JPH0619409B2 - DC power transmission system fault location device - Google Patents

DC power transmission system fault location device

Info

Publication number
JPH0619409B2
JPH0619409B2 JP59019090A JP1909084A JPH0619409B2 JP H0619409 B2 JPH0619409 B2 JP H0619409B2 JP 59019090 A JP59019090 A JP 59019090A JP 1909084 A JP1909084 A JP 1909084A JP H0619409 B2 JPH0619409 B2 JP H0619409B2
Authority
JP
Japan
Prior art keywords
power transmission
transmission line
current
current value
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59019090A
Other languages
Japanese (ja)
Other versions
JPS60162967A (en
Inventor
圭司 和田
昭二 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP59019090A priority Critical patent/JPH0619409B2/en
Publication of JPS60162967A publication Critical patent/JPS60162967A/en
Publication of JPH0619409B2 publication Critical patent/JPH0619409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <発明の分野> この発明は、直流送電線の短絡事故(地絡事故)の発生
点の位置を送電端側で検出する直流送電系の故障点標定
装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power transmission system fault point locating device that detects the position of a short circuit accident (ground fault) on a DC power transmission line on the power transmission end side.

<発明の背景> 故障点標定装置としては、マーレーループ法やバーレー
ループ法のように、線路を含むブリツジ形の回路を構成
し、その平衡条件から故障点までの距離を求めるものが
良く知られている。この種の装置では、ブリツジ形測定
回路を平衡させるような測定操作が必要で、直流送電系
において、その電流値の変化から瞬時にかつ直接的に故
障点を標定することはできなかつた。
<Background of the Invention> As a fault point locating device, it is well known that a bridge type circuit including a line is constructed and a distance to a fault point is obtained from its equilibrium condition, such as the Murray loop method or the Burley loop method. ing. This type of device requires a measuring operation to balance the bridge type measuring circuit, and it has been impossible to instantly and directly locate the failure point from the change in the current value in the DC power transmission system.

<発明の目的> この発明の目的は、直流送電線の短絡事故の発生をその
電流値の急激な変化から即座に検出するとともに、その
電流値の変化に基づいて事故発生点までの送電線の距離
を速かに算出することができるようにした直流送電系の
故障点標定装置を提供することにある。
<Object of the Invention> An object of the present invention is to immediately detect the occurrence of a short-circuit accident in a DC power transmission line from a rapid change in its current value, and based on the change in the current value, detect the transmission line up to the accident occurrence point. Another object of the present invention is to provide a failure point locating device for a DC power transmission system, which enables quick calculation of distance.

<発明の構成> 上記の目的を達成するために、この発明の故障点標定装
置は、直流送電線の送電端側でその電流値を所定周期で
連続的にサンプリングする手段と、サンプリングされる
上記電流値の変化を常時監視して上記送電線の短絡事故
の発生を検出する手段と、事故発生が検出されたとき、
その事故により上記電流値が急増しつつある過渡状態に
おいて、サンプリングされる3点以上の上記電流値と既
知であるサンプリング周期、送電端側の電圧値および上
記送電線の単位長さ当りのインピーダンスに基づいて、
第1次線形近似された微分解析演算によつて上記事故点
までの上記送電線の長さを算出する手段とで構成したこ
とを特徴とする。
<Structure of the Invention> In order to achieve the above object, the fault point locating device of the present invention is a means for continuously sampling a current value at a power transmission end side of a DC power transmission line in a predetermined cycle, and the above-mentioned sampling means. Means for constantly monitoring the change in current value to detect the occurrence of a short circuit accident in the above transmission line, and when the occurrence of an accident is detected,
In a transient state in which the current value is rapidly increasing due to the accident, the current values at three or more points to be sampled, the known sampling period, the voltage value on the transmission end side, and the impedance per unit length of the transmission line are measured. On the basis of,
And a means for calculating the length of the power transmission line up to the accident point by a differential analysis operation that is linearly approximated.

<実施例の説明> まず第1図、第2図に従つて本発明の故障点標定の原理
を説明する。
<Description of Embodiments> First, the principle of fault point localization according to the present invention will be described with reference to FIGS. 1 and 2.

