JPH06194296A - Measuring method for ozone bubble diameter of ozone contact tank - Google Patents

Measuring method for ozone bubble diameter of ozone contact tank

Info

Publication number
JPH06194296A
JPH06194296A JP4345759A JP34575992A JPH06194296A JP H06194296 A JPH06194296 A JP H06194296A JP 4345759 A JP4345759 A JP 4345759A JP 34575992 A JP34575992 A JP 34575992A JP H06194296 A JPH06194296 A JP H06194296A
Authority
JP
Japan
Prior art keywords
ozone
contact tank
bubbles
gas
bubble diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4345759A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimazaki
弘志 島崎
Shotaro Urushibara
正太郎 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4345759A priority Critical patent/JPH06194296A/en
Publication of JPH06194296A publication Critical patent/JPH06194296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To provide a method for accurately measuring ozone bubble diameter which gives a guidance in evaluation of ozone absorption characteristics of an ozone contact tank and design of the tank. CONSTITUTION:The method for measuring ozone bubble diameter comprises the steps of vertically movably disposing an underwater camera 16 in an ozone contact tank 11 while diffusing ozone gas from a gas diffusing tube 14 disposed in an inner bottom intaking raw water 12 to the tank 11 to photograph bubbles 21 of the gas in several depth points, and continuously outputting various feature quantities 20 of the bubbles 21 by image measuring and calculating means 19 basing on a photographed image signal. As the feature quantity of the bubble 21 of the gas, number of the bubbles (number/l) and geometrical mean bubble diameter (mm) are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は浄水場における凝集沈澱
工程を管理するためのフロック計測方法を利用して、オ
ゾン接触槽の設計上での指針となるオゾン気泡径を正確
に測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately measuring the diameter of ozone bubbles, which is a guideline in designing an ozone contact tank, by using a floc measuring method for controlling the coagulation-sedimentation process in a water purification plant. It is a thing.

【0002】[0002]

【従来の技術】近時高度浄水工程の一環としてオゾン接
触槽を利用した原水に対するオゾン処理が注目され、実
用化されている。このオゾン接触塔でのオゾン吸収特性
を評価する際に、該オゾン接触塔が散気式気泡塔のよう
に気泡の表面が気液接触面であると考えられる場合に
は、この気泡径を測定することがオゾン接触槽の設計及
び操作因子として極めて重要である。
2. Description of the Related Art Recently, ozone treatment of raw water using an ozone contact tank has been noticed and put into practical use as a part of advanced water purification process. When evaluating the ozone absorption characteristics in this ozone contact tower, if the surface of the bubbles is considered to be a gas-liquid contact surface, as in the diffuser bubble tower, measure the bubble diameter. It is extremely important to design and operate the ozone contact tank.

【0003】通常オゾン吸収特性の評価は総括オゾン移
動容量係数KLaを用いて論議される。このKLaと
は、総括オゾン移動係数KLと単位接触槽当たりの気液
接触面積aとの積で表わされる。上記総括オゾン移動係
数KLは、操作条件に影響を受けずに比較的一定の値を
示す物理量である。従って単位接触槽当たりの気液接触
面積aが測定できれば、総括オゾン移動容量係数KLa
を演算で求めることが出来る。
The evaluation of ozone absorption characteristics is usually discussed using the overall ozone transfer capacity coefficient KLa. This KLa is represented by the product of the overall ozone transfer coefficient KL and the gas-liquid contact area a per unit contact tank. The overall ozone transfer coefficient KL is a physical quantity that exhibits a relatively constant value without being affected by operating conditions. Therefore, if the gas-liquid contact area a per unit contact tank can be measured, the overall ozone transfer capacity coefficient KLa
Can be calculated.

