JPH06194122A - Decentering measuring device - Google Patents

Decentering measuring device

Info

Publication number
JPH06194122A
JPH06194122A JP34407792A JP34407792A JPH06194122A JP H06194122 A JPH06194122 A JP H06194122A JP 34407792 A JP34407792 A JP 34407792A JP 34407792 A JP34407792 A JP 34407792A JP H06194122 A JPH06194122 A JP H06194122A
Authority
JP
Japan
Prior art keywords
light
lens
reflected
inspected
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34407792A
Other languages
Japanese (ja)
Inventor
Masaru Kawada
勝 川田
Yoshitaka Tounan
義貴 東南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP34407792A priority Critical patent/JPH06194122A/en
Publication of JPH06194122A publication Critical patent/JPH06194122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To allow the deflection of transmitted light and that of reflected light to be measured simultaneously by combining the transmitted light and reflected light, coming into a beam splitter, into the same visual field, and observing it on the observation face. CONSTITUTION:Parallel light from one light source 15 is divided into two beams by a beam splitter 19. These beams are reflected on the respective mirrors 14 and made incident from the upper and lower sides of a lens to be inspected 13. The transmitted and reflected light from the lens to be inspected 13 is reflected on the beam splitter 19 so as to be guided toward an eyepiece 17. Viewed through the eyepiece 17, the transmitted light and reflected light are observed in the form of being combined in one visual field. At this time, the light spots of two beams 9, 10 describe a specific locus according to the decentered state of the detected lens 13 when the lens to be inspected 13 is rotated, and the absolute quantity of its deflection can be read by an ocular chart 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学部品の中でも特にレ
ンズの製作工程において必要とされる偏心測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eccentricity measuring device which is required in a lens manufacturing process among optical parts.

【0002】[0002]

【従来技術】従来の偏心測定装置にはレンズによる透過
光のふれを観測する透過式と反射光のふれを観測する反
射式の2種類がある。
2. Description of the Related Art There are two types of conventional eccentricity measuring devices, a transmission type for observing the deflection of transmitted light by a lens and a reflection type for observing the deflection of reflected light.

【0003】まず透過式の偏心測定装置について図1に
従って説明する(光学素子加工技術'82 ,II−2章 心
取り・洗浄 若菜勇次、P.18〜22、光学工業技術協会
編)。光源15から出た光はコリメーターレンズによって
平行光に変換され、被検レンズ13に入射する。被検レン
ズ13は片方の面3と側面2を基準として外径中心軸6を
中心に回転するように設定される。レンズに偏心があれ
ば入射光は入射してきた方向と異なる方向にふれるた
め、レンズを回転させれば観測面12で観測される光源15
の像の軌跡は円を描くことになる。この円の半径から透
過光のふれ角θを求めそれを元にレンズの面のふれを求
める。
First, a transmission type eccentricity measuring device will be described with reference to FIG. 1 (Optical element processing technology '82, Chapter II-2, Centering and Cleaning, Yuji Wakana, P.18-22, ed. The light emitted from the light source 15 is converted into parallel light by the collimator lens and is incident on the lens 13 to be inspected. The lens 13 to be inspected is set so as to rotate about the outer diameter center axis 6 with reference to the one surface 3 and the side surface 2. If the lens has eccentricity, the incident light touches in a direction different from the incident direction, so if the lens is rotated, the light source 15 observed on the observation surface 12
The locus of the image of will draw a circle. The deflection angle θ of the transmitted light is calculated from the radius of this circle, and the deflection of the lens surface is calculated based on this.