第1図において、1は直流電源を示し、2は送電線を示
す。送電線2の単位長さ当りの抵抗およびインダクタン
スをそれぞれrおよびlとする。図のように送電端から
距離xの点で送電線2が地絡した場合、その故障点の抵
抗をRfとすると、送電端から見た抵抗Rおよびインダ
クタンスLは次式のようになる。
In FIG. 1, 1 is a DC power supply and 2 is a power transmission line. The resistance and the inductance per unit length of the power transmission line 2 are r and l, respectively. When the transmission line 2 is grounded at a distance x from the power transmission end as shown in the figure, the resistance R and the inductance L seen from the power transmission end are given by the following equations, where Rf is the resistance at the failure point.

R=rx+Rf ……(1) L=lx ……(2) このRL回路において、送電端の電圧をvとし、流れる
電流をiとすると、次の微分方程式が成立する。
R = rx + Rf (1) L = 1x (2) In this RL circuit, if the voltage at the power transmission end is v and the flowing current is i, the following differential equation holds.

第2図は上述の地絡事故の発生による電圧vと電流iの
変化の一例を示している。事故は時点Tで発生し、その
後上述のRL回路に電流が流れ、電流iが指数的に急激
に増加している。また後述するように電源1は定電圧化
されていて、電圧vはほとんど変化しない。
FIG. 2 shows an example of changes in the voltage v and the current i due to the occurrence of the above ground fault. The accident occurs at the time point T, and then a current flows through the RL circuit described above, and the current i exponentially and rapidly increases. Further, as will be described later, the power supply 1 has a constant voltage, and the voltage v hardly changes.

この発明の装置では、所定周期△tで電流iをサンプリ
ングしている。そのサンプリング時点をt,t,t
,……と表わし、対応するサンプル値をi,i
,……とする。また相前後する2点の電流サンプル
値の差i−i,i−i,……を電流変化△
,△i,……とする。そして、この電流変化△i
を常時監視し、△iが予め設定した基準値Kを越え
ると、送電線2に地絡を生じたものと判定する。その
後、以下に述べる原理で地絡点を標定する。
In the device of the present invention, the current i is sampled at a predetermined period Δt. The sampling time points are t 1 , t 2 , t
3 , and the corresponding sample values are i 1 , i 2 ,
i 3 , ... In addition, the difference i 2 −i 1 , i 3 −i 1 , ... Of the current sample values at two points which are before and after each other is represented by the current change Δ.
i 2 , Δi 3 , ... Then, this current change Δi
constantly monitors the n, exceeds the reference value K △ i n is set in advance, determines that caused a ground fault in the transmission line 2. Then, the ground fault point is located by the principle described below.

上述の各サンプル時点t,t,t,……での電圧
vをそれぞれv,v,v,……と表わすと、(3)
式の微分方程式について次のような第1次の線形近似が
成立する。
The voltage v at each of the sample times t 1 , t 2 , t 3 , ... Is represented as v 1 , v 2 , v 3 ,.
The following first-order linear approximation holds for the differential equation of the equation.

(4)+(5)より 同様にt,tについて、 (8)式に(2)式を代入して整理すると、 (9)式において、サンプリング周期△tおよび送電線2
の単位長インダクタンス1は既知であるので、電流iお
よび電圧vの3点のサンプル値i,i,iおよび
,v,vから故障点までの距離xを算出するこ
とができる。
From (4) + (5) Similarly, for t 2 and t 3 , Substituting equation (2) into equation (8) and rearranging, In equation (9), sampling period Δt and transmission line 2
Since the unit length inductance 1 of is known, calculate the distance x from the sample values i 1 , i 2 , i 3 and v 1 , v 2 , v 3 of the current i and the voltage v to the fault point. You can

この発明では上記の標定演算をさらに次のように簡略化
する。現在の直流送電系では、電源1はサイリスタなど
による定電圧整流器によつて構成されており、第2図に
示したように、地絡が生じても電圧vはほとんど変化し
ない。その安定化された出力電圧をVと表わし、(9)式
におけるv1,v2,v3をそれぞれVとすると、次式のよう
に変形できる。
In the present invention, the above orientation calculation is further simplified as follows. In the current DC power transmission system, the power supply 1 is composed of a constant voltage rectifier such as a thyristor, and as shown in FIG. 2, the voltage v hardly changes even if a ground fault occurs. If the stabilized output voltage is represented by V and v 1 , v 2 , and v 3 in the equation (9) are respectively represented by V, the following equation can be obtained.