【0004】一方、通常の浄水場では、河川,湖沼から
取水した原水をフロック形成池で凝集剤(ポリ塩化カル
シウム,硫酸バント等)を添加して、懸濁物質成分(粘
土,藻類等)をフロックに凝集し、次段の沈澱池で除去
する方法が採られており、原水濁度と凝集剤注入率また
はALT比(AL3+/濁度)との制御関係式を求めてフ
ロック形成制御を行っている。このようなフロック形成
制御はフィードフォワード制御系であるため、原水の濁
度の急激な変化などに対応しきれず、次段の濾過池が高
負荷になる惧れがあるので、フィードバック制御系を組
み込む態様も構築されている。
On the other hand, in an ordinary water treatment plant, raw water taken from rivers and lakes is added with a flocculant (polycalcium chloride, vantosulfate, etc.) in a floc pond to add suspended substance components (clay, algae, etc.). The method of flocculation and removal in the next settling basin is adopted. Floc formation control is performed by obtaining the control relational expression between raw water turbidity and coagulant injection rate or ALT ratio (AL 3+ / turbidity) It is carried out. Since such floc formation control is a feed-forward control system, it cannot handle sudden changes in the turbidity of raw water, and there is a risk that the next-stage filtration tank will be overloaded, so a feedback control system will be incorporated. Aspects have also been constructed.

【0005】上記に関して本出願人が先に提案した特願
平1−193629号には、図2に示した迂流式フロッ
ク計測装置例が開示されている。即ち、原水を着水井1
に取水し、混和池2にて凝集剤を注入する。そして迂流
式フロック形成池3において原水中の濁質成分をフロッ
クに凝集させる。その後に沈澱池4にてフロックを沈澱
させ、上澄液を図外のろ過池へ放流する。前記着水井1
には原水濁度を計測する濁度計5が付設されており、沈
澱池4には流出濁度を計測する濁度計6が付設されてい
る。この濁度計5,6によって計測された値は凝集剤注
入コントローラ7に入力されている。
Regarding the above, Japanese Patent Application No. 1-193629 previously proposed by the present applicant discloses an example of the bypass type floc measuring device shown in FIG. That is, the raw water reaches the water well 1
The water is taken in and the coagulant is injected in the mixing pond 2. Then, the turbidity components in the raw water are aggregated into flocs in the bypass type floc formation pond 3. After that, flocs are settled in the settling tank 4, and the supernatant is discharged to a filter tank not shown. The landing well 1
Is attached with a turbidimeter 5 for measuring raw water turbidity, and the sedimentation basin 4 is attached with a turbidimeter 6 for measuring runoff turbidity. The values measured by the turbidimeters 5 and 6 are input to the coagulant injection controller 7.

【0006】そしてフロック形成池3の最後段には、処
理水を撮影するための水中カメラ8が配備されており、
フロック計測装置9により水中カメラ8が撮影した画像
を処理してフロックを識別し、統計処理を行ってフロッ
クについての各種のデータを作成し、このデータを凝集
剤注入コントローラ7に出力する。
At the last stage of the flock formation pond 3, an underwater camera 8 for photographing the treated water is provided.
An image captured by the underwater camera 8 is processed by the floc measuring device 9 to identify the floc, statistical processing is performed to create various data regarding the floc, and this data is output to the coagulant injection controller 7.

【0007】凝集剤注入コントローラ7は、前記濁度計
5,6によって計測された原水及び流出水の濁度と、フ
ロック計測装置9から得られるデータに基づいて凝集剤
の注入量を算出し、混和池2への凝集剤の注入を制御す
る。この例では、フロックについての特徴量として、単
位容積当たりのフロック個数、フロック形成池後段の代
表フロックの平均粒径、単位容積当たりのフロック容量
及び単位容量当たりの微フロック容量を用いてこれを基
本的な指標とし、更に被処理水のpHとか取水量,返送
水量等の水質・運転情報を加味して混和池への凝集剤の
注入率制御を実施することが特徴となっている。
The coagulant injection controller 7 calculates the coagulant injection amount based on the turbidity of the raw water and the outflow water measured by the turbidimeters 5 and 6 and the data obtained from the floc measuring device 9, The injection of the coagulant into the mixing pond 2 is controlled. In this example, the number of flocs per unit volume, the average particle size of the representative flocs in the latter stage of the flocculation pond, the floc capacity per unit volume, and the fine floc capacity per unit volume are used as the characteristic quantities for flocs. It is characterized by controlling the injection rate of the coagulant into the mixing pond by taking into consideration the pH of the water to be treated, water quality, and operational information such as the amount of returned water.

