflection angle is changed, the coordinate system only rotates, the locus is drawn radially around the point O, and the locus of the refractive index is a circle. Further, FIG. 12 shows a case where the light beam is incident while being inclined. Deflection angle 0 (°)
Then, the top side of the liquid crystal prism is placed in the Y-axis direction in the coordinate system viewed from the incident light direction. Here, when the deflection angle is increased, the liquid crystal prism is rotated counterclockwise by the deflection angle in the coordinate system viewed from the incident light direction, and the installed positional relationship is achieved. As the deflection angle increases from 0 (°) to 132 (°), the locus with a refractive index of 2.0 monotonically increases with the angle from the center point O. Further, when it exceeds 132 (°), it decreases monotonically and the refractive index giving the maximum deflection angle is 2.
It is decreasing from 0. In this decreasing deflection angle range, light rays are totally reflected at the interface (fourth interface) between the second transparent substrate 2 which is the exit surface from the liquid crystal prism and the air. 13,
14 shows that the deflection angle causing total reflection decreases as the incident angle increases, and FIGS. 15 to 18 show that the deflection angle causing total reflection decreases as the apex angle increases.

【0032】したがって、本発明の光偏向器では、入射
光を入射面に単に垂直に入射した場合よりも大きな偏向
角が得られることがわかる。
Therefore, it is understood that the optical deflector of the present invention can obtain a larger deflection angle than that when the incident light is simply incident perpendicularly on the incident surface.

【0033】[0033]

【発明の効果】以上詳述したように、本発明の光偏向器
では、特許請求の範囲記載の構成を採用しているため、
従来よりも拡大した偏向角を得ることができる。したが
って、この光偏向器を利用すれば、計算機の表示部等各
種ディスプレイ、レーザプリンタ、レーザレーダ等への
利用価値を上げることができる。
As described above in detail, since the optical deflector of the present invention has the structure described in the claims,
It is possible to obtain a deflection angle that is wider than in the past. Therefore, by using this optical deflector, it is possible to increase the utility value for various displays such as a display unit of a computer, a laser printer, a laser radar and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の光偏向器の一部に係り、楔型液晶プリ
ズムの斜視図である。
FIG. 1 is a perspective view of a wedge-shaped liquid crystal prism, which is related to a part of an optical deflector according to an embodiment.

【図2】実施例の光偏向器の一部に係り、位置関係を示
す説明図である。
FIG. 2 is an explanatory diagram showing a positional relationship of a part of the optical deflector of the embodiment.

【図3】実施例の光偏向器の一部に係り、位置関係を示
す説明図である。
FIG. 3 is an explanatory diagram showing the positional relationship of a part of the optical deflector of the embodiment.

【図4】実施例の光偏向器の一部に係り、位置関係を示
す説明図である。
FIG. 4 is an explanatory diagram showing the positional relationship of a part of the optical deflector of the embodiment.

【図5】実施例の光偏向器の一部に係り、位置関係を示
す説明図である。
FIG. 5 is an explanatory diagram showing the positional relationship of a part of the optical deflector of the embodiment.

【図6】実施例の光偏向器の一部に係り、位置関係を示
す説明図である。
FIG. 6 is an explanatory diagram showing a positional relationship of a part of the optical deflector of the embodiment.

【図7】実施例の光偏向器の一部に係り、座標系の変換
のための説明図である。
FIG. 7 is an explanatory diagram relating to a part of the optical deflector of the embodiment and for converting the coordinate system.

【図8】実施例の光偏向器の一部に係り、座標系の変換
のための説明図である。
FIG. 8 is an explanatory diagram relating to a part of the optical deflector of the embodiment and for converting the coordinate system.

【図9】実施例の光偏向器の一部に係り、座標系の変換
のための説明図である。
FIG. 9 is an explanatory diagram relating to a part of the optical deflector of the embodiment and for converting the coordinate system.

