JPH06193474A - Intake air throttle valve device for diesel-engine - Google Patents

Intake air throttle valve device for diesel-engine

Info

Publication number
JPH06193474A
JPH06193474A JP34296592A JP34296592A JPH06193474A JP H06193474 A JPH06193474 A JP H06193474A JP 34296592 A JP34296592 A JP 34296592A JP 34296592 A JP34296592 A JP 34296592A JP H06193474 A JPH06193474 A JP H06193474A
Authority
JP
Japan
Prior art keywords
throttle valve
intake throttle
intake
hole
overrun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34296592A
Other languages
Japanese (ja)
Inventor
Tomohiko Matsushita
智彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34296592A priority Critical patent/JPH06193474A/en
Publication of JPH06193474A publication Critical patent/JPH06193474A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To achieve a differential pressure across a valve, with which the area of an air passage is larger during a normal accelerator turn-off period, than during an overrun period. CONSTITUTION:An intake throttle device for a Diesel-engine, comprises a spring means (a spring 7, a leaf spring 19 and a coil spring 13) for urging an actuator (a leaf spring 10 and a lid 12) which is provided for blocking a hole 3 formed in an intake air throttle valve 2, so that the position of the throttle valve 2 or a position distant from the hole 3 is set to ensure a specific passage area between the throttle valve 2 and an intake passage 1, or between the hole 3 and the actuator, overcoming a load less than a specific value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンの
吸気絞り弁装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diesel engine intake throttle valve device.

【0002】[0002]

【従来の技術】ディーゼルエンジンでは、燃料噴射ポン
プの制御によって回転を制御するため、通常は、ガソリ
ンエンジンで設置されるような吸気絞り弁は設けられな
い。しかし、エンジンの過回転を防止するために、ディ
ーゼルエンジンでも吸気通路に絞り弁を設けることがあ
る(たとえば、実開昭61−1633号公報)。たとえ
ば、ディーゼル噴射ポンプが故障して全量噴射が行われ
ると、エンジン回転は上昇していき、オーバランでエン
ジン破損が生じるが、これを対策するには、空気をカ
ットしてエンジンを停止する方法と、空気を絞ってオ
ーバラン回転数を許容回転数以下とする方法とがある。
2. Description of the Related Art In a diesel engine, since the rotation is controlled by controlling a fuel injection pump, an intake throttle valve, which is usually used in a gasoline engine, is not provided. However, in order to prevent the engine from over rotating, a throttle valve may be provided in the intake passage even in a diesel engine (for example, Japanese Utility Model Laid-Open No. 61-1633). For example, if the diesel injection pump fails and full injection is performed, the engine speed will increase and overrun will cause engine damage.To counter this, a method of cutting air and stopping the engine is used. , There is a method of squeezing air to set the overrun rotation speed to be equal to or lower than the allowable rotation speed.

【0003】現状は、アクセルオフ時(アイドル時)
に、吸気絞り弁が全閉になってエンジン停止してはいけ
ないので、上記のの方法によっており、オーバランが
生じた時でも回転数を許容回転数以下とするように流量
を限定する、外周クリアランスまたは穴を吸気絞り弁に
設けるようにしている。
Currently, the accelerator is off (idle)
In addition, the intake throttle valve must not be fully closed to stop the engine.Therefore, the above method is used to limit the flow rate so that the rotational speed is kept below the allowable rotational speed even when overrun occurs. Alternatively, a hole is provided in the intake throttle valve.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来装置に
は、次の問題がある。すなわち、アクセルオフ時に吸気
を絞ることは、排気浄化上有利となることもあるが、高
回転からアクセルオフとした時などは、吸気絞り弁下流
側がかなりの負圧になるので(ピストンが慣性で往復動
して吸引しているのに絞り弁が閉っている状態)、シリ
ンダからのオイル吸い出し、燃料調量遅れによる黒煙増
などの悪影響が懸念されている。
However, the conventional device has the following problems. In other words, throttling the intake air when the accelerator is off may be advantageous in terms of exhaust gas purification, but when the accelerator is turned off from a high rotation speed, a considerable negative pressure occurs on the downstream side of the intake throttle valve (the piston is There is concern about adverse effects such as reciprocating and sucking but the throttle valve is closed), oil is sucked out from the cylinder, and black smoke increases due to delay in fuel metering.