【0008】[0008]

【発明が解決しようとする課題】上記したようにオゾン
接触槽のオゾン吸収特性の評価と、該オゾン接触槽の設
計及び操作因子としてオゾン気泡径を測定する手段が有
効であるが、上記した総括オゾン移動係数KLの値は、
文献値と実測値での計算結果に大きな差が生じる場合が
多い。その原因として、装置構造とか気泡径の形状測定
が概略値である点が挙げられる。
As described above, it is effective to evaluate the ozone absorption characteristics of the ozone contact tank and to measure the ozone bubble diameter as a designing and operating factor of the ozone contact tank. The value of the ozone transfer coefficient KL is
In many cases, there is a large difference between the calculated values of the literature values and the measured values. The reason is that the device structure and the bubble diameter shape measurement are approximate values.

【0009】一般に知られている気泡径の測定方法は、
接触塔の外部から接写カメラとかビデオカメラによって
気泡を測定して、得られた写真から径長を求める手段が
採用されている。しかしこの方法では光の屈折率とかカ
メラの焦点深度等の因子により、気泡径を正確に計測す
ることができないという問題点があった。
The generally known measuring method of bubble diameter is as follows:
A means for measuring bubbles from the outside of the contact tower with a close-up camera or a video camera and obtaining the diameter length from the obtained photograph is adopted. However, this method has a problem that the bubble diameter cannot be accurately measured due to factors such as the refractive index of light and the depth of focus of the camera.

【0010】そこで本発明はこのような従来の気泡径の
測定方法が有している課題を解消して、オゾン吸収特性
の評価とオゾン接触槽の設計上での指針となるオゾン気
泡径を正確に測定する方法を提供することを目的とする
ものである。
Therefore, the present invention solves the problems of the conventional bubble diameter measuring method, and accurately measures the ozone bubble diameter, which is a guideline for evaluation of ozone absorption characteristics and design of an ozone contact tank. The purpose is to provide a measuring method.

【0011】[0011]

【課題を解決するための手段】本発明は上記の目的を達
成するために、原水をオゾン接触槽に取水して、該オゾ
ン接触槽の内方底部に配置された散気管からオゾンガス
を放散処理する一方、上記オゾン接触槽内に水中カメラ
を上下移動可能に配備して、数点の深度でオゾンガスの
気泡を撮影し、撮影された画像信号に基づいて画像計測
演算手段により、気泡についての各種特徴量を連続的に
出力するようにしたオゾン接触槽のオゾン気泡径測定方
法を提供する。前記オゾンガスの気泡についての特徴量
として、気泡個数(個数/l)と幾何平均気泡径(m
m)を用いる。
In order to achieve the above object, the present invention takes raw water into an ozone contact tank and diffuses ozone gas from an air diffuser arranged at the inner bottom of the ozone contact tank. On the other hand, an underwater camera is arranged in the ozone contact tank so as to be movable up and down, and bubbles of ozone gas are photographed at several depths, and various kinds of bubbles are photographed by the image measurement calculation means based on the photographed image signals. Provided is a method for measuring an ozone bubble diameter of an ozone contact tank, which is capable of continuously outputting a characteristic amount. The features of the ozone gas bubbles are the number of bubbles (number / l) and the geometric mean bubble diameter (m
m) is used.

【0012】[0012]

【作用】かかるオゾン気泡径測定方法によれば、散気管
から放散されるオゾンガスの気泡を撮影する際に、水中
カメラをオゾン接触槽の最深測定位置に下げて、散気管
から放散された直後の気泡を撮影し、次に水中カメラを
所定距離だけ上方に引き上げ、次段の測定深度で停止さ
せて再び気泡を撮影する。この操作を繰り返すことによ
って数点の深度でオゾンガスの気泡が撮影され、この画
像信号が画像計測演算手段に送り込まれ、画像解析技術
を駆使し統計処理を行って気泡についての各種特徴量が
連続的に出力される。
According to such an ozone bubble diameter measuring method, when photographing the bubbles of ozone gas emitted from the diffuser, the underwater camera is lowered to the deepest measurement position of the ozone contact tank, and immediately after being emitted from the diffuser. The bubble is photographed, then the underwater camera is pulled up by a predetermined distance, stopped at the next measurement depth, and the bubble is photographed again. By repeating this operation, bubbles of ozone gas are photographed at several depths, and this image signal is sent to the image measurement calculation means, and statistical processing is performed by making full use of image analysis technology to continuously obtain various feature amounts of bubbles. Is output to.