つまり、連続した3点の電流サンプル値i,i,i
から距離xを算出することができる。(10)式におい
て、 と表わすと、次式のように整理できる。
That is, the current sample values i 1 , i 2 , i of three consecutive points
The distance x can be calculated from 3 . In equation (10), When expressed as, it can be organized as the following equation.

x=J×Q(i,i,i) …(13) つまり、3点の電流サンプル値i,i,iによつ
て求まる変数Qに定数Jを掛けるという簡単な演算で、
故障点までの距離xを算出することができる。
x = J × Q (i 1 , i 2 , i 3 ) ... (13) That is, a simple operation of multiplying the variable Q obtained by the current sample values i 1 , i 2 , i 3 at 3 points by a constant J so,
The distance x to the failure point can be calculated.

次に、この発明に係る故障点標点装置の具体的実施例を
説明する。
Next, a specific embodiment of the fault point control device according to the present invention will be described.

第3図において、交流電源11が定電圧整流器12で直
流に変換され、送電線2に電圧安定化された直流電力が
供給される。送電線2の送電端側には遮断器3と電流検
出器4とが設けられている。電流検出器4はホール素子
などを用いたもので、送電線2上の直流電流の大きさを
検出する。これの検出出力はA/D変換器5でデイジタ
ル信号に変換され、コンピユータに伝送される。この間
の信号伝送は、光フアイバを用いて光信号で行なうと良
い。
In FIG. 3, the AC power supply 11 is converted into DC by the constant voltage rectifier 12, and the voltage-stabilized DC power is supplied to the power transmission line 2. A circuit breaker 3 and a current detector 4 are provided on the power transmission end side of the power transmission line 2. The current detector 4 uses a hall element or the like and detects the magnitude of the direct current on the power transmission line 2. The detection output of this is converted into a digital signal by the A / D converter 5 and transmitted to the computer. Signal transmission during this period is preferably performed by an optical signal using an optical fiber.

上記コンピユータはCPU8・メモリ9・入出力装置1
0という一般の構成に加えて、A/D変換器5からの電
流値iを取り込むためのDMAインターフエイス6と、
定数設定器7を備える。定数設定器7には、故障発生を
弁別するための上記定数Kや、上記(11)式の定数J(サ
ンプリング周期△t、整流器12の出力電圧V、送電線
2の単位長インダクタンス1)を予め設定しておく。
The computer is a CPU 8, a memory 9, an input / output device 1
In addition to the general configuration of 0, a DMA interface 6 for taking in the current value i from the A / D converter 5,
A constant setter 7 is provided. The constant setter 7 stores the constant K for discriminating the occurrence of a failure and the constant J of the equation (11) (sampling period Δt, output voltage V of the rectifier 12, unit length inductance 1 of the transmission line 2). Set in advance.

第4図は上記CPU8による処理内容を示す。FIG. 4 shows the processing contents by the CPU 8.

以下、このフローチヤートに従つて本装置の動作を順次
説明する。
The operation of the present apparatus will be sequentially described below according to this flow chart.

最初のステツプ100で、設定された周期△tのサンプ
リングタイミングを待ち、所定のタイミングになると次
のステツプ101に進み、DMAインターフエイス8を
介してその時点tの電流値iを取り込み、メモリ9
の所定エリアに一時記憶する。次のステツプ102で、
今回のサンプル値iと前回のサンプル値in-1との差
△iを演算する。次のステツプ103で、△iと定
数Kとの大小比較を行ない、故障発生の監視を行なう。
△i<Kのときは正常と判断し、以上のステツプ10
0→101→102→103を繰り返す。
In the first step 100, waits for the sampling timing of the set period △ t, at a predetermined timing proceeds to the next step 101, takes in the current values i n at that time t n via the DMA interferons chair 8, memory 9
Is temporarily stored in a predetermined area. At the next step 102,
Calculating a difference △ i n the sample value i n-1 of the current sample value i n and the previous. In the next step 103, △ i n and performs comparison between the constant K, to monitor the fault occurred.
When Δi n <K, it is determined to be normal, and the above step 10 is performed.
Repeat 0 → 101 → 102 → 103.