【0005】上記のような問題を軽減するには、従来、
アクセルオフ時の通路面積は、そのアクセルオフが通常
状態、オーバラン状態の如何を問わず、一定であったも
のを、通常アクセルオフ時の空気通路面積がオーバラン
時空気通路面積より大となる関係をもたせることが望ま
れる。ただし、オーバラン時には、吸気絞り弁上流側圧
力と吸気絞り弁下流側圧力との圧力差が通常アクセルオ
フ時のそれよりも大きくなる(過給エンジンで顕著)の
で、上記関係の実現に、この圧力差大を利用できる。
In order to reduce the above problems, the conventional
The passage area when the accelerator is off is constant regardless of whether the accelerator is in a normal state or an overrun state, but the air passage area when the accelerator is normally off is larger than the air passage area when it is overrun. It is desirable to have it. However, at the time of overrun, the pressure difference between the intake throttle valve upstream side pressure and the intake throttle valve downstream side pressure becomes larger than that when the accelerator is normally off (noticeable in a supercharged engine). The difference can be used.

【0006】本発明の目的は、オーバラン時に吸気絞り
弁上流側圧力と吸気絞り弁下流側圧力との差圧が大にな
ることを利用して、通常アクセルオフ時の空気通路面積
がオーバラン時空気通路面積より大の関係を実現するこ
とを目的とする。
An object of the present invention is to utilize the fact that the pressure difference between the intake throttle valve upstream side pressure and the intake throttle valve downstream side pressure becomes large at the time of overrun, so that the air passage area when the accelerator is normally off is large when the air is overrun. The purpose is to realize a relationship larger than the passage area.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るディーゼルエンジンの吸気絞り弁装置
は、次の装置からなる。すなわち、ディーゼルエンジン
の吸気通路に配設され吸気絞り弁と、アクセルオフ時に
前記吸気絞り弁によって絞られる空気通路面積を可変と
する通路面積可変機構と、前記吸気絞り弁の上流側と下
流側の圧力差が大きい程前記絞られる空気通路面積を小
とするばね手段と、からなるディーゼルエンジンの吸気
絞り弁装置。
[MEANS FOR SOLVING THE PROBLEMS] An intake throttle valve device for a diesel engine according to the present invention for achieving the above object comprises the following devices. That is, an intake throttle valve arranged in the intake passage of a diesel engine, a passage area variable mechanism for varying the air passage area throttled by the intake throttle valve when the accelerator is off, and an upstream side and a downstream side of the intake throttle valve. An intake throttle valve device for a diesel engine, comprising: spring means that reduces the area of the throttled air passage as the pressure difference increases.

【0008】[0008]

【作用】上記本発明のディーゼルエンジンの吸気絞り弁
装置においては、通路面積可変機構により、アクセルオ
フ時の、吸気絞り弁によって絞られた空気通路面積は可
変である。オーバラン時(アクセルオフでかつ過回転
時)には、吸気絞り弁差圧が大となるのを利用してばね
手段を働かせ、オーバラン回転数が許容回転数になるよ
うに吸気絞り弁空気通路面積を絞る。これによって、オ
ーバランの対策は従来通りかそれ以上になされる。通常
アクセルオフ時(アイドル時)には、吸気絞り弁圧力差
はオーバラン時に比べて小さいので、吸気絞り弁の空気
通路面積は従来より大となる。このため、吸気絞り弁下
流側圧力は、負圧時にも従来より負圧が弱まり、シリン
ダからのオイル吸い出し、燃料調量遅れによる黒煙増な
どの問題が従来に比べて軽減される。
In the intake throttle valve device for a diesel engine of the present invention, the passage area variable mechanism allows the air passage area throttled by the intake throttle valve when the accelerator is off to be variable. During overrun (accelerator off and overspeed), the intake throttle valve air passage area is controlled so that the spring means works by taking advantage of the large differential pressure of the intake throttle valve so that the overrun speed becomes the allowable speed. Squeeze. This allows overrun measures to be taken as usual or better. Normally, when the accelerator is off (idle), the pressure difference of the intake throttle valve is smaller than that at the time of overrun, so the air passage area of the intake throttle valve becomes larger than before. Therefore, the pressure on the downstream side of the intake throttle valve is weaker than before even when the pressure is negative, and problems such as oil suction from the cylinder and increase in black smoke due to a delay in fuel metering are alleviated as compared with the conventional case.