【0013】得られた特徴量を管理指標としてオゾン接
触槽のオゾン吸収特性の評価が行われ、且つ該オゾン接
触槽の設計及び操作因子として用いることが出来る。
The obtained characteristic amount can be used as a management index to evaluate the ozone absorption characteristics of the ozone contact tank, and can be used as a factor for designing and operating the ozone contact tank.

【0014】[0014]

【実施例】以下、図1に基づいて本発明にかかるオゾン
接触槽のオゾン気泡径測定方法の一実施例を説明する。
即ち、本実施例では前記図2に示したフロック計測装置
の測定原理をオゾン接触槽に適用して、オゾンガスの気
泡径を測定することが特徴となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the ozone bubble diameter measuring method for an ozone contact tank according to the present invention will be described below with reference to FIG.
That is, the present embodiment is characterized in that the measurement principle of the flock measuring device shown in FIG. 2 is applied to the ozone contact tank to measure the bubble diameter of ozone gas.

【0015】図1に示す11はオゾン接触槽であり、こ
のオゾン接触槽内に原水12が取水され、処理水13と
して排水される。このオゾン接触槽11の内方底部に
は、オゾン用の散気管14が配置されていて、外部に配
備したオゾン発生機15から得られるオゾンガスが散気
管14に供給される。
Reference numeral 11 shown in FIG. 1 is an ozone contact tank, and raw water 12 is taken into this ozone contact tank and discharged as treated water 13. An ozone diffusing tube 14 is arranged at the inner bottom of the ozone contact tank 11, and ozone gas obtained from an ozone generator 15 provided outside is supplied to the diffusing tube 14.

【0016】16はオゾン接触槽11内に設置された洗
浄機構付の水中カメラであり、この水中カメラ16に
は、照明用の光源ボックス17が連結されている。上記
水中カメラ16は、矢印Aで示したようにオゾン接触槽
11の内方で上下移動自在となっている。又、オゾンガ
スの気泡を完全静止画像として捕らえるために電子シャ
ッターモードで完全インターレス方式のカメラを使用す
る。
Reference numeral 16 denotes an underwater camera with a cleaning mechanism installed in the ozone contact tank 11, and the underwater camera 16 is connected to a light source box 17 for illumination. The underwater camera 16 is vertically movable inside the ozone contact tank 11 as shown by an arrow A. Also, in order to capture the bubbles of ozone gas as a completely still image, a completely interlaced camera is used in the electronic shutter mode.

【0017】18は中継制御盤、19は画像計測演算手
段であり、この画像計測演算手段19は水中カメラ16
によって撮影された画像を演算処理してオゾン気泡径に
関する特徴量20を出力する。
Reference numeral 18 is a relay control panel, and 19 is an image measuring / calculating means. The image measuring / calculating means 19 is an underwater camera 16.
The image captured by is subjected to arithmetic processing and the feature amount 20 regarding the ozone bubble diameter is output.

【0018】かかる構成による本実施例の基本的動作は
以下の通りである。先ず、原水12をオゾン接触槽11
内に取水し、次にオゾン発生機15を起動して散気管1
4からオゾンガスの気泡21を原水中に放散する。
The basic operation of this embodiment having such a configuration is as follows. First, the raw water 12 is added to the ozone contact tank 11
Water is taken in, and then the ozone generator 15 is activated to start the air diffuser 1
Bubbles 21 of ozone gas are diffused from 4 into the raw water.

【0019】この気泡21を撮影するに際して、先ず水
中カメラ16をオゾン接触槽11の最深測定位置まで下
げて、光源ボックス17による照明下で散気管14から
放散された直後の気泡21を撮影する。次に水中カメラ
16を所定距離だけ上方に引き上げ、次段の測定深度で
停止させて再び気泡21を撮影する。
When photographing the bubble 21, first, the underwater camera 16 is lowered to the deepest measurement position of the ozone contact tank 11 and the bubble 21 immediately after being diffused from the air diffuser 14 under the illumination of the light source box 17 is photographed. Next, the underwater camera 16 is pulled upward by a predetermined distance, stopped at the next measurement depth, and the bubble 21 is photographed again.