【0004】次に従来の反射式の偏心測定装置について
図2に従って説明する(同上編)。光源15から出た光は
ビームスプリッター19とレンズ系を通って収束光となっ
て被検レンズ13に入射する。被検レンズ13は透過式の場
合と同様に2つの面を基準として外径中心軸6を中心に
回転するように設定される。被検レンズ13に偏心があれ
ば光はレンズ表面に垂直に入射しないため、反射光はあ
る角度をもってふれることになる。レンズ表面からの反
射光は再びレンズ系を通りビームスプリッター19で反射
されて観測面に到達する。被検レンズ13を回転させると
観測面12における像は回転し円の軌跡を描く。この円の
半径から反射光のふれ角を求めレンズ表面の傾きを求め
ることができる。
Next, a conventional reflection type eccentricity measuring device will be described with reference to FIG. 2 (same as above). The light emitted from the light source 15 passes through the beam splitter 19 and the lens system to be converged light and enters the lens 13 to be inspected. The lens 13 to be inspected is set so as to rotate about the outer diameter center axis 6 with reference to the two surfaces as in the case of the transmission type. If the lens 13 to be inspected is decentered, the light does not enter the lens surface perpendicularly, so the reflected light is touched at an angle. Light reflected from the lens surface passes through the lens system again and is reflected by the beam splitter 19 to reach the observation surface. When the lens 13 to be inspected is rotated, the image on the observation surface 12 rotates and draws a locus of a circle. The deflection angle of the reflected light can be obtained from the radius of this circle to obtain the inclination of the lens surface.

【0005】次に偏心を持ったメニスカスレンズを透過
式や反射式の偏心測定装置で測定した場合について説明
する。メニスカスレンズの偏心は図3に示したように凹
凸両面の曲率中心を結んだ線(光軸)5と外径中心軸6
とのずれ量r(同心度公差)と凹面側の光軸5の垂直か
らの傾き角ε(直角度公差)によって規定される。外径
の直径を2l0 、凸面の曲率半径をR1 、曲率中心をO
1 凹面の曲率半径をR2 曲率中心をO2 とする。平面
3は外径中心軸6上の1点Eを中心に角εだけ傾いてお
りEから光軸5におろした垂線の足と面4との光軸上の
距離をmとおく。直角度公差は面3の理想垂直面からの
ずれをμとすると
Next, a case where a meniscus lens having eccentricity is measured by a transmission type or reflection type eccentricity measuring device will be described. As shown in FIG. 3, the eccentricity of the meniscus lens is a line (optical axis) 5 connecting the centers of curvature of the concave and convex surfaces and an outer diameter center axis 6
It is defined by the deviation amount r (concentricity tolerance) and the inclination angle ε (rectangular tolerance) of the optical axis 5 on the concave surface side from the vertical. The outer diameter is 2l 0 , the radius of curvature of the convex surface is R 1 , and the center of curvature is O.
1 radius of curvature of the concave surface R2, the center of curvature and O 2. The plane 3 is inclined by an angle ε about a point E on the outer diameter center axis 6, and the distance on the optical axis between the foot of the perpendicular line drawn from E to the optical axis 5 and the surface 4 is m. The squareness tolerance is μ when the deviation of the surface 3 from the ideal vertical surface is μ

【0006】[0006]

【式1】 とも表わされる。[Formula 1] Is also represented.

【0007】凹面側の平面3と側面2とを基準にとった
場合について光を凹面側から入射させたときの透過光の
ふれ角θを図4に従って導き出す。
The deflection angle θ of the transmitted light when light is incident from the concave side with respect to the flat surface 3 and the side surface 2 on the concave surface side is derived according to FIG.

【0008】面3の垂直二等分線7にそって光が入射す
ると、球面4には垂直入射の位置から距離y(={r−
(R2 −m) tanε} cosε)だけ上方にずれた点に光
が入射することになる。R2 》yと仮定するとこの光の
面4への入射角αは
When light is incident along the perpendicular bisector 7 of the surface 3, the spherical surface 4 is separated by a distance y (= {r-
Light is incident on a point shifted upward by (R 2 −m) tan ε} cos ε). Assuming R 2 >> y, the incident angle α of this light on the surface 4 is

【0009】[0009]

【式2】 となる。レンズの屈折率をn、屈折角をα′としたとき
近軸理論ではα=nα′が成り立つのでα′=α/nと
なる。
[Formula 2] Becomes When the refractive index of the lens is n and the refraction angle is α ', the paraxial theory holds that α = nα', so that α '= α / n.