【0009】[0009]

【実施例】以下に、本発明の望ましい実施例を説明す
る。 第1実施例 第1実施例は、バタフライ弁面積差を利用して通常アク
セルオフ時空気通路がオーバラン時空気通路より大を実
現するもので、詳細を図1、図2に示す。ディーゼルエ
ンジンの吸気通路1には、バタフライ弁の吸気絞り弁2
が配設されている。吸気絞り弁2には、軸4の片側に穴
3が設けられている。吸気絞り弁2は、軸4と一体に回
動し、軸4には吸気通路1の外側に延出た部分に、軸4
と一体に回転するストッパレバー5が取付けられてい
る。ストッパレバー5が回動したときにストッパレバー
5と当たる位置にストッパ6が設けられている。ストッ
パ6は可動式であり、第1実施例の通路面積可変機構を
構成する。ストッパ6に対してばね7が設けられ、スト
ッパ6がストッパレバー5によって押されたとき圧縮さ
れて空気通路面積を小とし、ストッパレバー5の押し方
向と反対方向にストッパ6を弾性的に付勢する。ばね7
は第1実施例のばね手段を構成する。
The preferred embodiments of the present invention will be described below. First Embodiment In the first embodiment, the air passage at the time of normal accelerator off is realized larger than the air passage at the time of overrun by utilizing the difference in butterfly valve area. The details are shown in FIGS. 1 and 2. The intake passage 1 of the diesel engine has an intake throttle valve 2 of a butterfly valve.
Is provided. The intake throttle valve 2 is provided with a hole 3 on one side of the shaft 4. The intake throttle valve 2 rotates integrally with the shaft 4, and the shaft 4 has a shaft 4 at a portion extending outside the intake passage 1.
A stopper lever 5 that rotates together with the stopper lever 5 is attached. A stopper 6 is provided at a position where it contacts the stopper lever 5 when the stopper lever 5 rotates. The stopper 6 is movable and constitutes the passage area variable mechanism of the first embodiment. A spring 7 is provided for the stopper 6, and when the stopper 6 is pushed by the stopper lever 5, it is compressed to reduce the area of the air passage, and the stopper 6 is elastically biased in the direction opposite to the pushing direction of the stopper lever 5. To do. Spring 7
Constitutes the spring means of the first embodiment.

【0010】通常アクセルオフ時(アイドル時)、吸気
絞り弁2は閉側に回動し、吸気絞り弁2の上流側と下流
側とで圧力差が生じる。穴3が軸4の片側だけにあいて
いるので、圧力差の受圧面積が軸の両側で互いに異な
り、吸気絞り弁2には閉側のモーメントが働らく。この
モーメントは、ストッパレバー5を介してストッパ6に
作用するが、ばね7の反力によるモーメントを穴3の存
在のための受圧面積の相違によるモーメントより大きく
設定することにより、吸気絞り弁2は回動しない(図1
の状態)。この状態では、空気は穴3と吸気絞り弁2の
外周クリアランスの両方を通って流れるから、吸気絞り
弁2の下流側の吸気負圧は、穴だけの従来に比べて弱ま
り、オイルの吸い出し等の不具合が生じることを防止ま
たは軽減する。
When the accelerator is normally off (idle), the intake throttle valve 2 rotates to the closing side, and a pressure difference occurs between the upstream side and the downstream side of the intake throttle valve 2. Since the hole 3 is formed only on one side of the shaft 4, the pressure receiving areas of the pressure difference are different from each other on both sides of the shaft, and a moment on the intake side acts on the intake throttle valve 2. This moment acts on the stopper 6 via the stopper lever 5, but by setting the moment due to the reaction force of the spring 7 larger than the moment due to the difference in the pressure receiving area due to the existence of the hole 3, the intake throttle valve 2 becomes Does not rotate (Fig. 1
State). In this state, the air flows through both the hole 3 and the outer peripheral clearance of the intake throttle valve 2, so the intake negative pressure on the downstream side of the intake throttle valve 2 becomes weaker than in the conventional case where only the hole is provided, and oil is sucked out. To prevent or reduce the occurrence of defects.