ステツプ103で△i≧Kとなつたとき、故障が発生
したものと判断し、ステツプ104に進む。ステツプ1
04では、最新のサンプル値iと、前回のサンプル値
n-1と、前々回のサンプル値in-2とに基づいて、上記
(12)式に示す変数Qを演算する。次のステツプ105
で、変数Qと設定された定数Jとから(13)式に従つて故
障点までの距離を算出し、入出力装置10から適宜な信
号形態で出力する。その後最初のステツプ100に戻
り、以上の処理を繰り返す。
When Δi n ≧ K in step 103, it is determined that a failure has occurred, and the process proceeds to step 104. Step 1
In 04, based on the latest sample value i n , the previous sample value i n-1, and the sample value i n-2 two times before,
The variable Q shown in equation (12) is calculated. Next step 105
Then, the distance to the failure point is calculated from the variable Q and the set constant J according to the equation (13), and is output from the input / output device 10 in an appropriate signal form. After that, the process returns to the first step 100 and the above processing is repeated.

<発明の効果> 以上詳細に説明したように、この発明に係る直流送電系
の故障点標定装置によれば、電流値のサンプリング手段
およびマイクロコンピユータなどによる演算手段といつ
た簡単な構成で、直流送電線の短絡事故が発生したと
き、その直後に故障点の位置を自動的かつ正確に検出す
ることができる。
<Effects of the Invention> As described in detail above, according to the fault location device of the DC power transmission system according to the present invention, the DC value is simple with a current value sampling means and a computing means such as a micro computer. When a short-circuit accident of a power transmission line occurs, the position of the failure point can be automatically and accurately detected immediately after that.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の装置の原理を説明するための直流送
電系の等価回路図、第2図は同じく短絡故障による電流
・電圧の変化を示す図、第3図はこの発明の一実施例に
よる故障点標定装置の構成図、第4図は第3図における
CUP8の処理内容を示すフローチヤートである。 1……直流電源、11……交流電源、12……定電圧整
流器、2……送電線、3……遮断器、4……電流検出
器、5……A/D変換器、6……DMAインターフエイ
ス、7……定数設定器、8……CPU、9……メモリ、
10……入出力装置。
FIG. 1 is an equivalent circuit diagram of a DC power transmission system for explaining the principle of the device of the present invention, FIG. 2 is a diagram showing changes in current and voltage due to a short-circuit fault, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a flow chart showing the processing contents of the CUP 8 in FIG. 1 ... DC power supply, 11 ... AC power supply, 12 ... Constant voltage rectifier, 2 ... Transmission line, 3 ... Breaker, 4 ... Current detector, 5 ... A / D converter, 6 ... DMA interface, 7 ... constant setting device, 8 ... CPU, 9 ... memory,
10 ... I / O device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直流送電線の送電端側でその電流値を所定
周期で連続的にサンプリングする手段と、 サンプリングされる上記電流値の変化を常時監視して上
記送電線の短絡事故の発生を検出する手段と、 事故発生が検出されたとき、その事故により上記電流値
が急増しつつある過渡状態において、サンプリングされ
る3点以上の上記電流値と既知であるサンプリング周
期、送電端側の電圧値および上記電線の単位長さ当たり
のインピーダンスに基づいて、第1次線形近似された微
分解析演算によって上記事故点までの上記送電線の長さ
を算出する手段とを備え、 上記故障点までの送電線の長さを算出する手段が、電流
サンプリング周期と送電線の送電端電圧および送電線の
単位長さ当たりのインダクタンスによって定まる定数
と、上記サンプリングされる3点以上の電流値によって
規定される変数とを乗算する演算手段によって構成され
ていることを特徴とする、 直流送電系の故障点標定装置。
1. A means for continuously sampling a current value of a direct current transmission line at a power transmission end side in a predetermined cycle, and constantly monitoring a change in the sampled current value to prevent occurrence of a short circuit accident in the power transmission line. Means for detecting and, when an accident is detected, in the transient state in which the current value is rapidly increasing due to the accident, the current value of three or more points to be sampled and the known sampling period, the voltage at the transmission end side Means for calculating the length of the power transmission line up to the fault point by a first-order linear approximation differential analysis operation based on the value and the impedance per unit length of the electric wire, The means for calculating the length of the power transmission line includes a constant determined by the current sampling period, the voltage at the power transmission end of the power transmission line, and the inductance per unit length of the power transmission line, Characterized in that it is constituted by an arithmetic means for multiplying the variable defined by the ring is the 3-point or more current values, DC power transmission system of the fault point locating system.
JP59019090A 1984-02-04 1984-02-04 DC power transmission system fault location device Expired - Lifetime JPH0619409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019090A JPH0619409B2 (en) 1984-02-04 1984-02-04 DC power transmission system fault location device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019090A JPH0619409B2 (en) 1984-02-04 1984-02-04 DC power transmission system fault location device