【0020】以後同様な操作を繰り返して、数点の深度
で気泡21を撮影する。撮影された画像信号は中継制御
盤18を経由して画像計測演算手段19に送り込まれ
る。この画像計測演算手段19は、詳細は後述するよう
に得られた気泡21の画像から画像解析技術を駆使し統
計処理を行って気泡21についての各種特徴量を連続的
に算出する。尚、気泡21についての特徴量の1例とし
て、気泡個数(個数/l)と幾何平均気泡径(mm)を
挙げることができる。
Thereafter, the same operation is repeated to photograph the bubble 21 at several depths. The captured image signal is sent to the image measurement calculation means 19 via the relay control panel 18. The image measurement calculation means 19 continuously calculates various characteristic amounts of the bubble 21 by performing statistical processing using an image analysis technique from an image of the bubble 21 obtained as described later in detail. As an example of the characteristic amount of the bubble 21, the number of bubbles (number / l) and the geometric mean bubble diameter (mm) can be mentioned.

【0021】水中カメラ16をオゾン接触槽11の最深
測定位置から順次上方に引き上げながら数点の深度で気
泡21を撮影する理由は、オゾン接触槽11が深槽であ
る場合に底部近傍での気泡21の径と、中間部及び液面
近傍での気泡21の径の大きさに差異が生じるためであ
る。本実施例では、この差異を補正等の手段によって相
殺することが可能であり、気泡径に関するデータの信頼
性を高めることができる。
The reason why the bubbles 21 are photographed at several depths while sequentially raising the underwater camera 16 from the deepest measurement position of the ozone contact tank 11 is that the bubbles near the bottom of the ozone contact tank 11 are deep. This is because there is a difference between the diameter of the bubble 21 and the size of the bubble 21 in the middle portion and near the liquid surface. In this embodiment, this difference can be offset by means of correction or the like, and the reliability of the data regarding the bubble diameter can be increased.

【0022】気泡21の1回の測定時間は、該気泡21
の特徴量20が安定するまで実施する。例えば10画面
以上の撮影を継続して気泡の特徴量20の出力が安定し
た時点で次段の撮影位置に移行する。
The time required for one measurement of the bubble 21 is
It is carried out until the feature amount 20 of is stable. For example, when shooting of 10 or more screens is continued and the output of the bubble feature amount 20 is stabilized, the shooting position shifts to the next shooting position.

【0023】尚、上記気泡21の径を常時又は定期的に
監視すれば、散気管14に目詰まりとか劣化が生じた場
合に、該気泡21の径が変化するので、直ちにこのよう
な故障要因を検知することが出来る。
If the diameter of the bubble 21 is constantly or regularly monitored, the diameter of the bubble 21 changes when the diffuser pipe 14 is clogged or deteriorates. Can be detected.

【0024】以下に本実施例における理論的根拠を説明
する。前記したようにオゾン接触槽の設計及び操作因子
として、オゾン気泡径を利用する手段が有効であり、特
にオゾン吸収特性の評価は、総括オゾン移動容量係数K
Laを用いて論議される。このKLaとは総括オゾン移
動係数KLと単位接触槽当たりの気液接触面積aとの積
で表わされる。総括オゾン移動係数KLは操作条件に影
響を受けずに比較的一定の値を示す物理量である。
The theoretical basis of this embodiment will be described below. As described above, as a designing and operating factor of the ozone contact tank, a means utilizing the ozone bubble diameter is effective, and in particular, the evaluation of the ozone absorption characteristics is performed by the overall ozone transfer capacity coefficient K.
It will be discussed using La. This KLa is represented by the product of the overall ozone transfer coefficient KL and the gas-liquid contact area a per unit contact tank. The overall ozone transfer coefficient KL is a physical quantity that exhibits a relatively constant value without being affected by operating conditions.

【0025】前記オゾン接触槽11のように散気式気泡
塔の場合には、気泡21の表面が気液接触面であると考
えられ、従って単位接触槽当たりの気液接触面積aは計
算することが出来る。
In the case of the diffuser type bubble column like the ozone contact tank 11, the surface of the bubble 21 is considered to be the gas-liquid contact surface, and therefore the gas-liquid contact area a per unit contact tank is calculated. You can

【0026】気液接触面積aの計算方法は以下の通りで
ある。
The method of calculating the gas-liquid contact area a is as follows.