【0011】オーバランのようなアクセルオフ時が生じ
ると、エンジン回転数が上昇していって、吸気絞り弁2
の上流側と下流側との差圧が増加するため、吸気絞り弁
2はさらに閉側に回動し、吸気絞り弁2の外周クリアラ
ンスを0にする。穴3の大きさは、穴3だけを通る空気
量を、エンジンのオーバラン回転数を許容回転数以下に
する空気量に絞るように定められているので、オーバラ
ンによる損傷は生じない。したがって、オーバランによ
るエンジン損傷を防止できるばかりでなく、通常アクセ
ルオフ時の過負圧による不具合も防止できる。
When the accelerator is off during overrun, the engine speed increases and the intake throttle valve 2
Since the differential pressure between the upstream side and the downstream side of the intake throttle valve 2 increases, the intake throttle valve 2 further rotates to the closed side, and the outer peripheral clearance of the intake throttle valve 2 becomes zero. Since the size of the hole 3 is determined so that the amount of air passing through only the hole 3 is reduced to the amount of air that makes the engine overrun rotation speed equal to or lower than the allowable rotation speed, damage due to overrun does not occur. Therefore, not only can engine damage due to overrun be prevented, but also problems due to overnegative pressure when the accelerator is normally off can be prevented.

【0012】第2実施例 第2実施例は、バタフライ弁面積差を利用してアクセル
オフ時空気通路がオーバラン時空気通路より大を実現す
るもので、詳細を図3、図4に示す。第2実施例では、
バタフライ弁からなる吸気絞り弁2の軸4は弁中心から
オフセットしており、弁2には穴3はあいていない。そ
の他の構成は第1実施例の構成に準じるので、準じる部
分に第1実施例と同一の符号を付す。ストッパ6は第2
実施例の通路面積可変機構であり、ばね7は第2実施例
のばね手段を構成する。
Second Embodiment In the second embodiment, the air passage at the time of accelerator off is realized larger than the air passage at the time of overrun by utilizing the difference in butterfly valve area. The details are shown in FIGS. 3 and 4. In the second embodiment,
The shaft 4 of the intake throttle valve 2, which is a butterfly valve, is offset from the valve center, and the valve 2 has no hole 3. Since the other configurations are similar to those of the first embodiment, the same reference numerals are given to the corresponding portions. The stopper 6 is the second
It is the passage area variable mechanism of the embodiment, and the spring 7 constitutes the spring means of the second embodiment.

【0013】通常アクセルオフ時(アイドル時)、吸気
絞り弁2が閉側に回動して、吸気絞り弁2の上、下流間
に圧力差が生じる。軸4がオフセットしているので、軸
4の両側で受圧面積が異なり、吸気絞り弁2に閉側のモ
ーメントが働らく。このモーメントよりばね7からの反
力によるモーメントを大きく設定してあるので吸気絞り
弁2はストッパ6に当った位置で回動を停止する。この
状態では空気は吸気絞り弁2の外周クリアランスを通っ
て流れるが、このクリアランスは従来より大きくとって
あり、吸気絞り弁2の下流側負圧は従来に比べて弱ま
る。
Normally, when the accelerator is off (idle), the intake throttle valve 2 rotates to the closing side, and a pressure difference occurs between the upstream side and the downstream side of the intake throttle valve 2. Since the shaft 4 is offset, the pressure receiving area is different on both sides of the shaft 4, and the closing moment acts on the intake throttle valve 2. Since the moment due to the reaction force from the spring 7 is set to be larger than this moment, the intake throttle valve 2 stops rotating at the position where it hits the stopper 6. In this state, air flows through the outer peripheral clearance of the intake throttle valve 2, but this clearance is larger than before, and the negative pressure on the downstream side of the intake throttle valve 2 becomes weaker than before.