【図10】実施例の光偏向器の一部に係り、位置関係を
示す説明図である。
FIG. 10 is an explanatory diagram showing the positional relationship of a part of the optical deflector of the embodiment.

【図11】実施例の光偏向器に係り、頂角10°の液晶
プリズムを採用し、入射角30°で入射光を入射させた
場合の液晶プリズム前方での光線の軌跡を示す投影図で
ある。
FIG. 11 is a projection view showing a trajectory of light rays in front of the liquid crystal prism when a liquid crystal prism having an apex angle of 10 ° is adopted and incident light is made incident at an incident angle of 30 ° according to the optical deflector of the embodiment. is there.

【図12】実施例の光偏向器に係り、頂角10°の液晶
プリズムを採用し、入射角50°で入射光を入射させた
場合の液晶プリズム前方での光線の軌跡を示す投影図で
ある。
FIG. 12 is a projection view showing a trajectory of light rays in front of the liquid crystal prism when a liquid crystal prism having an apex angle of 10 ° is adopted and incident light is incident at an incident angle of 50 ° according to the optical deflector of the embodiment. is there.

【図13】実施例の光偏向器に係り、頂角10°の液晶
プリズムを採用し、入射角60°で入射光を入射させた
場合の液晶プリズム前方での光線の軌跡を示す投影図で
ある。
FIG. 13 is a projection view showing a trajectory of light rays in front of the liquid crystal prism when a liquid crystal prism having an apex angle of 10 ° is adopted and incident light is made incident at an incident angle of 60 ° according to the optical deflector of the embodiment. is there.

【図14】実施例の光偏向器に係り、頂角10°の液晶
プリズムを採用し、入射角70°で入射光を入射させた
場合の液晶プリズム前方での光線の軌跡を示す投影図で
ある。
FIG. 14 is a projection view showing a trajectory of a light beam in front of the liquid crystal prism when a liquid crystal prism having an apex angle of 10 ° is adopted and incident light is incident at an incident angle of 70 ° according to the optical deflector of the embodiment. is there.

【図15】実施例の光偏向器に係り、頂角30°の液晶
プリズムを採用し、入射角0°で入射光を入射させた場
合の液晶プリズム前方での光線の軌跡を示す投影図であ
る。
FIG. 15 is a projection view showing a trajectory of a light beam in front of the liquid crystal prism when a liquid crystal prism having an apex angle of 30 ° is adopted and incident light is incident at an incident angle of 0 ° according to the optical deflector of the embodiment. is there.

【図16】実施例の光偏向器に係り、頂角30°の液晶
プリズムを採用し、入射角10°で入射光を入射させた
場合の液晶プリズム前方での光線の軌跡を示す投影図で
ある。
FIG. 16 is a projection view showing a trajectory of light rays in front of a liquid crystal prism when a liquid crystal prism having an apex angle of 30 ° is adopted and incident light is incident at an incident angle of 10 ° according to the optical deflector of the embodiment. is there.

【図17】実施例の光偏向器に係り、頂角30°の液晶
プリズムを採用し、入射角30°で入射光を入射させた
場合の液晶プリズム前方での光線の軌跡を示す投影図で
ある。
FIG. 17 is a projection view showing a trajectory of light rays in front of the liquid crystal prism when a liquid crystal prism having an apex angle of 30 ° is adopted and incident light is incident at an incident angle of 30 ° according to the optical deflector of the embodiment. is there.

【図18】実施例の光偏向器に係り、頂角30°の液晶
プリズムを採用し、入射角50°で入射光を入射させた
場合の液晶プリズム前方での光線の軌跡を示す投影図で
ある。
FIG. 18 is a projection view showing a trajectory of light rays in front of a liquid crystal prism when a liquid crystal prism having an apex angle of 30 ° is adopted and incident light is made incident at an incident angle of 50 ° according to the optical deflector of the embodiment. is there.

【図19】従来の光偏向器の一部に係り、楔型液晶プリ
ズムの断面図である。
FIG. 19 is a cross-sectional view of a wedge-shaped liquid crystal prism relating to a part of a conventional optical deflector.