【0027】a=φ・Sb/Vb ここでφ(ホールドアップ):単位接触容積当たりに占
める気体体積 Sb:1個の気泡の表面積 Vb:1個の気泡の体面積 φ/Vbにより単位接触槽当たりの気泡数を計算して、
これに1個の気泡の表面積を掛けることによって気液接
触面積aを求めることが出来る。
A = φ · Sb / Vb where φ (hold-up): gas volume occupied per unit contact volume Sb: surface area of one bubble Vb: body area of one bubble φ / Vb unit contact tank Calculate the number of bubbles per hit,
The gas-liquid contact area a can be obtained by multiplying this by the surface area of one bubble.

【0028】上記のφ(ホールドアップ)は、オゾンガ
スの送気による液面の上昇率h,即ち、オゾンガス送気
後の液面高さに対する送気前の液面高さの率により、次
式によって求めることが出来る。
The above φ (hold-up) is expressed by the following equation by the rising rate h of the liquid surface due to the air supply of ozone gas, that is, the ratio of the liquid level height before the air supply to the liquid surface height after the ozone gas is sent. Can be obtained by

【0029】φ=h/(1−h) この液面の上昇率hは、オゾン接触槽11の水位におい
て、 h=(L1−L2) ここでL1:オゾンガス送気後の水位高さ、L2:同送
気前の水位高さである。そこでφをL1,L2で表わす
と、 φ=(L1−L2)/L2 となる。
Φ = h / (1−h) The rate of rise of the liquid level, h, at the water level in the ozone contact tank 11 is: h = (L1−L2) where L1: water level height after ozone gas is fed, L2 : It is the height of the water level before the air supply. Therefore, when φ is represented by L1 and L2, φ = (L1−L2) / L2.

【0030】気泡21の形状が球形である場合には、そ
の直径をdとすると、 Vb=(4/3)・π・(d/2)3 Sb=4・π・(d/2)2 で示されるので、 a=(6/d)・φ ここでφ:m2/m3, d:m となる。
When the shape of the bubble 21 is spherical, and its diameter is d, Vb = (4/3) · π · (d / 2) 3 Sb = 4 · π · (d / 2) 2 Therefore, a = (6 / d) · φ, where φ: m 2 / m 3 and d: m.

【0031】そこでオゾンの気泡径を測定して上記φを
求めておけば、KLaの値から総括オゾン移動係数KL
の値を算出することが可能となる。
Therefore, if the bubble diameter of ozone is measured to find the above φ, the overall ozone transfer coefficient KL can be calculated from the value of KLa.
It is possible to calculate the value of.

【0032】以上の説明では総括オゾン移動係数KLと
気液接触面積aについて述べたが、総括オゾン移動容量
係数KLaの値を大きくしてオゾンの水への移動速度を
高くするためには、気液接触面積aの値を大きくするこ
とが効果的であり、そのためにはオゾンガスの送気量を
高めてφの値を大きくするか、散気管14として径の小
さな気泡21を散気することがより効果的となる。
In the above description, the general ozone transfer coefficient KL and the gas-liquid contact area a have been described. However, in order to increase the value of the general ozone transfer capacity coefficient KLa to increase the moving speed of ozone to water, It is effective to increase the value of the liquid contact area a, and for that purpose, the amount of ozone gas fed is increased to increase the value of φ or the air diffuser 14 diffuses the small-diameter bubbles 21. It will be more effective.

【0033】[0033]