【0014】オーバラン時には吸気絞り弁2の上、下流
間の差圧が増大するので、吸気絞り弁2はさらに閉側に
回動し、吸気絞り弁2の外周クリアランス(0を含む)
がさらに小さくなった位置で吸気絞り弁2はバランスす
る。このため、オーバラン回転数は許容回転数以下とな
る。
At the time of overrun, the differential pressure between the upstream side and the downstream side of the intake throttle valve 2 increases, so the intake throttle valve 2 further rotates to the closing side, and the outer peripheral clearance (including 0) of the intake throttle valve 2 is increased.
The intake throttle valve 2 is balanced at a position where is smaller. Therefore, the overrun rotation speed becomes less than the allowable rotation speed.

【0015】第3実施例 第3実施例は、バタフライ弁を分割構造にして、アクセ
ルオフ時空気通路がオーバラン時空気通路より大を実現
するもので、詳細を図5、図6、図7に示す。第3実施
例では、ディーゼルエンジンの吸気通路1にはバタフラ
イ弁からなる吸気絞り弁2が回動可能に配設されてい
る。吸気絞り弁2は2つの弁部2a、2bに分割されて
いる。一方の弁部2aは軸4と一体に結合しており、他
方の弁部2bは前記弁部2aに対して回動可能で、回動
することによって、アクセルオフ時の空気通路面積を可
変とし、第3実施例の通路面積可変機構を構成してい
る。弁部2aと弁部2bは、ばね8によって直線状をな
すように付勢されており、折曲げ力が所定値以上に大き
くなったときに弁部2aと弁部2bはばね8の力に抗し
て折れ曲がる。ばね8は第3実施例のばね手段を構成す
る。
Third Embodiment In the third embodiment, the butterfly valve is of a divided structure so that the air passage at the time of accelerator off is larger than the air passage at the time of overrun. The details are shown in FIGS. 5, 6 and 7. Show. In the third embodiment, an intake throttle valve 2 composed of a butterfly valve is rotatably arranged in an intake passage 1 of a diesel engine. The intake throttle valve 2 is divided into two valve portions 2a and 2b. One valve portion 2a is integrally connected to the shaft 4, and the other valve portion 2b is rotatable with respect to the valve portion 2a. By rotating the valve portion 2a, the air passage area when the accelerator is off can be changed. , Which constitutes the passage area variable mechanism of the third embodiment. The valve portion 2a and the valve portion 2b are urged by the spring 8 so as to form a linear shape, and when the bending force becomes larger than a predetermined value, the valve portion 2a and the valve portion 2b are affected by the force of the spring 8. Bends against. The spring 8 constitutes the spring means of the third embodiment.

【0016】通常アクセルオフ時(アイドル時)、吸気
絞り弁2が閉側に回動して、吸気絞り弁2の上、下流間
に圧力差が生じるが、この圧力差はオーバラン時程には
大きくないので、ばね8によって弁部2aと弁部2bは
直線状(図5の状態)になり、大きな外周クリアランス
がとれる。したがって、吸気絞り弁2の下流側負圧は従
来に比べて弱まる。
Normally, when the accelerator is off (idle), the intake throttle valve 2 is rotated to the closing side, and a pressure difference is generated between the upstream side and the downstream side of the intake throttle valve 2. Since the spring 8 is not large, the valve portion 2a and the valve portion 2b are linearized by the spring 8 (state of FIG. 5), and a large outer peripheral clearance can be secured. Therefore, the negative pressure on the downstream side of the intake throttle valve 2 becomes weaker than in the conventional case.

【0017】オーバラン時には吸気絞り弁2の上、下流
間圧力差はさらに大きくなるので、弁部2aと弁部2b
はばね8に抗して折れ曲がり(図6の状態)、弁部2b
の外周クリアランスが0になって、最終的に、外周クリ
アランスはアイドル時の1/2となる。この小さくされ
た外周クリアランスによって、オーバラン回転数は許容
回転数以下とされる。
At the time of overrun, the pressure difference between the upstream side and the downstream side of the intake throttle valve 2 becomes larger, so that the valve portion 2a and the valve portion 2b.
Bends against the spring 8 (state of FIG. 6), the valve portion 2b
The outer peripheral clearance becomes zero and, finally, the outer peripheral clearance becomes half of the idle clearance. Due to the reduced outer peripheral clearance, the overrun rotation speed is set to the allowable rotation speed or less.