【0010】線7と凸面1とが交わる点BとO1 とを結
ぶ線8と光軸5とのなす角をψとすると
Let ψ be the angle between the optical axis 5 and the line 8 connecting the point B and O 1 where the line 7 and the convex surface 1 intersect.

【0011】[0011]

【式3】 が成り立つ。[Formula 3] Holds.

【0012】二等分線7と面1の法線8とのなす角はε
−4であり面4の屈折光の線7となす角(ふれ)はα−
α′だから光線の面1への入射角βはβ=ε−ψ+α−
α′となる。
The angle between the bisector 7 and the normal 8 to the surface 1 is ε
-4 and the angle formed with the refracted light line 7 on the surface 4 is α-
Since α ′, the incident angle β of the ray on the surface 1 is β = ε−ψ + α−
α '.

【0013】面1から光が出射していくときの出射角を
β′とすると近軸理論よりβ′=nβとなるのでβ′=
n(ε−ψ)+(n−1)αとなる。
If the emission angle when light is emitted from the surface 1 is β ′, then β ′ = nβ from paraxial theory, so β ′ =
It becomes n (ε−ψ) + (n−1) α.

【0014】従って透過光の振れ角θはTherefore, the deflection angle θ of the transmitted light is

【0015】[0015]

【式4】 となる。[Formula 4] Becomes

【0016】次に凸面1へ入射する光が反射されるとき
の反射光のふれ角τを求める。
Next, the deflection angle τ of the reflected light when the light incident on the convex surface 1 is reflected is calculated.

【0017】光線は透過の場合と同様に線7にそって左
から右へ進行する。入射光線に対し、面1は垂直から角
ε−ψだけ傾いているため反射光はその2倍の角度で反
射する。すなわち
The rays travel from left to right along line 7 as in the case of transmission. Since the surface 1 is inclined from the vertical by an angle ε-ψ with respect to the incident light ray, the reflected light is reflected at an angle twice that angle. Ie

【0018】[0018]

【式5】 以上面3と面2とを基準にとった場合についてのべたが
凸面1と側面2とを基準にとった場合についても同様に
して透過光と反射光の振れを求めることができる。
[Formula 5] Although the above description is based on the case where the surface 3 and the surface 2 are used as reference, the shakes of the transmitted light and the reflected light can be similarly obtained when the surface 1 and the side surface 2 are used as the reference.

【0019】[0019]

【発明が解決しようとする課題】従来の偏心測定装置は
透過式か反射式のいずれかであった。各々透過光のふれ
や反射光のふれを測定することができる。
Conventional eccentricity measuring devices are either transmission type or reflection type. The shake of transmitted light and the shake of reflected light can be measured respectively.

【0020】しかしレンズの偏心の許容量が透過光のふ
れや反射光のふれのような光学的尺度で規定されている
ときには従来法で十分だが、前節で例示したメニスカス
レンズのように光軸からの外径中心軸のずれrや直角度
公差μ等のような機械的尺度で規定されているときには
従来法では不十分である。なぜなら従来法では1つの測
定法で測ることのできる物理量は1つに限られるので、
rとμという2つの量を分離して測定することはできな
いからである。
However, when the allowable amount of eccentricity of the lens is regulated by an optical scale such as a shake of transmitted light or a shake of reflected light, the conventional method is sufficient. The conventional method is inadequate when it is defined by a mechanical scale such as the deviation r of the outer diameter center axis and the squareness tolerance μ. Because the conventional method is limited to one physical quantity that can be measured by one measurement method,
This is because the two quantities r and μ cannot be measured separately.