【発明の効果】以上説明したように、本発明に係るオゾ
ン接触槽のオゾン気泡径測定方法によれば、水中カメラ
によってオゾン接触槽内の気泡を直接撮影しているた
め、外部から接写カメラとかビデオカメラによって気泡
を測定した場合に比較して、光の屈折率とかカメラの焦
点深度等の基づく不正確な要因が取り除かれて、気泡径
を正確に計測することができるとともに、気泡の撮影時
に水中カメラをオゾン接触槽の最深測定位置から順次上
方に引上げながら数点の深度でオゾンガスの気泡を撮影
しているので、特にオゾン接触槽が深槽である場合に底
部近傍での気泡の径と、中間部及び液面近傍での気泡の
径の大きさに差異があっても、この差異が補正等の手段
によって相殺されて、データの信頼性を高めることがで
きる。
As described above, according to the method for measuring the ozone bubble diameter of the ozone contact tank according to the present invention, since the bubbles in the ozone contact tank are directly photographed by the underwater camera, it is possible to use a close-up camera from the outside. Compared to the case of measuring bubbles with a video camera, inaccurate factors such as the refractive index of light and the depth of focus of the camera are removed, and the bubble diameter can be measured accurately, and at the time of shooting the bubble. Bubbles of ozone gas are taken at several depths while pulling the underwater camera sequentially upward from the deepest measurement position of the ozone contact tank, so when the ozone contact tank is a deep tank, the diameter of the bubbles near the bottom and Even if there is a difference in the size of the bubble diameter in the middle portion and in the vicinity of the liquid surface, this difference is offset by means such as correction, and the reliability of the data can be improved.

【0034】そして画像計測演算手段から得られる気泡
についての特徴量を管理指標としてオゾン接触槽のオゾ
ン吸収特性の評価を行い、且つ該オゾン接触槽の設計及
び操作因子として用いることが出来る。
Then, the ozone absorption characteristics of the ozone contact tank can be evaluated by using the characteristic amount of the bubbles obtained from the image measuring and calculating means as a management index, and can be used as a designing and operating factor of the ozone contact tank.

【0035】又、本発明によれば、オゾンガスの気泡径
を常時又は定期的に監視することにより、オゾンガスを
液中に放散する散気管の目詰まりとか劣化を素早く検知
することができて、直ちに交換等の対策を講ずることが
可能であるという付随的な効果が得られる。
Further, according to the present invention, by constantly or periodically monitoring the bubble diameter of ozone gas, it is possible to quickly detect clogging or deterioration of the diffuser pipe that diffuses ozone gas into the liquid, and immediately. There is an additional effect that it is possible to take measures such as replacement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるオゾン気泡径測定方法の一実施
例を説明するための概要図。
FIG. 1 is a schematic diagram for explaining an embodiment of an ozone bubble diameter measuring method according to the present invention.

【図2】従来の迂流式フロック計測装置例を示す概要
図。
FIG. 2 is a schematic view showing an example of a conventional bypass type floc measuring device.

【符号の説明】[Explanation of symbols]

11…オゾン接触槽 12…原水 13…処理水 14…散気管 15…オゾン発生機 16…水中カメラ 17…光源ボックス 18…中継制御盤 19…画像計測演算手段 20…特徴量 21…気泡 11 ... Ozone contact tank 12 ... Raw water 13 ... Treated water 14 ... Diffuser tube 15 ... Ozone generator 16 ... Underwater camera 17 ... Light source box 18 ... Relay control panel 19 ... Image measurement calculation means 20 ... Characteristic amount 21 ... Bubbles

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水をオゾン接触槽に取水して、該オゾ
ン接触槽の内方底部に配置された散気管からオゾンガス
を放散処理する一方、上記オゾン接触槽内に水中カメラ
を上下移動可能に配備して、数点の深度でオゾンガスの
気泡を撮影し、撮影された画像信号に基づいて画像計測
演算手段により、気泡についての各種特徴量を連続的に
出力するようにしたことを特徴とするオゾン接触槽のオ
ゾン気泡径測定方法。
1. A raw water is taken into an ozone contact tank, and ozone gas is diffused from an air diffuser arranged at the inner bottom of the ozone contact tank, while an underwater camera can be moved up and down in the ozone contact tank. It is characterized in that it is arranged so that bubbles of ozone gas are photographed at several depths, and various characteristic amounts of bubbles are continuously output by the image measurement calculation means based on the photographed image signals. Method for measuring ozone bubble diameter in ozone contact tank.
【請求項2】 前記オゾンガスの気泡についての特徴量
は、気泡個数(個数/l)と幾何平均気泡径(mm)で
ある請求項1記載のオゾン接触槽のオゾン気泡径測定方
法。
2. The ozone bubble diameter measuring method for an ozone contact tank according to claim 1, wherein the feature quantities of the bubbles of ozone gas are the number of bubbles (number / l) and the geometric mean bubble diameter (mm).
JP4345759A 1992-12-25 1992-12-25 Measuring method for ozone bubble diameter of ozone contact tank Pending JPH06194296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4345759A JPH06194296A (en) 1992-12-25 1992-12-25 Measuring method for ozone bubble diameter of ozone contact tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345759A JPH06194296A (en) 1992-12-25 1992-12-25 Measuring method for ozone bubble diameter of ozone contact tank