【0018】第4実施例 第4実施例は、バタフライ弁に弁を設けて、アクセルオ
フ時空気通路がオーバラン時空気通路より大を実現する
もので、詳細を図8、図9に示す。第4実施例では、デ
ィーゼルエンジンの吸気通路1にはバタフライ弁からな
る吸気絞り弁2が回動可能に配設されている。吸気絞り
弁2には、軸4に対称に穴9が設けられており、穴9に
対して板ばね10が設けられている。板ばね10は、吸
気絞り弁2の上、下流間差圧が比較的小さいときは穴9
を開けているが、差圧が大きくなると穴を閉じる。板ば
ね10は、第4実施例の通路面積可変機構兼ばね手段を
構成する。
Fourth Embodiment In a fourth embodiment, a butterfly valve is provided so that the air passage at the time of accelerator off is larger than the air passage at the time of overrun. The details are shown in FIGS. 8 and 9. In the fourth embodiment, an intake throttle valve 2 composed of a butterfly valve is rotatably arranged in an intake passage 1 of a diesel engine. The intake throttle valve 2 is provided with a hole 9 symmetrically with the shaft 4, and a leaf spring 10 is provided in the hole 9. The leaf spring 10 has a hole 9 above the intake throttle valve 2 when the downstream differential pressure is relatively small.
Although it is open, the hole closes when the differential pressure increases. The leaf spring 10 constitutes the passage area varying mechanism and spring means of the fourth embodiment.

【0019】通常アクセルオフ時、吸気絞り弁2が閉側
に回動して、吸気絞り弁2の上、下流間に圧力差が生じ
る。この時の圧力差はオーバラン時程には大きくないの
で、板ばね10は穴9を閉塞しない。したがって、空気
通路面積は外周クリアランスと穴9との和となり、従来
に比べて大きな面積がとれる。そのため、通常アクセル
オフ時の吸気絞り弁下流側負圧が弱まる。
When the accelerator is normally off, the intake throttle valve 2 rotates to the closing side, and a pressure difference occurs between the upstream side and the downstream side of the intake throttle valve 2. Since the pressure difference at this time is not so large as during overrun, the leaf spring 10 does not close the hole 9. Therefore, the area of the air passage is the sum of the outer peripheral clearance and the hole 9, and a large area can be obtained as compared with the conventional case. Therefore, the negative pressure on the downstream side of the intake throttle valve when the accelerator is normally off is weakened.

【0020】オーバラン時には、吸気絞り弁2の上、下
流間の差圧が増大するので、板ばね10は穴9をとじ
る。したがって、空気通路面積は外周クリアランスだけ
となり、オーバラン回転数は許容回転数以下となる。
At the time of overrun, the differential pressure between the upstream side and the downstream side of the intake throttle valve 2 increases, so that the leaf spring 10 closes the hole 9. Therefore, the area of the air passage is only the outer peripheral clearance, and the overrun rotation speed is less than the allowable rotation speed.

【0021】第5実施例 第5実施例は、第4実施例と同様の機能をコイルスプリ
ングと蓋との組合せで達成するもので、詳細を図10に
示す。第5実施例では、ディーゼルエンジンの吸気通路
1にはバタフライ弁からなる吸気絞り弁2が回動可能に
配設されている。吸気絞り弁2には、軸4に対称に穴1
1が設けられており、穴11には開閉可能に蓋12が設
けられており、蓋12はコイルスプリング13で開側に
付勢されている。蓋12は第5実施例の通路面積可変機
構を構成し、コイルスプリング13は第5実施例のばね
手段を構成している。
Fifth Embodiment The fifth embodiment achieves the same function as that of the fourth embodiment by combining a coil spring and a lid, and the details are shown in FIG. In the fifth embodiment, an intake throttle valve 2 composed of a butterfly valve is rotatably arranged in an intake passage 1 of a diesel engine. The intake throttle valve 2 has a hole 1 symmetrical to the shaft 4.
1 is provided, the hole 11 is provided with a lid 12 that can be opened and closed, and the lid 12 is biased to the open side by a coil spring 13. The lid 12 constitutes the passage area variable mechanism of the fifth embodiment, and the coil spring 13 constitutes the spring means of the fifth embodiment.