【0021】あるいはまた従来の透過式と反射式の2つ
の測定装置を並べて測定してもrとμを独立に決定する
ことはできない。なぜなら、従来の測定装置で測定でき
るふれはθやτの絶対値|θ|、|τ|であってθやτ
そのものではないから符号の分の不確定性が残ってしま
うからである。
Alternatively, r and μ cannot be independently determined even when two conventional transmission type and reflection type measuring devices are arranged and measured. This is because the vibration that can be measured by the conventional measuring device is the absolute value of θ or τ | θ |, | τ |
This is because the uncertainty of the code remains because it is not itself.

【0022】 |θ|=(n−1)|1/R2 −1/R1 ||r| (4)′ |τ|=2|μ/2l0 −r/R1 | (5)′ と式4、5で表わされるθとτについて横軸にrをとっ
たときのグラフを図5から図8に示し、このあたりの事
情を説明する。
| Θ | = (n−1) | 1 / R 2 −1 / R 1 || r | (4) ′ | τ | = 2 | μ / 2l 0 −r / R 1 | (5) ′ 5 to 8 are graphs in which r is plotted on the horizontal axis for θ and τ expressed by Equations 4 and 5, and the circumstances around this will be described.

【0023】θやτを符号を含めて測定することができ
るなら、例えばまずある透過光のふれの測定値θ1 が得
られれば図5(式4)よりr1 が一意的に求められる。
そしてτの測定値τ1 が得られればr1 とτ1 から図6
(式5)よりμ1 が一意的に求められる。
If θ and τ can be measured by including the signs, for example, if a measured value θ 1 of a shake of transmitted light is first obtained, r 1 can be uniquely obtained from FIG. 5 (equation 4).
Then, if the measured value τ 1 of τ is obtained, it is calculated from r 1 and τ 1 as shown in FIG.
Μ 1 is uniquely obtained from (Equation 5).

【0024】ところが従来の測定法では例えば透過測定
で得られるふれは|θ1 |なので図7((4)′式)よ
りr1 と−r1 の2つの該当値が出てくる。また、反射
測定でのふれを|τ1 |とすると図8((5)′式)よ
りr1 に対してはμ2 と−μ1 の2つの該当値、−r1
に対しては−μ2 とμ1 の2つの該当値が出てきて一意
的にrとμの値を決定することはできない。
However, in the conventional measurement method, for example, the shake obtained by the transmission measurement is | θ 1 |, and therefore two corresponding values of r 1 and -r 1 are obtained from FIG. 7 (equation (4) ′). Further, assuming that the deflection in the reflection measurement is | τ 1 |, from FIG. 8 (equation (5) ′), for r 1 , two corresponding values of μ 2 and −μ 1 , and −r 1
, There are two corresponding values of -μ 2 and μ 1 , and it is impossible to uniquely determine the values of r and μ.

【0025】本発明はこのような従来のレンズ偏心測定
装置の欠点にかんがみてなされたものであり、透過光の
ふれθと反射光のふれτとを符号を含めて同時に測定で
きる偏心測定装置を提供することを目的とする。
The present invention has been made in view of the drawbacks of the conventional lens eccentricity measuring device, and provides an eccentricity measuring device capable of simultaneously measuring the deflection θ of transmitted light and the deflection τ of reflected light, including their signs. The purpose is to provide.

【0026】[0026]

【課題を解決するための手段】本発明の偏心測定装置の
基本構成を図9に従って説明する。
The basic structure of the eccentricity measuring device of the present invention will be described with reference to FIG.

【0027】まず被検レンズ13を固定する台11を有す
る。この台は測定時における基準面となり被検レンズの
垂直二等分線7を軸として回転する機構をそなえてい
る。
First, there is a base 11 for fixing the lens 13 to be inspected. This table serves as a reference plane at the time of measurement and has a mechanism for rotating about the vertical bisector 7 of the lens to be inspected.

【0028】測定光は台11の下方と上方の2方向から被
検レンズに向かって軸7にそって入射する光とする。
The measuring light is assumed to be light which is incident along the axis 7 toward the lens to be inspected from two directions below and above the table 11.