Publications (1)

Publication Number Publication Date
JPH06194296A true JPH06194296A (en) 1994-07-15

Family

ID=18378784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345759A Pending JPH06194296A (en) 1992-12-25 1992-12-25 Measuring method for ozone bubble diameter of ozone contact tank

Country Status (1)

Country Link
JP (1) JPH06194296A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030105A1 (en) * 2007-06-28 2009-01-02 Air Liquide Deutschland Gmbh Process for the treatment of water
JP2009072684A (en) * 2007-09-20 2009-04-09 Kobelco Eco-Solutions Co Ltd Diffused air evaluation method
JP2010038711A (en) * 2008-08-05 2010-02-18 Ihi Corp Granule substance measurement method
CN105158124A (en) * 2015-10-10 2015-12-16 山东省科学院海洋仪器仪表研究所 Bubble image in-situ collection device
KR102414865B1 (en) * 2021-10-13 2022-06-29 한국수력원자력 주식회사 Method for predicting bubble sizes in a pool using venturi-scrubbing
CN115417492A (en) * 2022-08-30 2022-12-02 同济大学建筑设计研究院(集团)有限公司 Advanced oxidation system based on underwater vision and control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030105A1 (en) * 2007-06-28 2009-01-02 Air Liquide Deutschland Gmbh Process for the treatment of water
JP2009072684A (en) * 2007-09-20 2009-04-09 Kobelco Eco-Solutions Co Ltd Diffused air evaluation method
JP2010038711A (en) * 2008-08-05 2010-02-18 Ihi Corp Granule substance measurement method
CN105158124A (en) * 2015-10-10 2015-12-16 山东省科学院海洋仪器仪表研究所 Bubble image in-situ collection device
KR102414865B1 (en) * 2021-10-13 2022-06-29 한국수력원자력 주식회사 Method for predicting bubble sizes in a pool using venturi-scrubbing
CN115417492A (en) * 2022-08-30 2022-12-02 同济大学建筑设计研究院(集团)有限公司 Advanced oxidation system based on underwater vision and control method

Similar Documents

Publication Publication Date Title
JP2019162603A (en) Coagulant addition amount control device, sludge concentration system and coagulant addition amount control method
WO2006067873A1 (en) Method of measuring and managing sedimentation separation operation and apparatus therefor
JPH06194296A (en) Measuring method for ozone bubble diameter of ozone contact tank
JPH05172728A (en) Hydrosphere observation, surveillance and purification system
JPH05240767A (en) Floc measuring/controlling device
JP6599704B2 (en) Flocculant injection rate determination method and flocculant injection rate determination device
JP2003080236A (en) Water quality measuring instrument for stored water
JPS5845318B2 (en) Method for controlling the amount of sludge stagnant in a sedimentation tank in activated sludge method
JP2674225B2 (en) Flock formation control device
JP2674226B2 (en) Flock formation control device
JP2003075429A (en) Scum detection method and apparatus
JP2000102703A (en) Flocculant injection controller
JP2003029322A (en) Photographing system for underwater particles
JPH1157739A (en) Water purifying method
JP3186205B2 (en) Flock measurement control device
JPH02159539A (en) Floc image camera apparatus for water purifying plant
JP3899792B2 (en) Wastewater treatment system
JPH05285308A (en) Controller for injecting flocculant
CN108862812A (en) The processing system and its processing method of the sewage containing high-concentration formaldehyde
JPH03169306A (en) Apparatus for controlling formation of floc
JP3557726B2 (en) Sludge interface measuring device
US4983308A (en) Automatic chemical cleaning of granular medium filters
JP2019162601A (en) Flocculant addition amount control device, sludge concentration system, and flocculant addition amount control method
JPH02284605A (en) Paddle control device in flocculation basin
JP2004195304A (en) Coagulant injection control method and apparatus