【0022】通常アクセルオフ時、吸気絞り弁2が閉側
に回動して、吸気絞り弁2の上、下流間に圧力差が生じ
る。この時の圧力差はオーバラン時程には大きくないの
で、蓋12は穴11を開けている。したがって、空気通
路面積は外周クリアランスと穴11との和となり、従来
に比べて空気通路面積が大きくとれ、通常アクセルオフ
時の吸気絞り弁下流側負圧が弱められる。
When the accelerator is normally off, the intake throttle valve 2 rotates to the closing side, and a pressure difference occurs between the upstream side and the downstream side of the intake throttle valve 2. Since the pressure difference at this time is not as large as that at the time of overrun, the lid 12 has the hole 11. Therefore, the air passage area is the sum of the outer peripheral clearance and the hole 11, the air passage area can be made larger than in the conventional case, and the negative pressure on the downstream side of the intake throttle valve when the accelerator is normally off is weakened.

【0023】オーバラン時には、吸気絞り弁2の上、下
流間の差圧が増大するので、コイルスプリング13のた
わみが大きくなり、蓋12は穴11を閉じる。したがっ
て、空気通路面積は外周クリアランスだけとなり、オー
バラン回転数は許容回転数以下となる。
At the time of overrun, the differential pressure between the upstream and downstream sides of the intake throttle valve 2 increases, so that the deflection of the coil spring 13 increases and the lid 12 closes the hole 11. Therefore, the area of the air passage is only the outer peripheral clearance, and the overrun rotation speed is less than the allowable rotation speed.

【0024】[0024]

【発明の効果】本発明によれば、アクセルオフ時の空気
通路面積を可変となし、吸気絞り弁上、下流間圧力差が
大な程空気通路面積を小とするばね手段を設けたので、
通常アクセルオフ時には必要以上に吸気を絞らず、オー
バラン時のみ大幅に空気通路面積を減少させることがで
きる。
According to the present invention, the air passage area when the accelerator is off is made variable, and the spring means for reducing the air passage area as the pressure difference between the upstream side and the downstream side of the intake throttle valve is increased is provided.
Normally, when the accelerator is off, intake air is not throttled more than necessary, and the air passage area can be greatly reduced only during overrun.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るディーゼルエンジン
の吸気絞り弁装置の断面図である。
FIG. 1 is a sectional view of an intake throttle valve device for a diesel engine according to a first embodiment of the present invention.

【図2】図1の装置の正面図である。2 is a front view of the device of FIG. 1. FIG.

【図3】本発明の第2実施例に係るディーゼルエンジン
の吸気絞り弁装置の断面図である。
FIG. 3 is a sectional view of an intake throttle valve device for a diesel engine according to a second embodiment of the present invention.

【図4】図3の装置の正面図である。FIG. 4 is a front view of the device of FIG.

【図5】本発明の第3実施例に係るディーゼルエンジン
の吸気絞り弁装置の通常アクセルオフ時の断面図であ
る。
FIG. 5 is a cross-sectional view of an intake throttle valve device for a diesel engine according to a third embodiment of the present invention when a normal accelerator is off.

【図6】図5の装置のオーバラン時の断面図である。6 is a cross-sectional view of the device of FIG. 5 during overrun.

【図7】図5の装置の正面図である。FIG. 7 is a front view of the device of FIG.

【図8】本発明の第4実施例に係るディーゼルエンジン
の吸気絞り弁装置の断面図である。
FIG. 8 is a sectional view of an intake throttle valve device for a diesel engine according to a fourth embodiment of the present invention.

【図9】図8の装置の正面図である。9 is a front view of the device of FIG. 8. FIG.