【0029】被検レンズの上方にはビームスプリッター
19を配しビームスプリッターに入射してくる透過光9と
反射光10を同一の視野に合成し、観測面12で観測できる
ように設定される。
A beam splitter is provided above the lens to be inspected.
19 is arranged, and the transmitted light 9 and the reflected light 10 incident on the beam splitter are combined in the same field of view and set so that they can be observed on the observation surface 12.

【0030】[0030]

【作用】台11に偏心を有する被検レンズ13を置くと台11
の下方から入射する光はレンズを透過すると光線9のよ
うにふれを生じる。
[Function] When the eccentric lens 13 to be inspected is placed on the base 11, the base 11
The light incident from the lower side of the lens is swayed like a light ray 9 when passing through the lens.

【0031】一方台11の上方から入射する光はレンズ表
面で反射され光線10のようにふれを生じる。
On the other hand, the light incident from above the pedestal 11 is reflected by the lens surface and causes a shake like a light ray 10.

【0032】光線9と10はビームスプリッター19の反射
面で反射され観測面12に到達する。被検レンズ13を台11
によって軸7のまわりに回転させると観測面12に投影さ
れる光線9と10の軌跡は円を描く。
The light rays 9 and 10 are reflected by the reflecting surface of the beam splitter 19 and reach the observation surface 12. Test lens 13 stand 11
When rotated about the axis 7 by, the loci of the rays 9 and 10 projected on the observation plane 12 describe a circle.

【0033】今2つのレンズA,Bを考え、偏心を規定
する2つの公差rとμの組がそれぞれrA =|r|、μ
A =|μ|、rB =|r|、μB =−|μ|であるとす
る。レンズA、Bはrとμの絶対値が等しくて符号が互
いに異なる例だが図10と図12をくらべてみれば明らかな
ように違う断面形状を示す。レンズAでは透過光と反射
光は軸7に関して反対側に出るのに対し、レンズBでは
軸7に関して同じ側に出る。したがってレンズを回転さ
せたとき、レンズAでは透過光と反射光は軸7を中心と
して互いに反対側に位置する光点が同心円を描くのに対
し、レンズBでは同じ側に位置する光点が同心円を描
く。この軌跡の動き方とその半径(θとτの絶対値に相
当)を調べればμとrを同符号であるか異符号であるか
まで含めて決定することができる。
Considering now two lenses A and B, two sets of tolerances r and μ which define the eccentricity are r A = | r | and μ, respectively.
Let A = | μ |, r B = | r |, μ B = − | μ |. The lenses A and B are examples in which the absolute values of r and μ are equal and the signs are different from each other, but they show different cross-sectional shapes as is clear from comparison between FIGS. 10 and 12. In lens A, the transmitted light and the reflected light exit on opposite sides with respect to axis 7, whereas in lens B they exit on the same side with respect to axis 7. Therefore, when the lens is rotated, in the lens A, the transmitted light and the reflected light are concentric circles on the opposite sides of the axis 7 while the concentric circles are on the same side on the lens B. Draw. By examining the movement of the locus and the radius thereof (corresponding to the absolute values of θ and τ), it is possible to determine μ and r including whether they have the same sign or different signs.

【0034】すなわち、式4、5より r=θ/(n−1)(1/R2 −1/R2 ) (6) μ=2l0 (τ/2+r/R1 ) (7) と計算されるがrとμの符号が測定結果と矛盾しないよ
うにθとτの符号を決定してやればよい。
That is, from equations 4 and 5, r = θ / (n-1) (1 / R 2 -1 / R 2 ) (6) μ = 2l 0 (τ / 2 + r / R 1 ) (7) However, the signs of θ and τ may be determined so that the signs of r and μ do not conflict with the measurement results.