【符号の説明】[Explanation of symbols]

1…第1透明基板 2…第2透明基板 3…
液晶 PO…入射光が第1透明基板の入射面に入射される方向 α…頂角 H0 …入射角
1 ... 1st transparent substrate 2 ... 2nd transparent substrate 3 ...
Liquid crystal PO ... Direction in which incident light is incident on the incident surface of the first transparent substrate α ... Apex angle H 0 ... Incident angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】偏光板を透過した入射光が入射面に一方向
から入射され、出射光を出射面から該一方向に対して偏
向した方向に出射させる楔型又はフレネル型液晶プリズ
ムを有する光偏向器であって、該入射面の法線は該一方
向と一致していないことを特徴とする光偏向器。
1. Light having a wedge-type or Fresnel-type liquid crystal prism in which incident light transmitted through a polarizing plate is incident on an incident surface from one direction, and emitted light is emitted from the emission surface in a direction deflected with respect to the one direction. An optical deflector, wherein the normal line of the incident surface does not coincide with the one direction.
JP34452892A 1992-12-24 1992-12-24 Optical deflector Pending JPH06194695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34452892A JPH06194695A (en) 1992-12-24 1992-12-24 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34452892A JPH06194695A (en) 1992-12-24 1992-12-24 Optical deflector

Publications (1)

Publication Number Publication Date
JPH06194695A true JPH06194695A (en) 1994-07-15

Family

ID=18369979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34452892A Pending JPH06194695A (en) 1992-12-24 1992-12-24 Optical deflector

Country Status (1)

Country Link
JP (1) JPH06194695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038835B2 (en) 2002-05-28 2006-05-02 Ricoh Company, Ltd. Optical deflection device and optical deflection method that control occurrence of alignment defect
US11609476B2 (en) 2018-03-29 2023-03-21 Fujifilm Corporation Light deflection device and optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038835B2 (en) 2002-05-28 2006-05-02 Ricoh Company, Ltd. Optical deflection device and optical deflection method that control occurrence of alignment defect
US7310181B2 (en) 2002-05-28 2007-12-18 Ricoh Company, Ltd. Optical deflection device and optical deflection method that control occurrence of alignment defect
US11609476B2 (en) 2018-03-29 2023-03-21 Fujifilm Corporation Light deflection device and optical device

Similar Documents

Publication Publication Date Title
JP2643713B2 (en) LCD projection display
US20170248786A1 (en) Head-up display and vehicle
JP4182261B2 (en) Brightness-enhanced film with soft cutoff
US20040109663A1 (en) Brightness enhancement film with improved view angle
JP3106050B2 (en) Brightness improvement sheet for surface light source
CN113934004B (en) Image generation device, head-up display and vehicle
EP0177174B1 (en) Rotating polygon scanner with double reflection from each facet
WO2021004301A1 (en) Projection screen
US11422371B2 (en) Augmented reality (AR) display
KR20210143385A (en) Floating image display device and display module of vehicle including the same
US7866868B2 (en) Optical film and backlight module using the same
JPH06194695A (en) Optical deflector
JP3106055B2 (en) Brightness improvement sheet for surface light source
CA1247726A (en) Alignment layer orientation in raster scan thermally addressed smectic liquid crystal displays
WO2023097762A1 (en) Optical system and head-mounted display device
JPS59147316A (en) Photoscanner
JPS60189730A (en) Liquid crystal display device
US20240210689A1 (en) Image generator, head-up display and vehicle
JPH04263202A (en) Reflective sheet
WO2023286113A1 (en) Planar light source device and liquid crystal display device
EP4001987A1 (en) Imaging system and projection device
JP6939371B2 (en) Surface light source device and display device
KR100359877B1 (en) A Light Collimating Unit for Liquid Crystal Display Devices
JP6939372B2 (en) Surface light source device and display device
JPH1039286A (en) Liquid crystal display device