Publications (2)

Publication Number Publication Date
JPS60162967A JPS60162967A (en) 1985-08-24
JPH0619409B2 true JPH0619409B2 (en) 1994-03-16

Family

ID=11989756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019090A Expired - Lifetime JPH0619409B2 (en) 1984-02-04 1984-02-04 DC power transmission system fault location device

Country Status (1)

Country Link
JP (1) JPH0619409B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277848B (en) * 2014-06-23 2018-02-16 南京南瑞继保电气有限公司 The recognition methods of abort situation during a kind of DC harmonic protection action
EP3154144B1 (en) 2015-10-06 2020-04-22 General Electric Technology GmbH Improvements in or relating to direct current distance protection controllers
CN110873828A (en) * 2018-08-31 2020-03-10 株洲中车时代电气股份有限公司 DC circuit monitoring system for railway passenger vehicle
CN110389275A (en) * 2019-07-19 2019-10-29 淮阴工学院 Smart grid link ground fault wave recording device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372144A (en) * 1976-12-10 1978-06-27 Hitachi Ltd Standaedization device of trouble point
JPS53116446A (en) * 1977-03-23 1978-10-11 Tokyo Electric Power Co Inc:The Fault point locator for power transmission line
JPS58225362A (en) * 1982-06-24 1983-12-27 Toshiba Corp Digital troubled point locating apparatus

Also Published As

Publication number Publication date
JPS60162967A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
JPH08211112A (en) Electric apparatus for ac electric power system
JPS5826522A (en) Ground detector for ac generator
CA1056910A (en) Method and apparatus for detection of short-circuits
JP3220327B2 (en) Frequency detection method and apparatus, and power system stabilization system
US4721906A (en) One step RMS system
JPH0619409B2 (en) DC power transmission system fault location device
EP0256183B1 (en) RMS current determination by sampling current differential
JP3410043B2 (en) Current detection system
KR20010020704A (en) Electronic trip device with phase reconstitution and a circuit breaker comprising such a trip device
JPS589528A (en) Ac motor protecting device
JP3183957B2 (en) Fault location device
JPH0524465B2 (en)
JP3010642B2 (en) Optical system zero-phase current / voltage sensor signal processing circuit
JP2715090B2 (en) Fault location device
NZ502167A (en) System for measuring the alternating current equivalent series resistance of a conductor
JPS6486080A (en) Method and apparatus for diagnosing abnormality of current detector
JPS5942460A (en) Phase detecting device
JPH0345116A (en) Protective relay
JP2868846B2 (en) Measuring device
JPH0316069Y2 (en)
JPH03158768A (en) Detecting circuit for voltage variation
JPH0638693B2 (en) Digital type distance relay
JPH0756501B2 (en) Synchronous measurement method for different point information
JPS6330774A (en) Apparatus for monitoring electric machinery
JPS61207195A (en) Motor controller