【0035】[0035]

【実施例】本発明の実施例を図14と図15に示す。図14に
示した光学系では1つの光源15から出た平行光をビーム
スプリッター19で2光束に分け、ミラー14で反射させ、
被検レンズ13の上方と下方の2方向から光を入射させ
る。被検レンズ13から透過、反射した光はビームスプリ
ッターで反射され接眼レンズ17の方へ入る。接眼レンズ
を通してみると透過光と反射光は一つの視野に合成され
た形で観測される。
EXAMPLE An example of the present invention is shown in FIGS. In the optical system shown in FIG. 14, the parallel light emitted from one light source 15 is split into two light beams by the beam splitter 19 and reflected by the mirror 14,
Light is incident from above and below the lens 13 to be inspected. The light transmitted and reflected from the lens 13 to be inspected is reflected by the beam splitter and enters the eyepiece lens 17. When viewed through the eyepiece, transmitted light and reflected light are observed in a combined form in one visual field.

【0036】2つの光点は被検レンズを回転させるとレ
ンズの偏心の具合いによって図11もしくは図12で示した
軌跡のいずれかをとり、そのふれの絶対量は接眼チャー
ト16によって読みとることができる。読みとった2つの
ふれの絶対量|θ|、|τ|と符号を測定すると式
(6)(7)より機械的な偏心量r、μを求めることが
できる。
When the lens to be inspected is rotated, the two light spots take either of the loci shown in FIG. 11 or 12 depending on the degree of eccentricity of the lens, and the absolute amount of the shake can be read by the eyepiece chart 16. . By measuring the absolute values | θ | and | τ | of the two read shakes and the sign, the mechanical eccentricity amounts r and μ can be obtained from the equations (6) and (7).

【0037】図15に示した光学系では図14の場合と異な
り、2つの光源を用いている。しかし、ミラーやビーム
スプリッター等の光学素子が少なく、簡素な光学系にな
っている。2つの光源から出た光は被検レンズに入射
し、それぞれ透過光、反射光となってビームスプリッタ
ーへ入射し一つの視野に合成される。以下図14で示した
実施例と同様な手順をふんでレンズの偏心量を求める。
Unlike the case of FIG. 14, the optical system shown in FIG. 15 uses two light sources. However, there are few optical elements such as mirrors and beam splitters, and the optical system is simple. The light emitted from the two light sources enters the lens to be inspected, becomes transmitted light and reflected light, respectively, enters the beam splitter, and is combined into one visual field. The amount of eccentricity of the lens is obtained by following the same procedure as in the embodiment shown in FIG.

【0038】なお、透過光強度は反射光強度より強いの
で観測される2光点の明るさを同じくらいにするために
2つの実施例とも透過側に減光フィルター18をそう入
し、入射光の強度を落としている。
Since the transmitted light intensity is stronger than the reflected light intensity, in order to make the brightness of the two light spots to be observed the same, the dimming filter 18 is inserted on the transmission side in both of the two examples. Is losing its strength.

【0039】[0039]

【発明の効果】従来の偏心測定装置は透過式か反射式の
いずれかであったが本発明の偏心測定装置は1台で透過
式、反射式2台分の機能を有する。しかも透過光あるい
は反射光のいずれか一方をさえぎれば、従来の反射式、
あるいは透過式の偏心測定装置としても使用できる。
Although the conventional eccentricity measuring device is either a transmission type or a reflection type, the eccentricity measuring device of the present invention has the function of two transmission type and two reflection type. Moreover, if either the transmitted light or the reflected light is blocked, the conventional reflection type,
Alternatively, it can be used as a transmission type eccentricity measuring device.

【0040】従来は一つの測定装置で透過光のふれの絶
対値もしくは反射光のふれの絶対値のいずれか一方しか
測ることができなかった。しかし本発明の装置ではその
2つのふれを符号も含めて測定することができる。その
結果、光軸を基準としたときの外径中心軸のずれと主面
の傾きという2つの機械的公差で規定されたレンズの偏
心を一意的に測定することができるようになった。
Conventionally, it was possible to measure either the absolute value of the deflection of the transmitted light or the absolute value of the deflection of the reflected light with one measuring device. However, the apparatus of the present invention can measure the two fluctuations including the sign. As a result, it has become possible to uniquely measure the eccentricity of the lens, which is defined by two mechanical tolerances: the deviation of the outer diameter center axis with respect to the optical axis and the inclination of the principal surface.