【図10】本発明の第5実施例に係るディーゼルエンジ
ンの吸気絞り弁装置の断面図である。
FIG. 10 is a sectional view of an intake throttle valve device for a diesel engine according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 吸気通路 2 吸気絞り弁 3 穴 4 軸 5 ストッパレバー 6 ストッパ 7 ばね 8 ばね 9 穴 10 板ばね 11 穴 12 蓋 13 コイルスプリング 1 intake passage 2 intake throttle valve 3 hole 4 shaft 5 stopper lever 6 stopper 7 spring 8 spring 9 hole 10 leaf spring 11 hole 12 lid 13 coil spring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ディーゼルエンジンの吸気通路に配設さ
れ吸気絞り弁と、 アクセルオフ時に前記吸気絞り弁によって絞られる空気
通路面積を可変とする通路面積可変機構と、 前記吸気絞り弁の上流側と下流側の圧力差が大きい程前
記絞られる空気通路面積を小とするばね手段と、からな
るディーゼルエンジンの吸気絞り弁装置。
1. An intake throttle valve disposed in an intake passage of a diesel engine, a passage area variable mechanism for varying an air passage area throttled by the intake throttle valve when the accelerator is off, and an upstream side of the intake throttle valve. An intake throttle valve device for a diesel engine, comprising: spring means that reduces the area of the throttled air passage as the downstream pressure difference increases.
JP34296592A 1992-12-24 1992-12-24 Intake air throttle valve device for diesel-engine Pending JPH06193474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34296592A JPH06193474A (en) 1992-12-24 1992-12-24 Intake air throttle valve device for diesel-engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34296592A JPH06193474A (en) 1992-12-24 1992-12-24 Intake air throttle valve device for diesel-engine

Publications (1)

Publication Number Publication Date
JPH06193474A true JPH06193474A (en) 1994-07-12

Family

ID=18357887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34296592A Pending JPH06193474A (en) 1992-12-24 1992-12-24 Intake air throttle valve device for diesel-engine

Country Status (1)

Country Link
JP (1) JPH06193474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598587B2 (en) 1997-05-07 2003-07-29 Hitachi, Ltd. Throttle apparatus for an engine
KR100398153B1 (en) * 2000-12-29 2003-09-19 현대자동차주식회사 Throttle valve
JP2008082222A (en) * 2006-09-27 2008-04-10 Kubota Corp Fuel supply device for engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598587B2 (en) 1997-05-07 2003-07-29 Hitachi, Ltd. Throttle apparatus for an engine
US7013870B2 (en) 1997-05-07 2006-03-21 Hitachi, Ltd. Throttle apparatus for an engine
US7028666B2 (en) 1997-05-07 2006-04-18 Hitachi, Ltd. Throttle apparatus for an engine
KR100398153B1 (en) * 2000-12-29 2003-09-19 현대자동차주식회사 Throttle valve
JP2008082222A (en) * 2006-09-27 2008-04-10 Kubota Corp Fuel supply device for engine

Similar Documents

Publication Publication Date Title
EP1134380A2 (en) Stratified scavenging two-stroke Internal combustion engine
US3882837A (en) Exhaust gas recirculation control device for internal combustion
US8069664B2 (en) Integrated inlet and bypass throttle for positive-displacement supercharged engines
US4181109A (en) Exhaust gas recirculation apparatus
JPS6229621B2 (en)
JPH06193474A (en) Intake air throttle valve device for diesel-engine
JPS60169630A (en) Supercharger for internal-combustion engine
US4295455A (en) Exhaust gas recirculation control system for a compression-ignition internal combustion engine
GB1324873A (en) Internal combustion engine with fuel injection
JPS6088862A (en) Intake-air device for multi-cylinder type internal- combustion engine
JPH04287835A (en) Supercharging pressure controller of turbocharger
JPH06173695A (en) Intake device for internal combustion engine
JPH0429057Y2 (en)
JPS6124665Y2 (en)
JPH0332770Y2 (en)
JPS6148619B2 (en)
JPH06280684A (en) Egr system of 4-stroke engine
JPS6337492Y2 (en)
JPS6318759Y2 (en)
JPS58101218A (en) Control device of engine supercharger
JPS6176730A (en) Exhaust control device in mechanical type internal-combustion engine with supercharger
JPH0417787Y2 (en)
JPS6341545Y2 (en)
JPS645077Y2 (en)
JPS601242Y2 (en) Reduction throttle valve opener in carburetor