【0041】従来法ではあいまいのまま残されていた2
つのずれの向きの関係を決定できることが本発明の最も
すぐれている点である。
2 was left unclear in the conventional method
The greatest advantage of the present invention is that it is possible to determine the relationship between the three deviation directions.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の透過式の偏心測定装置の光学系を表わす
図。
FIG. 1 is a diagram showing an optical system of a conventional transmission type eccentricity measuring device.

【図2】従来の反射式の偏心測定装置の光学系を表わす
図。
FIG. 2 is a diagram showing an optical system of a conventional reflection type eccentricity measuring device.

【図3】メニスカスレンズの断面図。FIG. 3 is a sectional view of a meniscus lens.

【図4】メニスカスレンズの平面3を基準にとったとき
の透過光と反射光のふれを説明する図。
FIG. 4 is a diagram for explaining the shake of transmitted light and reflected light when the plane 3 of the meniscus lens is used as a reference.

【図5】軸のずれrを変化させたときの透過光のふれθ
の変化を示すグラフ。
FIG. 5: Deflection θ of transmitted light when axis deviation r is changed
The graph which shows the change of.

【図6】軸のずれrと面の傾きμを変化させたときの反
射光のふれτの変化を示すグラフ。
FIG. 6 is a graph showing changes in the deflection τ of reflected light when the axis deviation r and the surface inclination μ are changed.

【図7】従来の透過式測定装置を用いたときのrに対す
る|θ|の変化を示すグラフ。
FIG. 7 is a graph showing changes in | θ | with respect to r when a conventional transmission measurement device is used.

【図8】従来の反射式測定装置を用いたときのrとμに
対する|τ|の変化を示すグラフ。
FIG. 8 is a graph showing changes in | τ | with respect to r and μ when a conventional reflection type measuring apparatus is used.

【図9】本発明の偏心測定装置の光学系を示すグラフ。FIG. 9 is a graph showing an optical system of the eccentricity measuring device of the present invention.

【図10】r>0、μ>0のレンズについて透過光、反
射光のふれの様子を示す図。
FIG. 10 is a diagram showing how the transmitted light and reflected light fluctuate with respect to a lens having r> 0 and μ> 0.

【図11】r>0、μ>0のレンズを本発明の偏心測定
装置で観測したときの透過光と反射光の軌跡の様子を示
す図。
FIG. 11 is a diagram showing how trajectories of transmitted light and reflected light are observed when a lens having r> 0 and μ> 0 is observed by the eccentricity measuring device of the present invention.

【図12】r>0、μ<0のレンズについて透過光、反
射光のふれの様子を示す図。
FIG. 12 is a diagram showing how the transmitted light and reflected light fluctuate with respect to a lens having r> 0 and μ <0.

【図13】r>0、μ<0のレンズを本発明の偏心測定
装置で観測したときの透過光と反射光の軌跡の様子を示
す図。
FIG. 13 is a diagram showing how trajectories of transmitted light and reflected light are observed when a lens having r> 0 and μ <0 is observed by the eccentricity measuring device of the present invention.

【図14】本発明の実施例で1つの光源を2光束に分け
て用いる光学系を示す図。
FIG. 14 is a diagram showing an optical system in which one light source is divided into two light beams in an embodiment of the present invention.

【図15】本発明の実施例で2つの光源を用いる光学系
を示す図。
FIG. 15 is a diagram showing an optical system using two light sources in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…メニスカスレンズの凸面部分 2…レンズの側面部分 3…メニスカスレンズの凹面側の平面部分 4…メニスカスレンズの凹面部分 5…光軸 6…外径中心軸 7…断面図における面3の垂直二等分線 8…線7と面1とが交わる点Bと面1の曲率中心O1
を結んだ線 9…透過光 10…反射光 11…レンズを保持する回転ステージ 12…観測面 13…被検レンズ 14…ミラー 15…光源 16…接眼チャート 17…接眼レンズ 18…減光フィルター 19…ビームスプリッター
1 ... Convex part of meniscus lens 2 ... Side part of lens 3 ... Plane part of concave side of meniscus lens 4 ... Concave part of meniscus lens 5 ... Optical axis 6 ... Central axis of outer diameter 7 ... Two perpendicular to surface 3 in cross section Equidistant line 8 ... A line connecting a point B where the line 7 intersects the surface 1 and the center of curvature O 1 of the surface 9 ... Transmitted light 10 ... Reflected light 11 ... Rotating stage 12 holding the lens ... Observation surface 13 ... Lens 14 ... Mirror 15 ... Light source 16 ... Eyepiece chart 17 ... Eyepiece 18 ... Neutral filter 19 ... Beam splitter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基準面の垂直二等分線を中心軸としてレ
ンズを回転させたときの垂直入射光のふれを観測するこ
とによりレンズの偏心を測定する装置であって、回転軸
と同一軸上をレンズの両面に向かって互いに反対方向に
進む2光束を入射させる手段と、一方の光線の透過光と
もう一方の光線の反射光とを同一の視野に合成して観測
する手段とを有することを特徴とする偏心測定装置。
1. A device for measuring the eccentricity of a lens by observing the deflection of vertically incident light when the lens is rotated about the vertical bisector of the reference plane as a central axis, and the device is the same axis as the rotation axis. It has a means for injecting two light fluxes traveling in opposite directions toward both surfaces of the lens, and a means for observing the transmitted light of one light ray and the reflected light of the other light ray in the same visual field. An eccentricity measuring device characterized by the above.
JP34407792A 1992-12-24 1992-12-24 Decentering measuring device Pending JPH06194122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34407792A JPH06194122A (en) 1992-12-24 1992-12-24 Decentering measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34407792A JPH06194122A (en) 1992-12-24 1992-12-24 Decentering measuring device

Publications (1)

Publication Number Publication Date
JPH06194122A true JPH06194122A (en) 1994-07-15

Family

ID=18366483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34407792A Pending JPH06194122A (en) 1992-12-24 1992-12-24 Decentering measuring device

Country Status (1)

Country Link
JP (1) JPH06194122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118071A (en) * 2010-11-29 2012-06-21 Trioptics Gmbh Method and apparatus for measuring distances between optical surfaces of optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118071A (en) * 2010-11-29 2012-06-21 Trioptics Gmbh Method and apparatus for measuring distances between optical surfaces of optical system

Similar Documents

Publication Publication Date Title
US3832066A (en) Apparatus and method for analyzing sphero-cylindrical optical systems
US5115677A (en) Methods and devices for determining the contact angle of a drop of liquid placed on a substrate
JPH05256647A (en) Inclination measuring device
JPS62122629A (en) Eye refractometer
JPH09138181A (en) Instrument for measuring refracting power and radius of curvature of optical system
JPH06194122A (en) Decentering measuring device
CN108139205A (en) Optical element characteristic detecting apparatus
US4660972A (en) Arrangement for visualizing the cores of optical waveguides
JPS59166838A (en) Device for measuring refractive index of optical fiber
JPH08261734A (en) Shape measuring apparatus
JPS581120A (en) Telecentric beam generator and measurement of dimensions and position of object
SU1337042A1 (en) Keratometer
JP2505042B2 (en) Lens eccentricity measuring device
JPS5875530A (en) Apparatus for measuring curvature
JPH0669799U (en) Lens meter
JPH0339709Y2 (en)
JPH07117476B2 (en) Refractive index distribution measuring method and measuring apparatus
JPS59171921A (en) Arrangement of object in microscope for contrasting
JPS6310408B2 (en)
SU1268983A1 (en) Device for checking the centring of optical systems
JPH0374364B2 (en)
RU2166904C1 (en) Keratometer
KR100505192B1 (en) Composite lens for processing a plurality of light signals
JPS6016356A (en) Device for centering lens
SU916974A1 (en) Device for checking levels